JPH0368072B2 - - Google Patents

Info

Publication number
JPH0368072B2
JPH0368072B2 JP1684682A JP1684682A JPH0368072B2 JP H0368072 B2 JPH0368072 B2 JP H0368072B2 JP 1684682 A JP1684682 A JP 1684682A JP 1684682 A JP1684682 A JP 1684682A JP H0368072 B2 JPH0368072 B2 JP H0368072B2
Authority
JP
Japan
Prior art keywords
resin
paint
weight
baked
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1684682A
Other languages
Japanese (ja)
Other versions
JPS58134162A (en
Inventor
Bunichi Sano
Shigeharu Shiotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1684682A priority Critical patent/JPS58134162A/en
Publication of JPS58134162A publication Critical patent/JPS58134162A/en
Publication of JPH0368072B2 publication Critical patent/JPH0368072B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は最近の高速自動コイル巻に耐え得る、
いわゆる耐加工性に優れた絶縁電線に関する。 モーター、トランス等のコイル巻工程において
は合理化が急速に進んでおり、高速の自動コイル
巻機の導入が盛んに行なわれている。こうした高
速自動巻の工程においては電線はその表面の被覆
に損傷を受けることが多くなり、その結果レアー
シヨート等の不良が多くなることがあり、それに
耐え得る特性の絶縁電線が強く望まれている。 従来こうしたいわゆる絶縁電線の耐加工性を向
上させる方法として絶縁電線の被覆上にオイルを
塗布したり、又潤滑性の樹脂例えばナイロンを塗
布焼付したり、あるいは機械的性能の優れたポリ
アミドイミド樹脂をオーバーコートする方法が用
いられてきた。 しかしながらオイルを塗布しても耐加工性の著
しい向上は到底望み得ずナイロン及びポリアミド
イミド樹脂をオーバーコートしたものは工程数が
多くなり又樹脂コストが高いため絶縁電線のコス
トを著しく増大させ、特性そのものは良いにして
も使用上制約があり普及していない。 本発明者等は上記の事情にかんがみ、耐加工性
に優れしかもコストの低い絶縁電線を得るため鋭
意研究の結果、本発明を達成するに至つたもので
ある。 すなわち本発明は絶縁塗料の樹脂分100重量部
に対してメラミン1モルとイソシアヌル酸又はシ
アヌル酸1モルとを反応させて得られるメラミン
シアヌレート化合物0.1〜5重量部を配合して得
られる塗料を導体に直接、又は他の絶縁物を介し
て塗布焼付けたことを特徴とする絶縁電線であ
る。 先ず本発明で用いるメラミンシアヌレート化合
物とは下式に示す如くメラミン1モルとイソシア
ヌル酸又はシアヌル酸1モルとを会合反応させて
得られる。 次に本発明で用いる電気絶縁塗料は一般式に用
いられるほとんどの樹脂塗料、例えばポリエステ
ル樹脂塗料、ポリウレタン樹脂塗料、ポリイミド
樹脂塗料、ポリエステルイミド樹脂塗料、ポリア
ミドイミド樹脂塗料、ポリアミド樹脂塗料、ホル
マール樹脂塗料、エポキシ樹脂塗料等を用いるこ
とができる。さらにこれらの塗料の溶媒としては
クレゾール等の有機溶剤系の他水系溶媒の塗料、
更にノンソルベントタイプの塗料、自己融着塗料
にも適用することができる。メラミンシアヌレー
ト化合物としては具体的には油化メラミン社(株)製
商品名(MCA)がある。 本発明において絶縁塗料の樹脂分100重量部に
対するメラミンシアヌレート化合物の配合量を
0.1〜5重量部と限定した理由は0.1以下であると
添加配合の効果が現れず又5重量部以上では得ら
れる絶縁電線の耐加工性が増量によりそれほど向
上せず逆に絶縁電線の被膜表面に異常をきたす恐
れがあるためである。 又絶縁塗料へのメラミンシアヌレート化合物の
分散性を良くするためアニオン系、カチオン系、
非イオン系の界面活性剤を加えても良い。 さらにはこれにシリコーンオイル等の滑剤も補
助的に配合することができる。 なお本発明の効果は導体上ばかりでなく絶縁電
線被膜の最上層のみに本発明品を適用して十分に
その目的を達成することができる。 次に本発明を実施例、比較例をあげて説明する 実施例 1 テレフタル酸、エチレングリコール、グリセリ
ンを主成分として得たポリエステル樹脂溶液(濃
度40%)にクレゾールとナフサの混合溶媒にメラ
ミンシアヌレート化合物(油化メラミン(株)商品名
MCA)を分散させた溶液をポリエステル樹脂分
100重量部に対してメラミンシアヌレート化合物
を1部含有するように添加して塗料を得た。この
塗料を直径1.0mmの銅線上に常法により塗布焼付
5回繰返し行つて被膜厚35μの本発明の絶縁電線
を得た。 実施例 2 市販のポリエステルイミド塗料(日触スケネク
タデイ社製商品名アイソミツド)の樹脂分100重
量部に対してメラミンシアヌレート化合物(前
出)0.5重量部アニオン系の界面活性剤としてナ
フタレンスルホン酸縮合物(東邦化学(株)製商品名
ルノツクス1000)を0.1部、又非イオン系の界面
活性剤としてソルビタンモノオレエイト(東邦化
学(株)製商品品ソルボンS−80)0.1部を添加し、
ホモジナイザーで均一に分散させた。 而して得られた塗料を直径1.0mmφの銅線上に
常法により塗布焼付けを繰返し施して被膜厚35μ
の本発明の絶縁電線を得た。 実施例 3 ポリウレタン樹脂塗料(東特塗料社製商品名
TPU−F2−50)を直径1.0mmの銅線上に常法によ
り塗布焼付けを繰返し施して30μの被膜を有する
ポリウレタン電線を得た。 一方6,6−ナイロン(東レ(株)製商品名
CM3001)をクレゾールとソルベントナフサ混液
に溶解し、12%濃度のナイロン樹脂溶液を得た。
このナイロン樹脂溶液の樹脂分100重量部に対し
て3重量部のメラミンシアヌレート化合物をクレ
ゾール及びソルベントナフサに分散させた形で添
加混合した。而して得た塗料を先に得られたポリ
ウレタン電線上に5μの厚さになるよう常法によ
り塗布焼付けた。しかして本発明の絶縁電線を得
た。 実施例 4 ポリエステルイミド樹脂塗料(日触スケネクタ
デイ社製商品名アイソミツド)を直径1.0mmの銅
線上に常法により塗布焼付けて厚さ25μの皮膜を
有するポリエステルイミド電線を得た。 一方フエノキシ樹脂(米国UCC社製商品名
PKHH)をクレゾール及びソルベントナフサで
溶解し、これにメラミンシアヌレート化合物(前
出)をフエノキシ樹脂固形分100重量部に対して
4重量部になるようクレゾール及びソルベントナ
フサに分散させた形で添加配合し濃度20%の自己
融着塗料を調製した。 この塗料を先に得られたポリエステルイミド電
線上に厚さ10μになるように常法により塗布焼付
けて本発明の絶縁電線を得た。 比較例 1 実施例1で用いたと同じポリエステル樹脂溶液
を直径1.0mmの銅線に常法により塗布焼付して厚
さ35μの皮膜を有するポリエステル電線を得た。 比較例 2 市販のポリエステルイミド塗料(日触スケクタ
デイ社製商品名アイソミツド)を1.0mmφの銅線
上に常法により塗布焼付して35μの皮膜を有する
ポリエステルイミド電線を得た。 比較例 3 ポリウレタン樹脂塗料(東特塗料社製商品名
TPU−F2−50)を直径1.0mmφの銅線に繰返し塗
布焼付けて厚さ30μの皮膜を設け、さらにその上
に6,6−ナイロン(東レ社製商品名CM3001)
の12%クレゾール/ソルベントナフサ溶液を塗布
焼付して厚さ5μの皮膜を設けた。 比較例 4 ポリエステルイミド樹脂塗料(日触スケネクタ
デイ社製商品名アイソミツド)を直径1.0mmの銅
線に繰返し塗布焼付けて厚さ25μの皮膜を設け、
さらにその上にフエノキシ樹脂(米国UCC社製
商品名PKHH)のクレゾール/ソルベントナフ
サ20%溶液を10μ厚に塗布焼付けて自己融着電線
を得た。 以上実施例1〜4、比較例1〜4で得られた
各々の絶縁電線の巻線加工性を調べるため下記の
種類の試験を行つた。得られた結果を第1表に示
した。
The present invention can withstand modern high speed automatic coil winding.
This invention relates to an insulated wire with excellent processing resistance. Rationalization is rapidly progressing in the coil winding process for motors, transformers, etc., and high-speed automatic coil winding machines are being actively introduced. In the process of high-speed self-winding, the surface coating of the electric wire is often damaged, resulting in an increase in defects such as rare shorts, and there is a strong desire for insulated wire with characteristics that can withstand this. Conventionally, methods for improving the machining resistance of insulated wires include applying oil to the coating of insulated wires, coating and baking a lubricating resin such as nylon, or applying polyamide-imide resin with excellent mechanical performance. Overcoating methods have been used. However, even if oil is applied, it is impossible to expect a significant improvement in processing resistance, and overcoating with nylon and polyamide-imide resin requires a large number of steps and the resin cost is high, which significantly increases the cost of the insulated wire and improves its properties. Although it is good, there are restrictions on its use and it is not widely used. In view of the above circumstances, the inventors of the present invention have conducted intensive research to obtain an insulated wire with excellent processing resistance and low cost, and as a result, have achieved the present invention. That is, the present invention uses a paint obtained by blending 0.1 to 5 parts by weight of a melamine cyanurate compound obtained by reacting 1 mole of melamine with 1 mole of isocyanuric acid or cyanuric acid to 100 parts by weight of the resin content of the insulating paint. An insulated wire characterized by being coated and baked directly onto a conductor or via another insulator. First, the melamine cyanurate compound used in the present invention is obtained by associating 1 mole of melamine with 1 mole of isocyanuric acid or cyanuric acid as shown in the following formula. Next, the electrical insulation paints used in the present invention include most commonly used resin paints, such as polyester resin paints, polyurethane resin paints, polyimide resin paints, polyesterimide resin paints, polyamide-imide resin paints, polyamide resin paints, and formal resin paints. , epoxy resin paint, etc. can be used. Furthermore, the solvents for these paints include organic solvents such as cresol, water-based paints,
Furthermore, it can also be applied to non-solvent type paints and self-fusing paints. A specific example of the melamine cyanurate compound is the trade name (MCA) manufactured by Yuka Melamine Co., Ltd. In the present invention, the amount of melamine cyanurate compound added to 100 parts by weight of the resin content of the insulating paint is
The reason why the amount was limited to 0.1 to 5 parts by weight is that if the amount is less than 0.1, the effect of the additive formulation will not be apparent, and if it is more than 5 parts by weight, the processing resistance of the resulting insulated wire will not improve much by increasing the amount, and conversely, the coating surface of the insulated wire will deteriorate. This is because there is a risk of causing abnormalities. In addition, to improve the dispersibility of melamine cyanurate compounds in insulation paints, anionic, cationic,
A nonionic surfactant may also be added. Furthermore, a lubricant such as silicone oil may also be added as an auxiliary ingredient. Note that the effects of the present invention can be sufficiently achieved by applying the present invention not only to the conductor but also only to the uppermost layer of the insulated wire coating. Next, the present invention will be explained by giving examples and comparative examples. Example 1 Melamine cyanurate in a mixed solvent of cresol and naphtha in a polyester resin solution (concentration 40%) obtained with terephthalic acid, ethylene glycol, and glycerin as main components Compound (Product name of Yuka Melamine Co., Ltd.)
MCA) dispersed solution is added to polyester resin.
A paint was obtained by adding 1 part of the melamine cyanurate compound to 100 parts by weight. This paint was applied and baked 5 times in a conventional manner onto a copper wire having a diameter of 1.0 mm to obtain an insulated wire of the present invention having a coating thickness of 35 μm. Example 2 0.5 parts by weight of a melamine cyanurate compound (mentioned above) per 100 parts by weight of the resin content of a commercially available polyesterimide paint (manufactured by Nippon Schenectaday Co., Ltd. under the trade name Isomid) Naphthalenesulfonic acid condensate as an anionic surfactant (Toho Chemical Co., Ltd., trade name Lunox 1000) was added in an amount of 0.1 part, and as a nonionic surfactant, sorbitan monooleate (Toho Chemical Co., Ltd. product Sorbon S-80) was added.
Uniformly dispersed with a homogenizer. The resulting paint was repeatedly coated and baked on a copper wire with a diameter of 1.0 mmφ using a conventional method to obtain a coating thickness of 35 μm.
An insulated wire of the present invention was obtained. Example 3 Polyurethane resin paint (trade name manufactured by Totoku Toyo Co., Ltd.)
TPU-F 2 -50) was repeatedly coated and baked on a copper wire with a diameter of 1.0 mm using a conventional method to obtain a polyurethane electric wire having a coating of 30 μm. On the other hand, 6,6-nylon (trade name manufactured by Toray Industries, Inc.)
CM3001) was dissolved in a mixture of cresol and solvent naphtha to obtain a nylon resin solution with a concentration of 12%.
To 100 parts by weight of the resin content of this nylon resin solution, 3 parts by weight of a melamine cyanurate compound was added and mixed in the form of a dispersion in cresol and solvent naphtha. The thus obtained paint was applied and baked on the previously obtained polyurethane electric wire to a thickness of 5 μm using a conventional method. Thus, an insulated wire of the present invention was obtained. Example 4 A polyesterimide resin paint (trade name: Isomid, manufactured by Nippon Schenectaday Co., Ltd.) was coated and baked on a copper wire having a diameter of 1.0 mm by a conventional method to obtain a polyesterimide electric wire having a film having a thickness of 25 μm. On the other hand, phenoxy resin (trade name manufactured by UCC, USA)
PKHH) is dissolved in cresol and solvent naphtha, and the melamine cyanurate compound (mentioned above) is added and blended in the form of dispersion in cresol and solvent naphtha in an amount of 4 parts by weight per 100 parts by weight of phenoxy resin solid content. A self-fusing paint with a concentration of 20% was prepared. This paint was coated and baked on the previously obtained polyesterimide wire to a thickness of 10 μm by a conventional method to obtain an insulated wire of the present invention. Comparative Example 1 The same polyester resin solution used in Example 1 was coated and baked on a copper wire with a diameter of 1.0 mm by a conventional method to obtain a polyester electric wire having a coating with a thickness of 35 μm. Comparative Example 2 A commercially available polyesterimide paint (trade name: Isomid, manufactured by Nikko Skektaday Co., Ltd.) was coated and baked on a 1.0 mmφ copper wire by a conventional method to obtain a polyesterimide electric wire having a film of 35 μm. Comparative Example 3 Polyurethane resin paint (trade name manufactured by Totoku Paint Co., Ltd.)
TPU-F 2 -50) was repeatedly coated and baked on a copper wire with a diameter of 1.0 mm to form a 30 μ thick film, and then 6,6-nylon (trade name: CM3001 manufactured by Toray Industries, Inc.) was applied on top of that.
A 12% cresol/solvent naphtha solution was applied and baked to form a film with a thickness of 5μ. Comparative Example 4 A polyester imide resin paint (product name: Isomid, manufactured by Nippon Schenectaday Co., Ltd.) was repeatedly applied and baked on a copper wire with a diameter of 1.0 mm to form a 25 μ thick film.
Furthermore, a 20% cresol/solvent naphtha solution of phenoxy resin (trade name PKHH, manufactured by UCC Corporation, USA) was applied and baked to a thickness of 10 μm to obtain a self-fused wire. In order to examine the winding workability of each insulated wire obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the following types of tests were conducted. The results obtained are shown in Table 1.

【表】【table】

【表】 第1表の如く本発明の絶縁電線の被膜は強固で
滑性があり、従来品に比較して耐加工性に優れた
絶縁電線であることは明らかである。
[Table] As shown in Table 1, the coating of the insulated wire of the present invention is strong and slippery, and it is clear that the insulated wire has superior processing resistance compared to conventional products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は絶縁電線の静止摩擦係数測定装置の模
式図である。第2図はNEMA1000VAC欠点数測
定装置の模式図である。 1……ガラス板、2,2′……絶縁電線、3…
…鉄板、4……錘、5……ビーズ針。
FIG. 1 is a schematic diagram of an apparatus for measuring the coefficient of static friction of an insulated wire. Figure 2 is a schematic diagram of the NEMA1000VAC defect number measuring device. 1... Glass plate, 2, 2'... Insulated wire, 3...
...iron plate, 4...weight, 5...bead needle.

Claims (1)

【特許請求の範囲】[Claims] 1 電気絶縁塗料の樹脂分100重量部に対して、
メラミン1モルとイソシアヌル酸1モル又はシア
ヌル酸1モルとを反応させて得られるメラミンシ
アヌレート化合物0.1〜5重量部を配合してなる
塗料を導体に直接又は他の絶縁物を介して塗布焼
付けたことを特徴とする絶縁電線。
1. For 100 parts by weight of resin in electrical insulation paint,
A paint containing 0.1 to 5 parts by weight of a melamine cyanurate compound obtained by reacting 1 mole of melamine with 1 mole of isocyanuric acid or 1 mole of cyanuric acid was applied to the conductor directly or via another insulator and baked. An insulated wire characterized by:
JP1684682A 1982-02-04 1982-02-04 Insulated wire Granted JPS58134162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1684682A JPS58134162A (en) 1982-02-04 1982-02-04 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1684682A JPS58134162A (en) 1982-02-04 1982-02-04 Insulated wire

Publications (2)

Publication Number Publication Date
JPS58134162A JPS58134162A (en) 1983-08-10
JPH0368072B2 true JPH0368072B2 (en) 1991-10-25

Family

ID=11927572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1684682A Granted JPS58134162A (en) 1982-02-04 1982-02-04 Insulated wire

Country Status (1)

Country Link
JP (1) JPS58134162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160068291A (en) * 2014-12-05 2016-06-15 한국광기술원 High molecular compound with heating particles and 3d printing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328277A (en) * 1989-06-26 1991-02-06 Shikoku Chem Corp Metallic paint composition
GB2280634A (en) * 1993-08-03 1995-02-08 T & N Technology Ltd Flame retardant coatings for insulated electrical wires

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160068291A (en) * 2014-12-05 2016-06-15 한국광기술원 High molecular compound with heating particles and 3d printing device

Also Published As

Publication number Publication date
JPS58134162A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
JPH0572684B2 (en)
JPH10188686A (en) Insulated wire
JPH01307110A (en) Self-lubricating insulated wire
JPH0368072B2 (en)
DE19515263A1 (en) Wire enamel formulation with internal lubricant
JPS6341167B2 (en)
JPH0644823A (en) Resin composition for electric insulation and enameled wire
JPS63119109A (en) Self-lubricating insulated wire
JPH05217427A (en) Self-lubricating insulated wire
JPH07134913A (en) Self-lubricating insulated wire
JPH0644821A (en) Resin composition for electric insulation and enameld wire
JP3737913B2 (en) Insulated wire
JP2870685B2 (en) Lubricating insulation paint and insulated wires
JP3364007B2 (en) Self-fusing insulated wire and rotating electric machine using the same
JPS58884Y2 (en) insulated wire
JPH06103815A (en) Electric insulating resin composition and enamel wire
JPH05166413A (en) Electric insulating resin composition and enameled wire
JPH0426427Y2 (en)
JP3310419B2 (en) Self-lubricating insulated wire
JPH0810567B2 (en) Insulated wire with self-lubricating property
JPH05295324A (en) Self-lubricating insulating varnish
JPH06275128A (en) Resin composition for electric insulation and insulated wire
JPH01161608A (en) Self-melting insulated wire
JPH04349308A (en) Self lubricating insulated wire
JPH0892507A (en) Lubricant insulating coating and self-lubricating insulated wire