JPH0368336B2 - - Google Patents

Info

Publication number
JPH0368336B2
JPH0368336B2 JP57048645A JP4864582A JPH0368336B2 JP H0368336 B2 JPH0368336 B2 JP H0368336B2 JP 57048645 A JP57048645 A JP 57048645A JP 4864582 A JP4864582 A JP 4864582A JP H0368336 B2 JPH0368336 B2 JP H0368336B2
Authority
JP
Japan
Prior art keywords
particle
particle size
time
size distribution
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57048645A
Other languages
Japanese (ja)
Other versions
JPS58165040A (en
Inventor
Tetsuo Nishimura
Shohei Ishida
Kazuhiro Hayashida
Kazu Takeuchi
Toshuki Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4864582A priority Critical patent/JPS58165040A/en
Publication of JPS58165040A publication Critical patent/JPS58165040A/en
Publication of JPH0368336B2 publication Critical patent/JPH0368336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Centrifugal Separators (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は媒溶液中に均一に分散させた供試粒体
を遠心力下で沈降させ、ある沈降距離のところで
粒子濃度を検出し、粒子径に関する沈降速度の相
違を利用して供試粒体の粒度分布を求める装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves sedimenting test particles uniformly dispersed in a medium solution under centrifugal force, detecting the particle concentration at a certain sedimentation distance, and determining the difference in sedimentation speed with respect to particle size. This invention relates to an apparatus for determining the particle size distribution of sample particles.

一般に、媒溶液中に粒子を均一に分散させてこ
れに遠心力を付与すると粒子は遠心力方向に沈降
し、その沈降速度vは、回転中心から粒子の存在
点までの距離をR、回転角速度をω、粒子密度を
ρp、媒溶液密度をρl、粒子径をDp、媒溶液粘度
をηとすると、 v=Rω2(ρp−ρl)Dp2/18η……(1) で表わされる。この式から明らかなように粒子径
Dpが大きい程粒子は速く沈降する。様々な粒子
からなる供試試料を媒溶液中に均一に分散させて
遠心力場にて沈降させると各粒子は(1)式に従つて
粒子径に応じた速度により沈降し、ある一定の沈
降距離のところでこの媒溶液中の濃度を時系列的
に測定して、その各測定点に対応する時間軸上の
時間t、すなわち遠心力付与開始時から各測定時
までの時間tを測定し、(1)式を変形して距離Rで
積分して得られる t={1.05η/N2(ρp−ρl)}・log
(R2/R1)・1/Dp2……(2) ただし N;単位時間(1秒)当り回転数 R1;回転中心と媒溶液面との距離 R2;回転中心と濃度測定点との距離 によつて各測定点に対応する時間軸上の時間tを
粒子径Dpに換算することによつて、濃度測定位
置を沈降し終えたと考えられる各粒子径とそれに
対応する媒溶液濃度が求められたことになり、こ
れらによつて粒度分布を算出することができる。
Generally, when particles are uniformly dispersed in a medium solution and a centrifugal force is applied to them, the particles settle in the direction of the centrifugal force. When ω is the particle density, ρp is the density of the medium, ρl is the particle diameter, Dp is the particle diameter, and η is the viscosity of the medium, v=Rω 2 (ρp−ρl)Dp 2 /18η (1). As is clear from this formula, the particle size
The larger Dp is, the faster the particles will settle. When a test sample consisting of various particles is uniformly dispersed in a medium solution and sedimented in a centrifugal force field, each particle sediments at a speed according to the particle size according to equation (1), and a certain amount of sedimentation is achieved. Measure the concentration in this medium solution over time at the distance, and measure the time t on the time axis corresponding to each measurement point, that is, the time t from the start of applying centrifugal force to each measurement time, (1) can be modified and integrated over the distance R to obtain t={1.05η/N 2 (ρp−ρl)}・log
(R 2 /R 1 )・1/Dp 2 ...(2) where N: Number of revolutions per unit time (1 second) R 1 ; Distance between center of rotation and medium solution surface R 2 ; Center of rotation and concentration measurement point By converting the time t on the time axis corresponding to each measurement point into particle diameter Dp by the distance from have been determined, and the particle size distribution can be calculated from these.

従来、この種の方法を用いて粒度分布を測定す
る装置においては、媒溶液中の供試粒体に遠心力
を与える為の遠心器の回転速度は、一回の測定サ
イクルを通じて一定に保持されていた。様々な径
の粒子からなる供試粒体の粒度分布を、この従来
装置によつて測定するとき、その遠心器の回転速
度を高速に設定すると、粒子径の小さな粒子は速
く沈降し短時間で測定を完了するが、粒子径の大
きな粒子が速く沈降しすぎて測定し得ず、それら
を測定するためには遠心力の回転速度の上限値は
おのずと定まつてしまう。そのため、粒子径の小
さな粒子が濃度測定点を沈降し終え測定を完了す
るまでには相当な長時間を要するという欠点を持
つていた。
Conventionally, in devices that measure particle size distribution using this type of method, the rotational speed of the centrifuge to apply centrifugal force to the sample particles in the medium solution is kept constant throughout one measurement cycle. was. When measuring the particle size distribution of test particles consisting of particles of various sizes using this conventional device, if the rotation speed of the centrifuge is set to a high speed, particles with small particle sizes will settle quickly and settle in a short time. The measurement is completed, but particles with large diameters settle too quickly and cannot be measured, and in order to measure them, the upper limit of the rotational speed of the centrifugal force is automatically determined. Therefore, it has the disadvantage that it takes a considerable amount of time for particles with small diameters to settle at the concentration measurement point and to complete the measurement.

本発明は上記欠点を解消する為になされたもの
であつて、粒子径の大きな粒子の分布も正確に測
定することができ、かつ粒子径の小さな粒子も短
時間に測定し得る粒度分布測定装置の提供を目的
とする。
The present invention has been made to solve the above-mentioned drawbacks, and is a particle size distribution measuring device that can accurately measure the distribution of particles with large particle diameters and can also measure small particle diameters in a short time. The purpose is to provide.

本発明の粒度分布測定装置では、媒液中の供試
粒体に遠心力を与えるための遠心器の回転角速度
ωを、あらかじめ設定された単調増加関数ω=f
(t)に従つて加速制御するとともに、この状態
での刻々の濃度検出結果を、下記の式に基づいて
粒度分布に換算するように構成している。
In the particle size distribution measuring device of the present invention, the rotational angular velocity ω of the centrifuge for applying centrifugal force to the sample particles in the medium is determined by a preset monotonically increasing function ω=f
It is configured to perform acceleration control according to (t) and to convert the momentary concentration detection results in this state into particle size distribution based on the following formula.

d2R/dt2=Rω2(ρp−ρl/ρp)−18η/ρp・Dp 2
・dR/dt ただし、Rは回転中心から粒子までの距離、ρp
は粒子の密度、ρlは媒液の密度、Dpは粒子径、η
は媒液の粘性係数、tは時間であつて、ωは前記
したようにω=f(t)である。
d 2 R/dt 2 = Rω 2p −ρ lp )−18η/ρ p・D p 2
・dR/dt where R is the distance from the center of rotation to the particle, ρ p
is the particle density, ρ l is the density of the medium, D p is the particle diameter, η
is the viscosity coefficient of the medium, t is time, and ω is ω=f(t) as described above.

以下、図面に従つて本発明実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明実施例の構成図である。 FIG. 1 is a configuration diagram of an embodiment of the present invention.

媒溶液中に均一に分散させた供試粒体を密封す
る沈降容器1は、モータ2の回転軸に取り付けら
れた回転円盤3に装着されている。沈降容器1内
の媒溶液の濃度の検出は、回転中心から一定の距
離に設けられ回転中の沈降容器1を横切る光を発
する濃度検出用光源4とその光を受けて電気量に
変換して出力する濃度検出用受光部5とによつて
行なわれ、受光部5の出力はA−D変換器6、入
出力装置7を経て中央処理装置8に導入される。
中央処理装置8にはまた、入出力装置7を介して
測定経過時間を計時するタイマ9の出力が導入さ
れ、各時点における濃度検出値とその各時点に対
応する測定経過時間を用いて、後述するごとく粒
度分布を算出する。この測定プログラムや算出プ
ログラムは、リードオンメモリ10に記憶され、
また各濃度検出値や粒度分布算出結果等はランダ
ムアクセスメモリ11に記憶されるよう構成され
ている。
A sedimentation container 1 for sealing sample particles uniformly dispersed in a medium solution is attached to a rotating disk 3 attached to a rotating shaft of a motor 2. The concentration of the medium solution in the sedimentation container 1 is detected by using a concentration detection light source 4 that is installed at a certain distance from the center of rotation and emits light that crosses the rotating sedimentation container 1, and receives the light and converts it into an electrical quantity. The output of the light receiving section 5 is sent to the central processing unit 8 via the A/D converter 6 and the input/output device 7.
The output of a timer 9 for measuring the elapsed measurement time is also introduced into the central processing unit 8 via the input/output device 7, and the concentration detection value at each time point and the elapsed measurement time corresponding to each time point are used to calculate the output value, which will be described later. Calculate the particle size distribution. This measurement program and calculation program are stored in the read-on memory 10,
Further, each concentration detection value, particle size distribution calculation result, etc. are configured to be stored in the random access memory 11.

一方、回転円盤3を駆動するモータ2は、供給
電圧に応じてその回転速度を変化し得る直流モー
タであつて、電圧制御回路12に接続されてい
る。回転円盤3には、回転中心を中心とする円周
上に等間隔に小孔が穿たれ、その小孔を横切る光
を発する回転速度検出用光源13と、その光を受
ける回転速度検出用受光部14と、その受光部出
力を導入して回転円盤3の回転速度を検出する回
転速度検出回路15が設けられ、この回転速度検
出値は比較回路16に供給される。比較回路16
にはまた、第2図に示す回転速度の経過時間に関
する単調増加関数に従つた基準信号を発生する基
準信号発生回路17の出力が導入され、その差信
号を上述の電圧制御回路12に供給してモータ2
をフイードバツク制御している。この基準信号発
生回路17は、入出力装置7を介して中央処理装
置8に接続され、中央処理装置8はタイマ9から
測定経過時間を取り込んで、あらかじめ設定され
リードオンメモリ10に記憶されている第2図に
示す如き時間経過に対する回転速度の関数に従つ
て基準信号発生回路17の出力を制御する。
On the other hand, the motor 2 that drives the rotating disk 3 is a DC motor whose rotational speed can be changed according to the supplied voltage, and is connected to a voltage control circuit 12 . The rotating disk 3 has small holes equally spaced on the circumference around the center of rotation, a light source 13 for detecting rotational speed that emits light that crosses the small holes, and a light receiver for detecting rotational speed that receives the light. A rotation speed detection circuit 15 is provided which detects the rotation speed of the rotary disk 3 by introducing the output of the light receiving section 14 and the rotation speed detection circuit 15, and this rotation speed detection value is supplied to a comparison circuit 16. Comparison circuit 16
Also, the output of a reference signal generation circuit 17 that generates a reference signal according to a monotonically increasing function regarding the elapsed time of the rotational speed shown in FIG. 2 is introduced, and the difference signal is supplied to the voltage control circuit 12 described above. Motor 2
is controlled by feedback. This reference signal generation circuit 17 is connected to a central processing unit 8 via an input/output device 7, and the central processing unit 8 takes in the measurement elapsed time from a timer 9, and stores it in advance in a read-on memory 10. The output of the reference signal generating circuit 17 is controlled in accordance with a function of rotational speed over time as shown in FIG.

前述の各時点における濃度検出値とその各時点
に対応する測定経過時間とを用いて粒度分布を算
出する方法は、従来装置の算出方法と同様である
が、各濃度測定点に対応する時間軸上のtを粒子
経Dpに換算する為の式(2)は、回転円盤3の回転
速度が測定経過時間の関数に基づいて変化するの
で、これを下記の如く変更する。
The method of calculating the particle size distribution using the concentration detection value at each point and the elapsed measurement time corresponding to each point is the same as the calculation method of conventional equipment, but the time axis corresponding to each concentration measurement point is Since the rotation speed of the rotating disk 3 changes based on a function of the elapsed measurement time, the above equation (2) for converting t into the particle length Dp is changed as follows.

d2R/dt2=Rω2(ρp−ρl/ρp)−18η/ρp・Dp2
・dR/dt……(3) ここにRは回転中心から粒子の存在点までの距
離で、ωはω=f(t)なる時間の関数であつて、
例えば第2図のt=o〜t=t1までの領域におい
てはω=atなる式で表わされ、これを式(3)に代入
するとよく、この式(3)は変数係数型二階微分方程
式であるから、距離Rについて解くことができ、
各粒子径Dpについて距離Rと時間tの関係を確
認できる。従つて、この微分方程式の解をリード
オンリ・メモリ10に記憶して中央処理装置8に
て時間tより粒子径Dpを求めてもよい。或いは
あからじめリードオンリメモリに各時間tに対応
する粒子径Dpを記憶させておいてもよい。
d 2 R/dt 2 =Rω 2 (ρp−ρl/ρp)−18η/ρp・Dp 2
・dR/dt...(3) Here, R is the distance from the center of rotation to the point where the particle exists, and ω is a function of time such that ω=f(t),
For example, in the region from t=o to t= t1 in Figure 2, it is expressed by the equation ω=at, which can be substituted into equation (3), which is a variable coefficient type second-order differential. Since it is an equation, it can be solved for the distance R,
The relationship between distance R and time t can be confirmed for each particle diameter Dp. Therefore, the solution to this differential equation may be stored in the read-only memory 10 and the particle diameter Dp may be determined from the time t by the central processing unit 8. Alternatively, the particle diameter Dp corresponding to each time t may be stored in advance in a read-only memory.

式(3)は、以下に示すような意味を持つ。すなわ
ち、遠心場での粒子の運動方程式を考えると、次
(4)式の通りとなる。
Equation (3) has the following meaning. In other words, considering the equation of motion of a particle in a centrifugal field, we get the following
Equation (4) is obtained.

π/6DP 3ρpd2R/dt2=π/6Dp 3
ρp−ρl)Rω2−3πηDpdR/dt……(4) この(4)式の左辺は粒子に働く正味の力で、質量
×加速度の形となつている。また、右辺第1項は
粒子に働く重力と浮力の差を示す項であつて、同
辺第2項は粒子が移動するとき、粒子が流体から
受ける抵抗力を示す項である。
π/6D P 3 ρ p d 2 R/dt 2 = π/6D p 3 (
ρ p −ρ l ) Rω 2 −3πηD p dR/dt...(4) The left side of equation (4) is the net force acting on the particle, which is in the form of mass x acceleration. Further, the first term on the right side is a term indicating the difference between gravity and buoyancy acting on the particle, and the second term on the same side is a term indicating the resistance force that the particle receives from the fluid when the particle moves.

この(4)式の共通項を整理・消去すると(3)式が得
られ、従つて(3)式は、粒子の運動を総合的に捉え
て、実際の粒子の運動から粒子径を得るための式
であると言える。
By rearranging and eliminating the common terms in equation (4), equation (3) is obtained. Therefore, equation (3) is used to comprehensively capture particle motion and obtain particle diameter from actual particle motion. It can be said that the formula is

上述の実施例における回転速度の経過時間に係
る関数は、第2図の如き一次関数でもよいし、他
の連続的な単調増加関数であつてもよいことは勿
論である。また、回転円盤駆動用モータおよび電
圧制御回路は、他の公知の可変速モータおよびそ
の制御回路であつてもよく、更にモータの回転速
度検出手段は他の公知の手段を使用してもよいこ
とは云うまでもない。
It goes without saying that the function related to the elapsed time of the rotational speed in the above embodiment may be a linear function as shown in FIG. 2, or may be another continuous monotonically increasing function. Further, the rotary disk drive motor and voltage control circuit may be other known variable speed motors and their control circuits, and furthermore, other known means may be used as the rotational speed detection means of the motor. Needless to say.

以上、説明したように、本発明によつては、遠
心力付与開始直後の回転速度の小さいところでは
遠心力は小さい為、粒子径の大きな粒子は比較的
低速度で沈降し、その沈降の検出は容易に正確に
測定することができ、時間経過にともなつて回転
速度が大きくなり、粒子径の小さな粒子が沈降す
る頃には遠心力が大きくなつているので沈降速度
が増大して短時間に測定を完了することができ
る。
As explained above, according to the present invention, since centrifugal force is small at a point where the rotational speed is low immediately after the application of centrifugal force starts, particles with large particle diameters settle at a relatively low speed, and the sedimentation can be detected. can be easily and accurately measured, as the rotational speed increases over time, and by the time particles with a small diameter settle, the centrifugal force has increased, so the sedimentation rate increases and the rotation speed increases over a short period of time. The measurement can be completed in a few seconds.

しかも、遠心器の回転速度を測定途中で暫時増
加するように変化させても、この変化は粒度分布
の演算に正確に反映させているので、この遠心器
の制御法の変更に起因する誤差は全く生じず、従
つて本発明によつて、短時間でしかも正確な粒度
分布の測定が可能となつた。また、モータの回転
速度を従来装置の如く一気に一定の回転速度にま
で加速するのではなく、徐々に加速してゆくの
で、モータの立ち上り時間が短くなり、立上り時
間を無視することによる測定誤差が減少し、沈降
系の乱れも少くなつた。更に、回転開始直後から
モータの回転速度を把握することができるので、
粒子の運動を全沈降領域に渡り追跡することが可
能となつた。
Moreover, even if the rotational speed of the centrifuge is changed to increase temporarily during the measurement, this change is accurately reflected in the calculation of the particle size distribution, so the error caused by the change in the control method of the centrifuge is reduced. Therefore, according to the present invention, particle size distribution can be measured accurately in a short time. In addition, since the rotational speed of the motor is not accelerated to a constant rotational speed all at once as in conventional devices, but is accelerated gradually, the startup time of the motor is shortened, and measurement errors caused by ignoring the startup time are reduced. It decreased, and the disturbance of the sedimentation system also became less. Furthermore, since it is possible to know the motor rotation speed immediately after the rotation starts,
It became possible to track the movement of particles throughout the entire sedimentation region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成図、第2図はその
測定経過時間と回転速度の関係を示す特性図であ
る。 1……沈降容器、2……モータ、3……回転円
盤、4……濃度検出用光源、5……濃度検出用受
光部、8……中央処理装置、12……電圧制御回
路、13……回転速度検出用光源、14……回転
速度検出用受光部、15……回転速度検出回路、
16……比較回路、17……基準信号発生回路。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between measurement elapsed time and rotational speed. DESCRIPTION OF SYMBOLS 1... Sedimentation container, 2... Motor, 3... Rotating disk, 4... Light source for concentration detection, 5... Light receiving section for concentration detection, 8... Central processing unit, 12... Voltage control circuit, 13... ... light source for rotational speed detection, 14 ... light receiving section for rotational speed detection, 15 ... rotational speed detection circuit,
16... Comparison circuit, 17... Reference signal generation circuit.

Claims (1)

【特許請求の範囲】 1 媒液中に均一に分散させた供試粒体を遠心器
による遠心力下で沈降させ、一定の沈降距離のと
ころでその濃度を検出し、粒子径に係る沈降速度
の相違を利用して、刻々の上記濃度検出結果を供
試粒体の粒度分布に換算する換算手段を備えた装
置において、上記遠心器の回転角速度ωが、あら
かじめ設定された単調増加の時間関数ω=f(t)
に従つて制御され、かつ、上記換算手段は、上記
関数ωと上記濃度検出結果を下記の式に基づいて
粒度分布に換算するよう構成されていることを特
徴とする粒度分布測定装置。 d2R/dt2=Rω2(ρp−ρl/ρp)−18η/ρp・Dp 2
・dR/dt ここで、R;回転中心から粒子までの距離 ρp;粒子の密度 ρl;媒液の密度 Dp;粒子径 η;媒液の粘性係数 t;時間
[Claims] 1. Sample particles uniformly dispersed in a medium are allowed to settle under the centrifugal force of a centrifuge, and the concentration is detected at a certain settling distance, and the sedimentation rate according to the particle size is determined. In an apparatus equipped with a conversion means that utilizes the difference to convert the instantaneous concentration detection results into the particle size distribution of the sample particles, the rotational angular velocity ω of the centrifuge is adjusted to a monotonically increasing time function ω set in advance. =f(t)
A particle size distribution measuring device controlled according to the following, and wherein the conversion means is configured to convert the function ω and the concentration detection result into a particle size distribution based on the following formula. d 2 R/dt 2 = Rω 2p −ρ lp )−18η/ρ p・D p 2
・dR/dt Where, R: Distance from the rotation center to the particle ρ p ; Particle density ρ l ; Medium density D p ; Particle diameter η ; Viscosity coefficient of the medium t : Time
JP4864582A 1982-03-25 1982-03-25 Apparatus for measuring particle size distribution Granted JPS58165040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4864582A JPS58165040A (en) 1982-03-25 1982-03-25 Apparatus for measuring particle size distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4864582A JPS58165040A (en) 1982-03-25 1982-03-25 Apparatus for measuring particle size distribution

Publications (2)

Publication Number Publication Date
JPS58165040A JPS58165040A (en) 1983-09-30
JPH0368336B2 true JPH0368336B2 (en) 1991-10-28

Family

ID=12809093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4864582A Granted JPS58165040A (en) 1982-03-25 1982-03-25 Apparatus for measuring particle size distribution

Country Status (1)

Country Link
JP (1) JPS58165040A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671102A (en) * 1985-06-18 1987-06-09 Shell Oil Company Method and apparatus for determining distribution of fluids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160843A (en) * 1982-03-18 1983-09-24 Horiba Ltd Centrifugal measuring method of particle size distribution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160843A (en) * 1982-03-18 1983-09-24 Horiba Ltd Centrifugal measuring method of particle size distribution

Also Published As

Publication number Publication date
JPS58165040A (en) 1983-09-30

Similar Documents

Publication Publication Date Title
CN104569472B (en) A kind of velocity acquiring method based on photoelectric pulse coder
ATE344699T1 (en) DEVICE AND METHOD FOR BALANCING A TURNTABLE DISC OF A CENTRIFUGE
EP0160385B1 (en) Particle size distribution measuring apparatus
JP2756038B2 (en) System for identifying centrifuge rotor based on rotor speed
AU6095498A (en) Device for measuring the volume of flowing substance and corresponding method
CN104792461B (en) A kind of revolving body high accuracy rotary inertia On-line Measuring Method
JPH0368336B2 (en)
JPH02212732A (en) Stop controller for object to be tested for dynamic balance tester
CN108760118A (en) A kind of device and method measuring Inertial Platform mass unbalance torque
EP0866318B1 (en) Method for automatic calibration check of a measuring device
JPH036459A (en) Method for detecting number of rotations
JPS58160843A (en) Centrifugal measuring method of particle size distribution
GB2192463A (en) Non-destructive rheological testing
CN85104282A (en) Apparatus for measurement of particle size distribution
JP3247946B2 (en) Method and apparatus for measuring stress relaxation of viscous substance
JPH0679199A (en) Displaying method for remaining time in centrifugal machine
SU977965A1 (en) Rotor rotation axis position determination method
SU463906A1 (en) Device for measuring rotational speed
SU1566237A1 (en) Method of calibrating torque meter
JP2000283966A (en) Ultrasonic flaw detector
JPS6084982A (en) Motor speed control system
JPS6311829A (en) Unbalance point measuring method and apparatus therefor
SU624134A1 (en) Method of detecting different-size balls
JP2526603B2 (en) Roadway inclination angle detection device
JP2745046B2 (en) Unbalance point positioning method and apparatus used for the method