JPH0368675B2 - - Google Patents

Info

Publication number
JPH0368675B2
JPH0368675B2 JP58150322A JP15032283A JPH0368675B2 JP H0368675 B2 JPH0368675 B2 JP H0368675B2 JP 58150322 A JP58150322 A JP 58150322A JP 15032283 A JP15032283 A JP 15032283A JP H0368675 B2 JPH0368675 B2 JP H0368675B2
Authority
JP
Japan
Prior art keywords
gel
mixture
immobilized
honeycomb structure
cell wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58150322A
Other languages
Japanese (ja)
Other versions
JPS6043382A (en
Inventor
Takeshi Kobayashi
Hideyuki Masaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP15032283A priority Critical patent/JPS6043382A/en
Publication of JPS6043382A publication Critical patent/JPS6043382A/en
Publication of JPH0368675B2 publication Critical patent/JPH0368675B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、生化学反応に使用される酵素を含む
微生物を、セラミツクハニカム構造の触媒に固定
化した固定化微生物およびその製造法に関するも
のである。 近来、微生物を用いた生化学反応は急速に発達
し、有機合成、食品工業、分析化学等の分野に広
く利用されるようになつた。これらの生化学反応
に使用される酵素を含む微生物の固定化法とし
て、水に不溶性のビーズ状、ペレツト状の各種担
体に酵素を含む微生物を共有結合させる共有結合
法、2個またはそれ以上の官能基をもつたグルタ
ルアルデヒド、ビスジアゾベンジジン等の架橋試
薬を用いて担体に微生物を架橋する架橋法、ある
いは、ポリアクリルアミド、デンプン、カラギー
ナン等の高分子のゲル格子の中に微生物を包み込
むか半透膜性の高分子皮膜で微生物を被覆するい
わゆる包括法等が知られている。 しかし、共有結合法や架橋法は固定化によつて
微生物の性質が変化し活性低下が大きい等の欠点
があり、また包括法は包括調整時での微生物の活
性低下に問題点がある。微生物を付着固定化した
固定化微生物の形状としては、前述のビーズ状、
ペレツト状のほかにサイコロ状、膜状等がある。
しかし、このような形状では、例えば、酵素反応
としてよく知られているデンプンの糖化反応にお
いて、高濃度で粘度が大きいデンプン液を基質に
通した場合、圧力損失の増大、固形物による流路
の閉塞等の問題が生じる。また、酵母によるアル
コール発酵、メタン生成菌によるメタン発酵等に
おいては、反応中にガスが発生するため、充填床
の一部にガスが蓄積して充填床が閉塞しやすく、
ガス発生に伴いゲル粒子にせん断力が加わり粒子
の損傷が起きる等の欠点があつた。 本発明の目的は、活性低下が小さく付着強度の
強い固定化微生物およびその製造法を提供するこ
とにある。また本発明の目的は、圧力損失や閉塞
の問題を解消すると共に、ガス発生を伴う場合は
ガスの散出を容易にし、しかも反応物との接触面
積の大きい固定化微生物およびその製造法を提供
することにある。 本発明は、多糖類物質と酵素を含む微生物との
混合物を、酵素を含む微生物を多糖類物質中に包
括した形態で、複数の平行な貫通孔を有するセラ
ミツクハニカム構造体のセル壁面上に付着固定化
した固定化微生物であつて、前記セル壁面上に粒
径200μm〜1000μmのセラミツク粒子粉末を付着
させることによつて、このセル壁面の表面粗さを
30μm〜100μmに調整してある固定化微生物に係
るものである。 また、本発明は、複数の平行な貫通孔を有する
セラミツクハニカム構造体のセル壁面上に粒径
200μm〜1000μmのセラミツク粒子粉末を付着さ
せることによつて、このセル壁面の表面粗さを
30μm〜100μmに調整し、多糖類物質と酵素を含
む微生物との混合物をゲル状液とし、このゲル状
液混合物をセラミツクハニカム構造体のセル壁面
上に付着させ、次いでこの構造体を固化用溶液と
接触させてゲル状混合物を固化し、酵素を含む微
生物を多糖類物質中に包括した形態でセラミツク
ハニカム構造体のセル壁面上に付着固定化する固
定化微生物の製造法に係るものである。 本発明に使用する多糖類物質は寒天、カツパー
カラギーナン、アルギン酸塩等である。また、本
発明に適用できる微生物、並びに微生物内に含ま
れる酵素については特に制限されるものではない
が、例えば微生物としては細菌類、放射菌類、カ
ビ類、酵母菌類等があり、また酵素としてはグル
コアミラーゼ、アミノアシダーゼ、グルコースイ
ソメラーゼ、β−ガラクトシダーゼ、セルラー
ゼ、インベルターゼ、アスパラギナーゼ、アスパ
ルターゼ、カタラーゼ、プロテアーゼ、リパー
ゼ、リシンデカルボキシラーゼ、ヘキソキナー
ゼ、トリプトフアンシンターゼ、グリセロールデ
ヒドロゲナーゼ等があげられる。 本発明に使用するセラミツクハニカム構造体は
アルミナ、ムライト、コージエライト等のセラミ
ツク質から成る。これはセラミツクハニカム構造
体が酵素を含む微生物の固定化に最適の表面状態
を有するとともに、接触面積が大きく確保でき、
かつ圧損が小さい利点を有するからである。この
セラミツクハニカム構造体のセル開口長さは2mm
〜10mm、好ましくは3mm〜7mmである。セル開口
長さが2mmに満たないと、ゲル状混合物の付着が
容易かつ均一にならず、また流路が閉塞されて圧
力損失が急激に増大することがあり、逆にセル開
口長さが10mmより大きくなると、機械的強度が小
さくなると共に反応に必要なハニカム構造体の占
める容積が大きくなり過ぎる欠点が生じる。この
構造体のセル壁面は、ゲル状混合物の付着強度を
上げるため、表面粗さを30μm〜100μm好ましく
は30μm〜70μmに調整する。表面粗さが10μmよ
り小さいとゲル状混合物がはがれ易く、また
100μmより大きいと機械的強度が小さくなる。こ
の表面粗さを得るには、押出し成形によるセラミ
ツクハニカム構造体のセル壁面上に、粒径200μm
〜1000μmのセラミツク粒子粉末を付着した後、
焼成して固着させる。セラミツクハニカム構造体
の貫通孔は、閉塞の問題を避けるため平行に、ま
た接触面積を大きくするため多数設けることが好
ましい。貫通孔は、例えば50mm角のセラミツクハ
ニカム構造体に50〜500個程度である。 多糖類物質と酵素を含む微生物との混合物はゲ
ル状液にする。この理由は、ゲル格子の中に微生
物を包み込むためである。ゲル状液を得るには、
混合する物質の種類・性質により異なるが、液温
を例えば30℃〜70℃に保持する。酵素を含む微生
物を多糖類物質中に包括した理由は、多糖類物質
が酵素を含む微生物の栄養源となるとともに、酵
素活性の低下が少ない為である。 ゲル状液をセラミツクハニカム構造体のセル壁
面上に付着させる。この場合付着は噴霧法、流入
法等でもよいが、浸漬法が最もよい。そして、例
えばゲル状液にセラミツクハニカム構造体を浸漬
する時間は使用するゲル状液によるが約30秒から
10分間程度である。ゲル状液から取出したセラミ
ツクハニカム構造体に付着したゲルを、圧縮空気
等により余分なものを吹き飛ばして、任意の膜厚
にする。このセル壁面上へのゲル状物質の付着膜
厚は、後の生化学反応を行う際に必要な酵素量を
得るため、100μm〜1000μmを必要とする。従つ
て、この膜厚は、反応に必要な酵素量から任意に
設定する。 セラミツクハニカム構造体のセル壁面上に付着
したゲル状混合物を固化させるには、冷水、KCl
溶液、CaCl2溶液、AlCl3溶液、グルタルアルデ
ヒド溶液、ヘキサメチレンジアミン溶液、Al2
(SO43溶液等の中に浸漬し固化用溶液とこの構
造体を接触させる。これによりセラミツクハニカ
ム構造体のセル壁面に多糖類物質中に包括された
形態で微生物が付着固定化される。固化用溶液と
接触させる時間は30秒から10分間程度でよい。こ
の時間は、多糖類物質の濃度とセラミツクハニカ
ム構造体のセル開口長さ等により任意に選択実施
できる。 このようにして得られた固定化微生物は、多糖
類物質中に包括された形態で、セル壁面上にほぼ
一定の厚みで膜状に付着しているので、機械的強
度が強く、高粘性液を使用する反応系、あるいは
ガス発生を伴う反応系においても、長期に安定し
て連続的に使用できる。 以下、本発明を実施例により説明する。 実施例 1 多糖類物質として、第1表に記載する寒天、カ
ツパーカラギーナン、およびアルギン酸ナトリウ
ムを用意し、各3重量%濃度となるように水に溶
かした。酵素を含む微生物として、加水分解酵素
β−ガラクトシダーゼを含む大腸菌エスチエリチ
ア・コリE106を水に溶かし、菌体懸濁液を5重
量%濃度に調整した。この菌体懸濁液10mlを採取
し、9倍量の各多糖類物質の水溶液に添加し、多
糖類物質と、酵素を含む微生物との、混合物を調
整した。 多糖類物質が寒天の場合、混合物を温度55℃に
保存してゲル状液とした後、このゲル状液中にア
ルミナ質のセラミツクハニカム構造体を60秒間浸
漬し、この構造体のセル壁面上にゲル状混合物を
付着させた。この構造体は第1表に記載する表面
粗さおよびセル開口長さを有する。その後、圧縮
空気で付着した余分のゲル状混合物を吹き飛ば
し、第1表に記載する付着膜厚に調整した。次い
で、3℃に保持した冷水から成る固化用溶液中に
2分間浸漬して、ゲル状混合物をセラミツクハニ
カム構造体のセル壁面上に付着固定化した。 また多糖類物質がカツパーカラギーナンの場
合、混合物を温度37℃に保持して、寒天の場合と
同様に、ゲル状液とした後このゲル状液中にセラ
ミツクハニカム構造体を浸漬し、この構造体のセ
ル壁面上にゲル状混合物を付着させた。次いで、
圧縮空気で付着膜厚を調整後、2重量%の塩化カ
リウム溶液から成る固化用溶液中に浸漬して、ゲ
ル状混合物をセル壁面上に付着固定化した。 更に多糖類物質がアルギナン酸ナトリウムの場
合、前記のカツパーカラギーナンの場合と同様な
操作を行い、固化用溶液として0.4モル濃度の塩
化カルシウム溶液を用いて、ゲル状混合物をセル
壁面上に付着固定化した。 このように酵素を含む微生物を多糖類物質中に
包括した形態で、セラミツクハニカム構造体のセ
ル壁面上に付着固定化した固定化微生物No.1〜No.
19について、それぞれ酵素活性を測定した。な
お、比較のため、多糖類物質以外の高分子物質、
ポリアクリルアミド、コラーゲン、ポリビニルア
ルコールについても、同様に実施し、参考例No.20
〜No.22として、それぞれ酵素活性を測定した。酵
素活性の測定には、基質として乳糖類似物質であ
る2−ニトロフエニル−β−D−ガラクトピラノ
シドを採用した。この物質は、β−ガラクトシダ
ーゼによつて0−ニトロフエノールとガラクトー
スに分解するので、0−ニトロフエノールの生成
量を420nmの吸光度で計測することにより、酵素
活性を定量した。 結果を第1表に示す。
The present invention relates to an immobilized microorganism in which a microorganism containing an enzyme used in a biochemical reaction is immobilized on a catalyst having a ceramic honeycomb structure, and a method for producing the same. In recent years, biochemical reactions using microorganisms have developed rapidly and have come to be widely used in fields such as organic synthesis, food industry, and analytical chemistry. Methods for immobilizing microorganisms containing enzymes used in these biochemical reactions include covalent bonding, in which microorganisms containing enzymes are covalently bonded to various water-insoluble beads or pellets, and two or more microorganisms. A cross-linking method in which microorganisms are cross-linked to a carrier using a cross-linking reagent with a functional group such as glutaraldehyde or bisdiazobenzidine; A so-called entrapment method is known in which microorganisms are covered with a membrane-permeable polymer film. However, the covalent bonding method and the crosslinking method have drawbacks such as the property of the microorganism being changed by immobilization, resulting in a large decrease in activity, and the inclusion method has a problem in that the activity of the microorganism decreases during comprehensive adjustment. The shapes of the immobilized microorganisms that have attached and immobilized microorganisms include the bead shape described above,
In addition to pellet-like forms, there are dice-like forms, film-like forms, etc.
However, with this shape, for example, when a highly concentrated and highly viscous starch liquid is passed through the substrate in starch saccharification reaction, which is well known as an enzymatic reaction, pressure loss increases and the flow path is blocked by solids. Problems such as blockages occur. In addition, in alcohol fermentation by yeast, methane fermentation by methanogenic bacteria, etc., gas is generated during the reaction, so gas tends to accumulate in a part of the packed bed and block the packed bed.
There were drawbacks such as shearing force being applied to the gel particles due to gas generation, causing damage to the particles. An object of the present invention is to provide an immobilized microorganism with a small decrease in activity and a strong adhesive strength, and a method for producing the same. Another object of the present invention is to provide an immobilized microorganism that eliminates the problems of pressure loss and blockage, facilitates gas dissipation when gas generation is involved, and has a large contact area with reactants, and a method for producing the same. It's about doing. The present invention provides a method for attaching a mixture of a polysaccharide substance and a microorganism containing an enzyme to a cell wall surface of a ceramic honeycomb structure having a plurality of parallel through holes, in a form in which the microorganism containing the enzyme is enclosed in the polysaccharide substance. The surface roughness of the cell wall surface can be reduced by attaching ceramic particles having a particle size of 200 μm to 1000 μm onto the cell wall surface of the immobilized microorganism.
This relates to immobilized microorganisms that have been adjusted to a size of 30 μm to 100 μm. In addition, the present invention provides a structure in which particle size is
By attaching ceramic particles of 200μm to 1000μm, the surface roughness of the cell wall can be reduced.
30 μm to 100 μm, a mixture of polysaccharide substances and microorganisms containing enzymes is made into a gel-like liquid, this gel-like liquid mixture is adhered to the cell wall surface of a ceramic honeycomb structure, and then this structure is placed in a solidifying solution. This relates to a method for producing immobilized microorganisms, in which a gel-like mixture is solidified by contact with a polysaccharide substance, and microorganisms containing enzymes are adhered and immobilized on the cell walls of a ceramic honeycomb structure in a form encapsulated in a polysaccharide substance. Polysaccharide substances used in the present invention include agar, carrageenan, alginates, and the like. Furthermore, the microorganisms and enzymes contained within the microorganisms that can be applied to the present invention are not particularly limited, but examples of microorganisms include bacteria, actinomycetes, molds, and yeast fungi; Examples include glucoamylase, aminoacidase, glucose isomerase, β-galactosidase, cellulase, invertase, asparaginase, aspartase, catalase, protease, lipase, lysine decarboxylase, hexokinase, tryptophan synthase, glycerol dehydrogenase, and the like. The ceramic honeycomb structure used in the present invention is made of ceramic materials such as alumina, mullite, and cordierite. This is because the ceramic honeycomb structure has an optimal surface condition for immobilizing microorganisms containing enzymes, and a large contact area can be secured.
This is because it has the advantage of low pressure loss. The cell opening length of this ceramic honeycomb structure is 2mm.
~10 mm, preferably 3 mm to 7 mm. If the cell opening length is less than 2 mm, the gel-like mixture will not adhere easily and uniformly, and the flow path may be blocked, resulting in a sudden increase in pressure loss. If the size is larger, the mechanical strength becomes smaller and the volume occupied by the honeycomb structure required for the reaction becomes too large. The surface roughness of the cell wall surface of this structure is adjusted to 30 μm to 100 μm, preferably 30 μm to 70 μm, in order to increase the adhesion strength of the gel-like mixture. If the surface roughness is less than 10μm, the gel mixture will peel off easily, and
If it is larger than 100 μm, the mechanical strength will be reduced. To obtain this surface roughness, a particle size of 200 μm was added to the cell wall surface of the extruded ceramic honeycomb structure.
After depositing ~1000μm ceramic particle powder,
Fire to fix. It is preferable that the through holes of the ceramic honeycomb structure are provided in parallel to avoid the problem of clogging, and in large numbers to increase the contact area. For example, there are about 50 to 500 through holes in a 50 mm square ceramic honeycomb structure. The mixture of polysaccharide material and enzyme-containing microorganisms is formed into a gel-like liquid. The reason for this is to encapsulate the microorganisms within the gel lattice. To obtain a gel-like liquid,
The temperature of the liquid is maintained at, for example, 30°C to 70°C, depending on the type and properties of the substances to be mixed. The reason why the enzyme-containing microorganism is included in the polysaccharide material is that the polysaccharide material serves as a nutritional source for the enzyme-containing microorganism, and there is little decrease in enzyme activity. A gel-like liquid is deposited on the cell walls of the ceramic honeycomb structure. In this case, the deposition method may be a spray method, a flow method, etc., but a dipping method is best. For example, the time to immerse the ceramic honeycomb structure in the gel liquid depends on the gel liquid used, but it starts from about 30 seconds.
It takes about 10 minutes. Excess gel adhering to the ceramic honeycomb structure taken out from the gel-like liquid is blown away using compressed air or the like to obtain a desired film thickness. The thickness of the gel-like substance deposited on the cell wall needs to be 100 μm to 1000 μm in order to obtain the amount of enzyme necessary for the subsequent biochemical reaction. Therefore, this film thickness is arbitrarily set based on the amount of enzyme required for the reaction. To solidify the gel-like mixture deposited on the cell walls of the ceramic honeycomb structure, use cold water, KCl
solution, CaCl2 solution, AlCl3 solution, glutaraldehyde solution, hexamethylenediamine solution, Al2
This structure is brought into contact with a solidifying solution by immersing it in a (SO 4 ) 3 solution or the like. As a result, microorganisms are adhered and immobilized on the cell walls of the ceramic honeycomb structure in the form of being enclosed in polysaccharide substances. The time for contact with the solidifying solution may be about 30 seconds to 10 minutes. This time can be arbitrarily selected depending on the concentration of the polysaccharide substance, the cell opening length of the ceramic honeycomb structure, etc. The immobilized microorganisms obtained in this way are encapsulated in a polysaccharide substance and are attached to the cell wall surface in a film form with an almost constant thickness, so they have strong mechanical strength and are highly viscous liquids. It can be used stably and continuously for a long period of time even in reaction systems that use gas or that involve gas generation. The present invention will be explained below using examples. Example 1 Agar, Katzupaka carrageenan, and sodium alginate listed in Table 1 were prepared as polysaccharide substances, and each was dissolved in water to a concentration of 3% by weight. As a microorganism containing an enzyme, Escherichia coli E106 containing a hydrolase β-galactosidase was dissolved in water, and a bacterial cell suspension was adjusted to a concentration of 5% by weight. 10 ml of this bacterial cell suspension was collected and added to 9 times the volume of the aqueous solution of each polysaccharide substance to prepare a mixture of the polysaccharide substance and the enzyme-containing microorganism. When the polysaccharide substance is agar, the mixture is stored at a temperature of 55°C to form a gel-like liquid, and then an alumina ceramic honeycomb structure is immersed in this gel-like liquid for 60 seconds, and the cell wall surface of this structure is The gel-like mixture was applied to. This structure has the surface roughness and cell opening length listed in Table 1. Thereafter, the excess adhered gel mixture was blown off with compressed air to adjust the adhered film thickness as shown in Table 1. Next, the gel-like mixture was adhered and fixed on the cell walls of the ceramic honeycomb structure by immersing it in a solidifying solution of cold water maintained at 3° C. for 2 minutes. When the polysaccharide substance is carrageenan, the mixture is kept at a temperature of 37°C to form a gel-like liquid, as in the case of agar, and a ceramic honeycomb structure is immersed in this gel-like liquid. The gel-like mixture was deposited on the cell walls of the body. Then,
After adjusting the adhesion film thickness with compressed air, the gel mixture was adhered and fixed on the cell wall by immersing it in a solidifying solution consisting of a 2% by weight potassium chloride solution. Furthermore, when the polysaccharide substance is sodium alginate, the same operation as in the case of cutuper carrageenan described above is carried out, and the gel-like mixture is adhered and fixed on the cell wall using a 0.4 molar calcium chloride solution as the solidification solution. It became. In this way, immobilized microorganisms No. 1 to No. 1, in which enzyme-containing microorganisms are encapsulated in a polysaccharide substance, are attached and immobilized on the cell walls of a ceramic honeycomb structure.
Enzyme activity was measured for each of 19 samples. For comparison, polymer substances other than polysaccharide substances,
The same procedure was carried out for polyacrylamide, collagen, and polyvinyl alcohol, and Reference Example No. 20 was obtained.
- No. 22, the enzyme activity was measured respectively. For the measurement of enzyme activity, 2-nitrophenyl-β-D-galactopyranoside, which is a lactose analog, was used as a substrate. Since this substance is decomposed into 0-nitrophenol and galactose by β-galactosidase, the enzyme activity was determined by measuring the amount of 0-nitrophenol produced using absorbance at 420 nm. The results are shown in Table 1.

【表】 なお、セラミツクハニカム構造体は50mmの立方
形状のものを使用し、反応には撹拌槽型反応器を
使用した。本発明の試料No.4〜8,11〜15,18,
19においては、セラミツクハニカム構造体の表面
粗さを大きくして付着力を向上させるため、押出
成形により得られた表面平滑なセラミツクハニカ
ム構造体のセル壁面に、第1表に記載する粒径の
アルミナ質セラミツク粒子粉末を付着焼成して固
着させた。なお、単位菌体量当りの酵素活性IU
(ユニツト)は1マイクロモルの基質を1分間に
変化させる活性単位である。 第1表から、本発明の固定化微生物は、No.1〜
3,9,10,16,17,20〜22の試料に比較して、
単位菌体量当りの酵素活性が優れていることが認
められる。 実施例 2 この実施例では、本発明のハニカム形状の固定
化微生物と、従来公知のビーズ状固定化微生物と
の特性を比較する実験をした。 酵素としてグルコースイソメラーゼを含む放線
菌ストレプトミセス・フエオクロモゲネスを水に
溶かして5重量%濃度の菌体懸濁液を用意した。
この懸濁液10mlと、3.5重量%濃度のカツパーカ
ラギーナン水溶液70mlとを混合した。この混合物
を2重量%濃度の塩化カリウム水溶液に滴下し
て、平均直径0.4cmの既知のビーズ状固定化微生
物を作成した。 次に、同じ混合物を用い、実施例1と同様に温
度37℃に保持してゲル状液とした後、このゲル状
液中にアルミナ質のセラミツクハニカム構造体を
60秒間浸漬し、セル壁面に付着膜厚300μmのゲル
状混合物を付着させた。用いたセラミツクハニカ
ム構造体はセル開口長さが5mm、セル壁面の表面
粗さが50μmで、大きさが50mm角であつた。この
後、2重量%濃度の塩化カリウム水溶液中に3分
間浸漬してゲル状混合物を固定化し、本発明の固
定化微生物を作成した。 このようにして得られた各固定化微生物を、50
mm角で200mm長さの管型反応器に充填し、グルコ
ースイソメラーゼの酵素活性および充填床の圧力
損失を測定した。酵素活性の測定には、高速液体
クロマトグラフイーを用いて、生成するフルクト
ースを定量した。なお、基質のグルコースの流量
は1ml/分であつた。 結果を第2表に示す。
[Table] A 50 mm cubic ceramic honeycomb structure was used, and a stirred tank reactor was used for the reaction. Sample Nos. 4 to 8, 11 to 15, 18 of the present invention,
In No. 19, in order to increase the surface roughness of the ceramic honeycomb structure and improve the adhesion, the cell walls of the ceramic honeycomb structure with a smooth surface obtained by extrusion were coated with particles having the particle sizes listed in Table 1. Alumina ceramic particle powder was attached and fired to fix it. In addition, enzyme activity IU per unit amount of bacterial cells
(unit) is an activity unit that converts 1 micromole of substrate in 1 minute. From Table 1, the immobilized microorganisms of the present invention are No. 1 to
Compared to samples 3, 9, 10, 16, 17, 20-22,
It is recognized that the enzyme activity per unit amount of bacterial cells is excellent. Example 2 In this example, an experiment was conducted to compare the characteristics of the honeycomb-shaped immobilized microorganism of the present invention and a conventionally known bead-shaped immobilized microorganism. The actinomycete Streptomyces phaeochromogenes containing glucose isomerase as an enzyme was dissolved in water to prepare a bacterial cell suspension having a concentration of 5% by weight.
10 ml of this suspension was mixed with 70 ml of a 3.5% by weight aqueous Katsupa carrageenan solution. This mixture was dropped into a 2% by weight potassium chloride aqueous solution to produce known bead-shaped immobilized microorganisms with an average diameter of 0.4 cm. Next, using the same mixture, the temperature was maintained at 37°C as in Example 1 to form a gel-like liquid, and an alumina ceramic honeycomb structure was then added to this gel-like liquid.
The gel mixture was immersed for 60 seconds to adhere to the cell wall with a thickness of 300 μm. The ceramic honeycomb structure used had a cell opening length of 5 mm, a cell wall surface roughness of 50 μm, and a size of 50 mm square. Thereafter, the gel mixture was immobilized by immersion in a 2% by weight potassium chloride aqueous solution for 3 minutes, thereby producing an immobilized microorganism of the present invention. Each immobilized microorganism obtained in this way was
It was packed into a tubular reactor measuring mm square and 200 mm long, and the enzyme activity of glucose isomerase and the pressure drop in the packed bed were measured. To measure the enzyme activity, high performance liquid chromatography was used to quantify the produced fructose. Note that the flow rate of the substrate glucose was 1 ml/min. The results are shown in Table 2.

【表】 第2表の結果から明らかなように、本発明の固
定化微生物は従来の固定化微生物に比較して、圧
力損失が小さく、酵素活性においても優れている
ことが認められた。 実施例 3 酵母サツカロミセス・セレビジエの30%懸濁液
と3重量%アルギン酸ソーダ水溶液とを、温度40
℃にて混合しゲル状液とした。この液中にセル開
口長さが5mm、セル壁面の表面粗さが50μmで大
きさが50mm角のムライト質セラミツクハニカム構
造体を浸漬する。次いで、付着ゲルを圧縮空気に
より吹き払い付着膜厚を200μmとした後、硫酸ア
ルミニウム3重量%溶液中に2分間浸漬してゲル
状混合物を固定化し、本発明のハニカム状固定化
微生物を得た。 次に、前記と同じゲル状混合物を用い、硫酸ア
ルミニウム3重量%溶液中に滴下し、平均直径
0.3cmのビーズ状固定化微生物(従来品)を作成
した。 このようにして得られた各固定化微生物を、実
施例2と同じ大きさの管型反応器に充填し、反応
器下部から0.01重量%の硫酸アルミニウムを含む
15重量%のグルコース水溶液を送入して、酵母菌
によるエタノール発酵を行い、反応器出口でのエ
タノール生成濃度を比較測定した。 結果を第3表に示す。
[Table] As is clear from the results in Table 2, the immobilized microorganism of the present invention was found to have lower pressure loss and superior enzyme activity than conventional immobilized microorganisms. Example 3 A 30% suspension of the yeast Saccharomyces cerevisiae and a 3% by weight aqueous sodium alginate solution were heated at a temperature of 40%.
The mixture was mixed at ℃ to form a gel-like liquid. A mullite ceramic honeycomb structure having a cell opening length of 5 mm, a cell wall surface roughness of 50 μm, and a size of 50 mm square is immersed in this solution. Next, the adhered gel was blown away with compressed air to give an adhered film thickness of 200 μm, and then immersed in a 3% aluminum sulfate solution for 2 minutes to immobilize the gel-like mixture, thereby obtaining the honeycomb-shaped immobilized microorganism of the present invention. . Next, using the same gel-like mixture as above, it was dropped into a 3% by weight solution of aluminum sulfate, and the average diameter was
A 0.3cm bead-shaped immobilized microorganism (conventional product) was created. Each of the immobilized microorganisms thus obtained was packed into a tubular reactor of the same size as in Example 2, and 0.01% by weight of aluminum sulfate was added from the bottom of the reactor.
A 15% by weight aqueous glucose solution was introduced to perform ethanol fermentation using yeast, and the ethanol production concentration at the outlet of the reactor was comparatively measured. The results are shown in Table 3.

【表】 第3表の結果から明らかなように、本発明品よ
りも従来品の方がエタノール生成濃度が小さい。
これは、従来品のビーズ状固定化微生物の場合、
反応中に発生するCO2ガス気泡により反応床の一
部にCO2ガスが蓄積して反応液が乱れ、逆混合も
発生するからである。本発明品の場合、このよう
な現象は見られなかつた。 以上、本発明による固定化微生物は、従来の固
定化微生物に比較して、酵素を含む微生物を多糖
類物質中に包括した形態で、ハニカム構造体のセ
ル壁面上に膜状に付着固定化した結果、次の効果
を有する。 1 ゲル状混合物をセル壁面上に付着固定化した
ので機械的強度が大きく活性低下が少ない。 2 平行な貫通孔を有するハニカム構造のため、
従来のビーズ状、ペレツト状等の固定化微生物
に比べ、固形物による流路の閉塞が少なく、圧
力損失が小さい。 3 反応中にガスが発生する酵素反応あるいは微
生物反応においても、発生ガスは貫通孔内を通
つて容易に上昇散出するので、反応液の乱れ、
逆混合物の発生が少ない。 4 接触面積が大きく、酵素活性にも優れてい
る。 従つて、本発明によれば、各種の酵素反応に有
効に利用でき、特に反応中にガスの発生が多いア
ルコール発酵、メタン発酵等の発酵分野や、基質
が高粘性であるデンプンの糖化反応等、あらゆる
微生物反応に利用することができる。
[Table] As is clear from the results in Table 3, the ethanol production concentration is lower in the conventional product than in the product of the present invention.
In the case of conventional bead-shaped immobilized microorganisms,
This is because CO 2 gas bubbles generated during the reaction cause CO 2 gas to accumulate in a part of the reaction bed, disturbing the reaction solution and causing back-mixing. In the case of the product of the present invention, such a phenomenon was not observed. As described above, the immobilized microorganism according to the present invention is different from conventional immobilized microorganisms in that the microorganism containing an enzyme is enclosed in a polysaccharide substance and is adhered and immobilized on the cell wall surface of a honeycomb structure in the form of a film. As a result, it has the following effects. 1. Since the gel-like mixture is adhered and fixed on the cell wall, the mechanical strength is high and there is little decrease in activity. 2 Because of the honeycomb structure with parallel through holes,
Compared to conventional immobilized microorganisms in the form of beads, pellets, etc., the flow path is less likely to be blocked by solid matter, and the pressure loss is smaller. 3 Even in enzymatic reactions or microbial reactions in which gas is generated during the reaction, the generated gas easily rises and escapes through the through-holes, causing turbulence in the reaction solution.
There is less occurrence of back mixture. 4. Large contact area and excellent enzymatic activity. Therefore, the present invention can be effectively used in various enzymatic reactions, particularly in fermentation fields such as alcohol fermentation and methane fermentation where a large amount of gas is generated during the reaction, and starch saccharification reactions where the substrate is highly viscous. , can be used for all kinds of microbial reactions.

Claims (1)

【特許請求の範囲】 1 多糖類物質と酵素を含む微生物との混合物
を、酵素を含む微生物を多糖類物質中に包括した
形態で、複数の平行な貫通孔を有するセラミツク
ハニカム構造体のセル壁面上に付着固定化した固
定化微生物であつて、 前記セル壁面上に粒径200μm〜1000μmのセラ
ミツク粒子粉末を付着させることによつて、この
セル壁面の表面粗さを30μm〜100μmに調整して
ある固定化微生物。 2 セラミツクハニカム構造体のセル開口長さが
2mm〜10mmである特許請求の範囲第1項記載の固
定化微生物。 3 複数の平行な貫通孔を有するセラミツクハニ
カム構造体のセル壁面上に粒径200μm〜1000μm
のセラミツク粒子粉末を付着させることによつ
て、このセル壁面の表面粗さを30μm〜100μmに
調整し、多糖類物質と酵素を含む微生物との混合
物をゲル状液とし、このゲル状混合物をセラミツ
クハニカム構造体のセル壁面上に付着させ、次い
でこの構造体を固化用溶液と接触させてゲル状混
合物を固化し、酵素を含む微生物を多糖類物質中
に包括した形態でセラミツクハニカム構造体のセ
ル壁面上に付着固定化する固定化微生物の製造
法。 4 セル壁面上にゲル状混合物を100μm〜
1000μmの厚さに付着固定化する特許請求の範囲
第3項記載の固定化微生物の製造法。
[Claims] 1. A cell wall surface of a ceramic honeycomb structure having a plurality of parallel through holes, in which a mixture of a polysaccharide substance and a microorganism containing an enzyme is contained in the polysaccharide substance, and the microorganism containing the enzyme is enclosed in the polysaccharide substance. The surface roughness of the cell wall is adjusted to 30 μm to 100 μm by adhering ceramic particles having a particle size of 200 μm to 1000 μm on the cell wall. An immobilized microorganism. 2. The immobilized microorganism according to claim 1, wherein the ceramic honeycomb structure has a cell opening length of 2 mm to 10 mm. 3 Particles with a diameter of 200 μm to 1000 μm are formed on the cell wall surface of a ceramic honeycomb structure having multiple parallel through holes.
The surface roughness of the cell wall is adjusted to 30 μm to 100 μm by attaching ceramic particle powder, and the mixture of the polysaccharide substance and enzyme-containing microorganisms is made into a gel-like liquid, and this gel-like mixture is made into ceramic powder. The gel-like mixture is adhered onto the cell walls of the honeycomb structure, and then the structure is brought into contact with a solidifying solution to solidify the gel-like mixture. A method for producing immobilized microorganisms that adhere to and immobilize on walls. 4 Spread the gel mixture on the cell wall at a thickness of 100 μm or more
The method for producing immobilized microorganisms according to claim 3, wherein the immobilized microorganisms are adhered and immobilized to a thickness of 1000 μm.
JP15032283A 1983-08-19 1983-08-19 Immobilized microorganism and its preparation Granted JPS6043382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15032283A JPS6043382A (en) 1983-08-19 1983-08-19 Immobilized microorganism and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15032283A JPS6043382A (en) 1983-08-19 1983-08-19 Immobilized microorganism and its preparation

Publications (2)

Publication Number Publication Date
JPS6043382A JPS6043382A (en) 1985-03-07
JPH0368675B2 true JPH0368675B2 (en) 1991-10-29

Family

ID=15494485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15032283A Granted JPS6043382A (en) 1983-08-19 1983-08-19 Immobilized microorganism and its preparation

Country Status (1)

Country Link
JP (1) JPS6043382A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948728A (en) * 1985-09-03 1990-08-14 California Institute Of Technology Monolith reactor containing a plurality of flow passages and method for carrying out biological reactions
JPS62134089A (en) * 1985-12-06 1987-06-17 Ngk Insulators Ltd Bioreactor element and production thereof
JPH01144969A (en) * 1987-05-22 1989-06-07 Nok Corp Bioreactor using hollow fiber
JP2007525223A (en) * 2004-02-27 2007-09-06 ダウ グローバル テクノロジーズ インコーポレイティド Improved catalytic process for producing products from liquid reactants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571988A (en) * 1980-06-04 1982-01-07 Hitachi Ltd Coil joint monitoring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571988A (en) * 1980-06-04 1982-01-07 Hitachi Ltd Coil joint monitoring device

Also Published As

Publication number Publication date
JPS6043382A (en) 1985-03-07

Similar Documents

Publication Publication Date Title
Arica et al. Covalent immobilization of α-amylase onto pHEMA microspheres: preparation and application to fixed bed reactor
US4048018A (en) Method of carrying out enzyme catalyzed reactions
US4102746A (en) Immobilized proteins
US4169014A (en) Method of immobilizing proteinaceous substances
US5071747A (en) Porous polymeric support containing biological cells in interconnected voids
JPS6163287A (en) Biological group composite and its production
Engasser A fast evaluation of diffusion effects on bound enzyme activity
JPS6215198B2 (en)
US3928143A (en) Method of carrying out enzyme-catalyzed reactions
Varfolomeyev et al. Cryoimmobilized enzymes and cells in organic synthesis
US4016293A (en) Method of carrying out enzyme catalyzed reactions
US3849253A (en) Process of immobilizing enzymes
JPH0368675B2 (en)
Dwevedi et al. Enzyme immobilization: a breakthrough in enzyme technology and boon to enzyme based industries
CN106636294B (en) Process for producing unnatural amino acid product by immobilized double-enzyme coupling reaction
KING et al. Ethanol fermentation of whey using polyacrylamide and kappa-carrageenan entrapped yeasts
Castillo et al. Design of two immobilized cell catalysts by entrapment on gelatin: Internal diffusion aspects
JPH0468913B2 (en)
JPS6253151B2 (en)
Ariga et al. Kinetic evaluation and characterization of ceramic honeycomb-monolith bioreactor
De Lathouder et al. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G
JPS6349996B2 (en)
WO1989008705A1 (en) Supports for proteins and amino acids
JPH0799960A (en) Ceramic carrier for bioreactor
JPS6027380A (en) Enzymatic reactor