JPH0369665A - Production of antimicrobial fiber structure - Google Patents

Production of antimicrobial fiber structure

Info

Publication number
JPH0369665A
JPH0369665A JP20344089A JP20344089A JPH0369665A JP H0369665 A JPH0369665 A JP H0369665A JP 20344089 A JP20344089 A JP 20344089A JP 20344089 A JP20344089 A JP 20344089A JP H0369665 A JPH0369665 A JP H0369665A
Authority
JP
Japan
Prior art keywords
fiber
component
antibacterial
present
antibacterial agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20344089A
Other languages
Japanese (ja)
Inventor
Tsunekatsu Furuta
古田 常勝
Kenichi Kamemaru
亀丸 賢一
Yoshiaki Kijima
由明 来島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP20344089A priority Critical patent/JPH0369665A/en
Publication of JPH0369665A publication Critical patent/JPH0369665A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject structure, excellent in washing durability, having a high-level of antimicrobial performance and useful as underwear, etc., by using conjugate fiber, composed of a polyester containing an antimicrobial agent and polymer excellent in fiber-forming properties. CONSTITUTION:The objective structure obtained by forming a fiber structure from conjugate fiber constructed of (A) a component, composed of a polyester containing an antimicrobial agent and exposing part thereof to the fiber surface and (B) a polymer excellent in fiber-forming properties, then treating the aforementioned fiber structure with an aqueous solution of an alkali compound (e.g. sodium hydroxide), partially dissolving and removing part of the component (A). Furthermore, if, e.g. polyethylene terephthalate is used as the component (B), polyethylene terephthalate copolymers containing metal sulfonate groups are preferably used as the component (A).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、洗濯耐久性の優れた高度な抗菌性能を有する
抗菌性繊維構造物の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an antibacterial fiber structure having excellent washing durability and high antibacterial performance.

(従来の技術) 靴下、肌着、ふとん地等の人体に直接接触する衣料は、
汗が付着し適当な温度、湿度が与えられると、細菌等の
微生物が繁殖して悪臭を放ったり、生地を変色、脆化さ
せたりするような問題がしばしば起こっている。
(Conventional technology) Clothing that comes into direct contact with the human body, such as socks, underwear, and comforters,
When sweat adheres to fabrics and given appropriate temperature and humidity, microorganisms such as bacteria multiply, causing problems such as foul odors, discoloration, and brittleness of fabrics.

このような現状に対して、従来より抗菌性を付与する方
法として、有機シリコン第4級アンモニウム塩や芳香族
ハロゲン化合物等の抗菌剤を繊維布帛に含浸する方法が
提案されている。しかしこの方法で得られる抗菌性繊維
布帛は、一般に使用している抗菌剤が平均分子量1.0
00以下の低分子量のものであるため、洗濯により抗菌
剤が溶出してしまい、抗菌効果に持続性がなく、耐久性
に乏しいものであった。
In response to this current situation, a method of impregnating fiber fabric with an antibacterial agent such as an organosilicon quaternary ammonium salt or an aromatic halogen compound has been proposed as a method of imparting antibacterial properties. However, in the antibacterial fiber fabric obtained by this method, the antibacterial agent generally used has an average molecular weight of 1.0.
Since the antibacterial agent has a low molecular weight of 0.00 or less, the antibacterial agent is eluted by washing, the antibacterial effect is not sustainable, and the durability is poor.

この欠点を改善するため、高分子量の抗菌剤や活性炭に
代表される吸着物質に抗菌性を有する金属イオンを物理
的に吸着させた抗菌剤等を繊維製造時に混合する方法が
提案されているが、この場合には繊維表面に露出してい
る抗菌剤が少ないため、高度の抗菌効果を発揮できない
のが現状であった。
In order to improve this drawback, a method has been proposed in which a high molecular weight antibacterial agent or an antibacterial agent in which antibacterial metal ions are physically adsorbed to an adsorbent substance such as activated carbon is mixed during fiber production. In this case, there is little antibacterial agent exposed on the fiber surface, so it is currently not possible to exhibit a high degree of antibacterial effect.

(発明が解決しようとする課題) 本発明はこのような現状に鑑みて行われたもので、洗濯
耐久性の優れた高度な抗菌性を有する抗菌性繊維構造物
を得ることを目的とするものである。
(Problems to be Solved by the Invention) The present invention was made in view of the current situation, and aims to obtain an antibacterial fiber structure having high antibacterial properties and excellent washing durability. It is.

(課題を解決するための手段) 本発明は、上記目的を達成するもので、次の構成よりな
るものである。
(Means for Solving the Problems) The present invention achieves the above object and has the following configuration.

すなわち本発明は、抗菌剤を含有せしめたポリエステル
よりなり、その一部が繊維表面に露出してなるA成分、
および繊維形成性の良好なポリマーよりなるB成分とか
ら構成されてなる複合繊維を用いて繊維構造物を形成し
、しかる後に該繊維構造物をアルカリ化合物の水溶液で
処理してA成分の一部を溶解除去することを特徴とする
抗菌性繊維構造物の製造方法を要旨とするものである。
That is, the present invention provides an A component made of polyester containing an antibacterial agent, a part of which is exposed on the fiber surface;
A fiber structure is formed using a composite fiber composed of a component B consisting of a polymer having good fiber-forming properties, and a component A is formed by treating the fiber structure with an aqueous solution of an alkaline compound. The gist of this invention is a method for producing an antibacterial fiber structure, which is characterized by dissolving and removing.

以下、本発明について詳細に説明を行う。The present invention will be explained in detail below.

本発明で用いる複合繊維は、抗菌剤を含有せしめたポリ
エステルよりなりかつその一部が繊維表面に露出してい
るA成分と、繊維形成性の良好なポリマーよりなるB成
分とから構成されてなる複合繊維である。
The composite fiber used in the present invention is composed of component A, which is made of polyester containing an antibacterial agent and a part of which is exposed on the fiber surface, and component B, which is made of a polymer with good fiber forming properties. It is a composite fiber.

ここでいうポリエステルとしては、ポリエチレンテレフ
タレート、ポリブチレンテレフタレート、ポリ−1,4
−シクロヘキシレンジメチレンテレフタレート、ポリエ
チレン−2,6−ナフタレート及びこれらを主体とする
ポリエステル共重合物、例えばスルホイソフタル酸の金
属塩やセバシン酸等を共重合したポリマー等が挙げられ
る。
The polyesters mentioned here include polyethylene terephthalate, polybutylene terephthalate, poly-1,4
Examples include -cyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalate, and polyester copolymers based on these, such as polymers copolymerized with metal salts of sulfoisophthalic acid, sebacic acid, and the like.

抗菌剤としては、シリコン第4級アンモニウム塩、2−
 (4−チアゾリル)−ベンズイミダゾール、ピリチオ
ン系化合物、10・10′−オキシビスフェノキシアル
シン等の有機化合物、AA。
As antibacterial agents, silicon quaternary ammonium salt, 2-
Organic compounds such as (4-thiazolyl)-benzimidazole, pyrithione compounds, 10,10'-oxybisphenoxyarsine, and AA.

○s / M g O/ Z n O/ T i○2系
複合セラミックスで代表される無機化合物および抗菌性
を有する金属イオンを吸着せしめた活性炭や金属イオン
を配位結合せしめたイオン交換樹脂等が挙げられる。 
上述の抗菌剤のうち、液体の抗菌剤は洗濯耐久性が乏し
いため、ポリエステルに混合する前に、あらかじめシク
ロデキストリン等によりマイクロカプセル化を行ってお
く方が好ましい。
○s / M g O / Z n O / Ti ○ Inorganic compounds represented by 2-based composite ceramics, activated carbon that adsorbs metal ions with antibacterial properties, ion exchange resins that coordinate metal ions, etc. Can be mentioned.
Among the above-mentioned antibacterial agents, since liquid antibacterial agents have poor washing durability, it is preferable to microencapsulate them with cyclodextrin or the like before mixing them with polyester.

抗菌剤の粒径は、本発明の複合繊維の生産に支障のない
程度に小さいことが好ましく、粒子径5μm以下、好ま
しくは2μm以下のものが好適である。
The particle size of the antibacterial agent is preferably small enough to not interfere with the production of the composite fiber of the present invention, and the particle size is preferably 5 μm or less, preferably 2 μm or less.

ポリエステル中に混合する抗菌剤の配合量は、複合繊維
中に占めるA成分の重量比率、製糸性等を考慮して決め
られるが、AtL分のポリエステル重量に対して0.1
〜50重量%の範囲にあることが好ましい。
The amount of antibacterial agent to be mixed into the polyester is determined by considering the weight ratio of component A in the composite fiber, spinnability, etc.
It is preferably in the range of ~50% by weight.

ポリエステルと抗菌剤とを混合するには、溶融ブレンダ
ー等を用いた公知の方法で行えばよい。
The polyester and the antibacterial agent may be mixed by a known method using a melt blender or the like.

B成分として本発明で用いる繊維形成性の良好なポリマ
ーとしては、ホリオレフィン、ポリアミド、ポリエステ
ル、ポリアクリロニトリル等の熱可塑性ポリマーが挙げ
られる。ここでB成分としてポリエステルを用いる場合
には、アルカリ処理によりA成分のポリエステルの一部
を優先的に溶解除去する必要があり、A成分の方がB成
分に比べてアルカリによる加水分解速度の早いポリマー
を使用する必要がある。例えばBtL分にポリエチレン
テレフタレートを用いる場合には、A成分としてスルホ
ン酸金属塩基を含有するポリエチレンテレフタレート共
重合体を用いるとよい。
Examples of polymers with good fiber-forming properties used as component B in the present invention include thermoplastic polymers such as polyolefins, polyamides, polyesters, and polyacrylonitrile. When polyester is used as component B, it is necessary to preferentially dissolve and remove a portion of the polyester of component A by alkali treatment, and the rate of hydrolysis of component A by alkali is faster than component B. It is necessary to use polymers. For example, when polyethylene terephthalate is used for the BtL component, a polyethylene terephthalate copolymer containing a sulfonic acid metal base may be used as the A component.

また上述のAJi12分やB成分中には、必要に応じて
他の添加剤例えば艶消剤、難燃剤、酸化安定剤、紫外線
安定剤等が含まれていても一部にさしつかえない。
In addition, other additives such as matting agents, flame retardants, oxidation stabilizers, ultraviolet stabilizers, etc. may be included in the above-mentioned AJi 12 minutes and B component as necessary.

本発明で用いるA成分とB成分とからなる複合繊維は、
A成分の少なくとも一部が繊維表面に露出せしめられて
いることを要するものである。これを図面で説明すると
、第1図〜第4図は本発明で用いる複合繊維の具体例を
横断面図で示したものであり、図中の■、3.5.7は
抗菌剤を含有せしめたポリエステルよりなるA成分を示
し2.4.6.8は繊維形成性の良好なポリマーよりな
るB成分を示す。いずれもA成分の少なくとも一部が繊
維表面に露出している。
The composite fiber consisting of component A and component B used in the present invention is
At least a portion of component A must be exposed on the fiber surface. To explain this with drawings, Figs. 1 to 4 are cross-sectional views of specific examples of composite fibers used in the present invention, and in the figures, ■, 3.5.7 contain antibacterial agents. 2.4.6.8 represents component A consisting of a polyester with a high fiber-forming property, and component B consisting of a polymer with good fiber forming properties. In all cases, at least a portion of component A is exposed on the fiber surface.

第1図はlのA成分を鞘成分とし、2のB成分を芯成分
とする芯鞘型複合繊維、第2図は3のA成分と4のB成
分とからなるサイドバイサイド型複合繊維、第3図およ
び第4図は回転対照の位置に配置されたA成分とA成分
の間をB成分が埋めてなる形状の複合繊維を示す。
Figure 1 shows a core-sheath type conjugate fiber with the A component of 1 as the sheath component and the B component of 2 as the core component. 3 and 4 show a composite fiber having a shape in which component B fills the space between components A and A that are arranged at rotationally symmetrical positions.

これらの複合繊維は公知の溶融複合紡糸方法によって製
造され、通常の繊維と同様の方法で捲縮加工することも
可能であり、これら複合繊維のみで、あるいは目的に応
じて通常の繊維と混合して使用し、織物、編物、不織布
等の繊維構造物に加工される。
These composite fibers are manufactured by a known melt composite spinning method and can be crimped in the same manner as regular fibers, and can be used alone or mixed with regular fibers depending on the purpose. It is used to process fiber structures such as woven fabrics, knitted fabrics, and non-woven fabrics.

本発明の抗菌性繊維構造物は上述の繊維構造物をアルカ
リ化合物の水溶液で処理することにより、A成分の一部
を溶解除去して得るものである。
The antibacterial fiber structure of the present invention is obtained by treating the above-described fiber structure with an aqueous solution of an alkaline compound to dissolve and remove a portion of component A.

ここで使用するアルカリ化合物としては、水酸化ナトリ
ウム、水酸化カリウム、炭酸ナトリウム炭酸カリウム、
ナトリウムメチラート等が挙げられ、なかでも水酸化ナ
トリウムが特に好ましく用いられる。
The alkaline compounds used here include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate,
Examples include sodium methylate, among which sodium hydroxide is particularly preferably used.

アルカリ化合物の使用量は、アルカリ化合物の種類、ポ
リエステルの種類、処理条件によっても異なるが、通常
0.01〜40g/Ilの範囲で用いるのが好ましい。
The amount of the alkali compound to be used varies depending on the type of alkali compound, the type of polyester, and the processing conditions, but it is usually preferably used in the range of 0.01 to 40 g/Il.

また処理条件としては、通常、温度が常温〜100℃の
範囲、処理時間が1分〜4時間の範囲にあることが好ま
しい。
As for the processing conditions, it is usually preferable that the temperature is in the range of room temperature to 100°C and the processing time is in the range of 1 minute to 4 hours.

アルカリ処理によるA成分の溶解除去量は、A成分の重
量に対して3〜50重量%の範囲好ましくは5〜30重
量%の範囲にあることが望ましい。
It is desirable that the amount of component A dissolved and removed by the alkali treatment is in the range of 3 to 50% by weight, preferably in the range of 5 to 30% by weight, based on the weight of component A.

A成分の溶解除去量が5重量%未渦の場合、繊維表面に
露出する抗菌剤の量が少なく、高度な抗菌効果が発揮で
きない。また50重量%を超えるとポリエステルの溶解
除去に伴い抗菌剤が除去されて高度な抗菌効果が発揮で
きないと共に糸質強度が著しく低下する。
When the amount of component A dissolved and removed is 5% by weight without swirling, the amount of antibacterial agent exposed to the fiber surface is small and a high antibacterial effect cannot be exhibited. If it exceeds 50% by weight, the antibacterial agent will be removed as the polyester is dissolved and removed, making it impossible to exhibit a high antibacterial effect, and the strength of the yarn will drop significantly.

本発明では、更に抗菌作用を向上させる目的でシリコン
第4級アンモニウム塩や芳香族ハロゲン化合物等の抗菌
剤をパディング法、スプレー法、コーティング法等の公
知の方法で繊維表面に固着させてもよい。
In the present invention, in order to further improve the antibacterial effect, an antibacterial agent such as a silicon quaternary ammonium salt or an aromatic halogen compound may be fixed to the fiber surface by a known method such as a padding method, a spray method, or a coating method. .

本発明は以上の構成よりなるものであり、本発明方法に
よれば、洗濯耐久性の優れた抗菌性繊維構造物を得るこ
とができる。
The present invention has the above configuration, and according to the method of the present invention, an antibacterial fiber structure having excellent washing durability can be obtained.

(作 用) 本発明の抗菌性繊維構造物は、抗菌剤を繊維内部に含有
せしめた複合繊維から形成されたものであるから抗菌効
果の洗濯耐久性が良好であり、更に本発明ではアルカリ
処理により抗菌剤を含有するポリエステルの一部を溶解
除去してポリエステルの比表面積を大きくし、繊維表面
に露出している抗菌剤を増加せしめたので、抗菌効果も
非常に優れている。
(Function) Since the antibacterial fiber structure of the present invention is formed from a composite fiber containing an antibacterial agent inside the fiber, the antibacterial effect has good washing durability. By dissolving and removing part of the polyester containing the antibacterial agent, the specific surface area of the polyester is increased, and the amount of antibacterial agent exposed on the fiber surface is increased, so the antibacterial effect is also very good.

(実施例) 以下、実施例によって本発明をさらに具体的に説明する
が、実施例における抗菌性能の測定は次の方法で行った
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples, and the antibacterial performance in the Examples was measured by the following method.

(1)抗菌性 一シェークフラスコ法(菌数減少率試験)く試験菌株〉 ブドウ状球菌 (Staphylococcus Aureus PD
A209P)〈試験方法〉 滅菌処理された抗菌剤未添加繊維構造物および抗菌剤添
加繊維構造物に、それぞれ試験菌の懸濁緩衝液を注加し
、密閉容器中で150回/分にて1時間振とう後の生菌
数を計測し、抗菌剤未添加繊維構造物へ注加した懸濁液
の菌数に対する抗菌剤添加繊維構造物へ注加した懸濁液
の菌数の減少率(%)を求めた。
(1) Antibacterial Shake Flask Method (Bacterial Number Reduction Rate Test) Test Bacterial Strain> Staphylococcus Aureus PD
A209P) <Test method> Suspension buffer of test bacteria was added to each of the sterilized fiber structures without the addition of antibacterial agents and the fiber structures with addition of antibacterial agents, and the test bacteria were incubated at 150 times/min in a closed container. After shaking for a period of time, the number of viable bacteria was measured, and the rate of decrease in the number of bacteria in the suspension injected into the fiber structure with antibacterial agent compared to the number of bacteria in the suspension injected into the fiber structure without antibacterial agent ( %) was calculated.

実施例1 平均粒子径1.5μmのネオシントールAP−60(神
東塗料特製の抗菌剤)粉末30重量部と、フェノール/
テトラクロルエタン(1/1)の溶媒中濃度0.5g 
/ 100 mj2にて25℃で測定した相対粘度ηr
ej! 1.30の5−ナトリウムスルホイソフタル酸
2.5モル%含有のポリエチレンテレフタレート共重合
体70重量部とを溶融混合したA成分を鞘とし、艶消剤
として酸化チタン粒子を0.6重量%含む相対粘度ηr
eji! 1.38のポリエチレンテレフタレートから
成るB成分を芯として、吐出比(A成分/B成分)50
150、紡糸温度260℃、紡糸速度3000m/分に
て溶融紡糸し 、延伸温度120℃、延伸倍率2.5倍
、熱処理温度160℃で延伸を施し、第1図に示す断面
を有する芯鞘型複合繊維から成るフィラメント糸75d
/36fを得た。
Example 1 30 parts by weight of Neosinthol AP-60 (antibacterial agent specially manufactured by Shinto Paint) powder with an average particle size of 1.5 μm and phenol/
Concentration of tetrachloroethane (1/1) in solvent: 0.5g
/ Relative viscosity ηr measured at 25 °C at 100 mj2
ej! The sheath is component A obtained by melt-mixing 70 parts by weight of a polyethylene terephthalate copolymer containing 2.5 mol% of 5-sodium sulfoisophthalate of 1.30, and contains 0.6% by weight of titanium oxide particles as a matting agent. Relative viscosity ηr
eji! The discharge ratio (A component/B component) is 50, with the B component consisting of polyethylene terephthalate of 1.38 as the core.
150, melt-spun at a spinning temperature of 260°C and a spinning speed of 3000 m/min, and stretched at a stretching temperature of 120°C, a stretching ratio of 2.5 times, and a heat treatment temperature of 160°C to obtain a core-sheath type having the cross section shown in Figure 1. Filament yarn 75d made of composite fiber
/36f was obtained.

得られたフィラメント糸を経糸、緯糸に用いて、経糸密
度115本/吋、緯糸密度90本/吋の平織物(タフタ
)を製織した。この生機を常法により精練、プレセット
後、水酸化す) IJウム4%水溶液で煮沸処理して減
量率10%の布帛を得た。
Using the obtained filament yarns as the warp and weft, a plain woven fabric (taffeta) with a warp density of 115 threads/inch and a weft density of 90 threads/inch was woven. This gray fabric was refined in a conventional manner, preset, and then hydroxylated in a 4% IJum aqueous solution to obtain a fabric with a weight loss rate of 10%.

以下、常法により染色し、本発明の抗菌性繊維織物(本
発明Aとする)を得た。
Thereafter, the antibacterial fiber fabric of the present invention (referred to as Invention A) was obtained by dyeing by a conventional method.

本発明との比較のため、本実施例において水酸化す) 
IJウム4%水溶液での処理を省くほかは本実施例と全
く同一の方法により比較用の抗菌性繊維織物を得た。
For comparison with the present invention, hydroxylation was performed in this example)
A comparative antibacterial fiber fabric was obtained by the same method as in this example except that the treatment with the 4% IJum aqueous solution was omitted.

上述の如くして得られた本発明並びに比較用の抗菌性繊
維織物について抗菌性能を測定し、その結果を併せて第
1表に示した。
The antibacterial performance of the antibacterial fiber fabrics of the present invention and comparative antibacterial fabrics obtained as described above was measured, and the results are shown in Table 1.

第1表 ※JIS L−0217103法による洗濯を繰り返し
20回行う 第1表から明らかな如く、本発明の抗菌性繊維織物は優
れた抗菌性能を有し、しかも抗菌性能の洗濯耐久性も優
れていることがわかる。
Table 1 *As is clear from Table 1, which is washed 20 times according to the JIS L-0217103 method, the antibacterial fiber fabric of the present invention has excellent antibacterial performance, and the antibacterial performance also has excellent washing durability. I know that there is.

実施例2 平均粒子径1μmの機能性複合セラミックスMA−2(
萩原工業■製の抗菌剤)40重量部と、相対粘度ηre
j! 1.38のポリエチレンテレフタレート80重量
部とを溶融混合したA成分と、艶消剤として酸化チタン
粒子を0.5重量%含む相対粘度ηrej72.6のナ
イロン6から成るBJilIE分とを、第3図の如く吐
出比(A成分/B成分)50150紡糸温度270℃、
紡糸速度1500m/分にて溶融紡糸し、延伸温度85
℃、延伸倍率2.6倍、熱処理温度165℃で延伸を施
し、第3図に示す断面を有する複合繊維から成るフィラ
メント糸70d/12 fを得た。
Example 2 Functional composite ceramic MA-2 with an average particle size of 1 μm (
Antibacterial agent manufactured by Hagiwara Kogyo ■) 40 parts by weight and relative viscosity ηre
j! Component A, which is a melt-mixed mixture of 80 parts by weight of polyethylene terephthalate with a polyethylene terephthalate of 1.38% and a BJilIE component made of nylon 6 with a relative viscosity ηrej 72.6 containing 0.5% by weight of titanium oxide particles as a matting agent, is shown in FIG. Discharge ratio (component A/component B) 50150, spinning temperature 270°C,
Melt spinning was carried out at a spinning speed of 1500 m/min, and the drawing temperature was 85 m/min.
The filament yarn was drawn at a temperature of 165° C., a draw ratio of 2.6 times, and a heat treatment temperature of 165° C. to obtain 70 d/12 f filament yarns made of composite fibers having the cross section shown in FIG.

得られたフィラメント系を経糸、緯糸に用いて、経糸密
度120本/吋、緯糸密度90本/吋の平織物(タック
)を製織した。この生機を常法により精練、プレセット
後、水酸化ナトリウム2%水溶液で煮沸処理して、減量
率7%の布帛を得た。
Using the obtained filament system for the warp and weft, a plain woven fabric (tuck) with a warp density of 120 threads/inch and a weft density of 90 threads/inch was woven. After scouring and presetting this gray fabric in a conventional manner, it was boiled in a 2% aqueous sodium hydroxide solution to obtain a fabric with a weight loss rate of 7%.

以下、常法により染色し、本発明の抗菌性繊維織物(本
発明Bとする)を得た。
Thereafter, the antibacterial fiber fabric of the present invention (referred to as Invention B) was obtained by dyeing by a conventional method.

次いで、上記本発明の抗菌性繊維織物にサニタイズ19
77 (日本サニタイズ■製抗菌剤)3%水溶液をパデ
ィング(絞り率35%)し、テンターにて150℃で1
分間の熱処理を行い、本発明の抗菌性繊維織物(本発明
Cとする)を得た。
Next, the antibacterial fiber fabric of the present invention was subjected to sanitization 19.
77 (Antibacterial agent manufactured by Nippon Sanitize ■) Padded with a 3% aqueous solution (squeezing ratio 35%) and heated at 150℃ with a tenter.
A heat treatment was performed for 1 minute to obtain an antibacterial fiber fabric of the present invention (referred to as Invention C).

上述の如くして得られた本発明の抗菌性繊維織物の抗菌
性を測定し、その結果を併せて第2表に示した。
The antibacterial properties of the antibacterial fiber fabric of the present invention obtained as described above were measured, and the results are also shown in Table 2.

第2表 ※ JIS L−0217103法による洗濯を繰り返
し20回行う 第2表から明らかな如く、本発明の抗菌性#a維繊織物
優れた抗菌性能を有し、しかも抗菌性能の洗濯耐久性も
優れていることがわかる。特に本発明Cの如く抗菌性繊
維織物に更に抗菌剤をパディングした場合には、より一
層高度な抗菌効果を示すとともに、その洗濯耐久性もよ
り一層向上していることがわかる。
Table 2* As is clear from Table 2, which is repeatedly washed 20 times according to the JIS L-0217103 method, the antibacterial #a fiber fabric of the present invention has excellent antibacterial performance, and the washing durability of the antibacterial performance is also high. It turns out that it is excellent. In particular, it can be seen that when the antibacterial fiber fabric is further padded with an antibacterial agent as in Invention C, not only a higher antibacterial effect is exhibited, but also the washing durability thereof is further improved.

(発明の効果) 本発明方法によれば、洗濯耐久性の優れた高度な抗菌性
能を有する抗菌性繊維構造物を製造することができる。
(Effects of the Invention) According to the method of the present invention, it is possible to produce an antibacterial fiber structure having excellent washing durability and high antibacterial performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明で用いる抗菌性複合繊維の一例を示
す横断図面である。図中の1.3.5.7は抗菌剤を含
有するポリエステルよりなるA!分、2.4.6.8は
繊維形成性の良好なポリマーよりなるBtL分を示す。
1 to 4 are cross-sectional views showing an example of the antibacterial composite fiber used in the present invention. 1.3.5.7 in the figure is A! made of polyester containing an antibacterial agent. 2.4.6.8 indicates the BtL content consisting of polymers with good fiber-forming properties.

Claims (1)

【特許請求の範囲】[Claims] (1)抗菌剤を含有せしめたポリエステルよりなり、そ
の一部が繊維表面に露出してなるA成分、および繊維形
成性の良好なポリマーよりなるB成分とから構成されて
なる複合繊維を用いて繊維構造物を形成し、しかる後に
該繊維構造物をアルカリ化合物の水溶液で処理してA成
分の一部を溶解除去することを特徴とする抗菌性繊維構
造物の製造方法。
(1) Using a composite fiber composed of component A, which is made of polyester containing an antibacterial agent, a part of which is exposed on the fiber surface, and component B, which is made of a polymer with good fiber forming properties. A method for producing an antibacterial fibrous structure, which comprises forming a fibrous structure and then treating the fibrous structure with an aqueous solution of an alkaline compound to dissolve and remove a portion of component A.
JP20344089A 1989-08-04 1989-08-04 Production of antimicrobial fiber structure Pending JPH0369665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20344089A JPH0369665A (en) 1989-08-04 1989-08-04 Production of antimicrobial fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20344089A JPH0369665A (en) 1989-08-04 1989-08-04 Production of antimicrobial fiber structure

Publications (1)

Publication Number Publication Date
JPH0369665A true JPH0369665A (en) 1991-03-26

Family

ID=16474140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20344089A Pending JPH0369665A (en) 1989-08-04 1989-08-04 Production of antimicrobial fiber structure

Country Status (1)

Country Link
JP (1) JPH0369665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598564A (en) * 1991-10-07 1993-04-20 Nobuhide Maeda Production of fiber structure having deodorizing and antibacterial property
US7452533B2 (en) * 2002-03-26 2008-11-18 Biosynexus Incorporated Antimicrobial polymer conjugate containing lysostaphin and polyethylene glycol
JP2013216987A (en) * 2012-04-05 2013-10-24 Kb Seiren Ltd Polyester conjugate fiber
CN117069626A (en) * 2023-10-18 2023-11-17 上海帼帆化工新材料有限公司 Reactive antibacterial component, synthesis method thereof and application thereof in preparation of antibacterial polyester

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598564A (en) * 1991-10-07 1993-04-20 Nobuhide Maeda Production of fiber structure having deodorizing and antibacterial property
US7452533B2 (en) * 2002-03-26 2008-11-18 Biosynexus Incorporated Antimicrobial polymer conjugate containing lysostaphin and polyethylene glycol
JP2013216987A (en) * 2012-04-05 2013-10-24 Kb Seiren Ltd Polyester conjugate fiber
CN117069626A (en) * 2023-10-18 2023-11-17 上海帼帆化工新材料有限公司 Reactive antibacterial component, synthesis method thereof and application thereof in preparation of antibacterial polyester

Similar Documents

Publication Publication Date Title
CN112921449A (en) Chitosan quaternary ammonium salt/seaweed composite antibacterial fiber, preparation method thereof and application thereof in home textile products for children
KR100749714B1 (en) Articles with antibacterial and antifungal activity
CN113089321A (en) Vinyl monomer graft modified antibacterial fiber, preparation method thereof and application thereof in antibacterial socks
JPH0384066A (en) Resin composition having antibacterial activity and its preparation
CN113089151B (en) Three-dimensional antibacterial yarn containing cotton fibers, preparation method of three-dimensional antibacterial yarn and towel product
JPH0369665A (en) Production of antimicrobial fiber structure
JPH11124729A (en) Antimicrobial fiber and its production
CN113152098A (en) Antibacterial finishing agent, finishing method and fabric product
CN113106754A (en) Antibacterial yarn and production method thereof
CN113151925A (en) Polyquaternary ammonium salt/aloe antibacterial fiber, preparation method thereof and application thereof in antibacterial towels
CN113152082A (en) Antibacterial home textile fabric containing sesbania fibers and preparation method thereof
JP2013072164A (en) Fabric with antifouling and antibacterial property, and method for producing the same
Allam Improving functional characteristics of wool and some synthetic fibres
US20220333278A1 (en) Antibacterial textile and preparation method thereof
JP2945264B2 (en) Antimicrobial fiber and method for producing the same
JPH0299606A (en) Fiber having deodorant and antimicrobial performance and production thereof
JP2000034675A (en) Antibacterial polyester fiber
JPH0351369A (en) Antimicrobial fiber cloth and production thereof
JPH04126820A (en) Antimicrobial polyvinyl alcohol-based synthetic fiber and formed product using the same
JP2593890B2 (en) Antibacterial molded article and method for producing the same
JPH0533265A (en) Antibacterial and antifungal deodorant staple fiber having hydrophilic nature
KR100616810B1 (en) Process for the preparation of sea-island type composite fiber
JP2002309445A (en) Antibacterial polyester fiber
JPH06235116A (en) Antimicrobial fiber and web
JPH11222723A (en) Antibacterial fiber