JPH0368000B2 - - Google Patents

Info

Publication number
JPH0368000B2
JPH0368000B2 JP11299288A JP11299288A JPH0368000B2 JP H0368000 B2 JPH0368000 B2 JP H0368000B2 JP 11299288 A JP11299288 A JP 11299288A JP 11299288 A JP11299288 A JP 11299288A JP H0368000 B2 JPH0368000 B2 JP H0368000B2
Authority
JP
Japan
Prior art keywords
heat treatment
heat
crystal
treatment container
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11299288A
Other languages
Japanese (ja)
Other versions
JPH01282200A (en
Inventor
Hiromasa Yamamoto
Manabu Kano
Haruto Shimakura
Osamu Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP11299288A priority Critical patent/JPH01282200A/en
Publication of JPH01282200A publication Critical patent/JPH01282200A/en
Publication of JPH0368000B2 publication Critical patent/JPH0368000B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱処理容器に係り、特に化合物半導
体単結晶からなる被熱処理物をアニールする際に
用いる熱処理容器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat treatment container, and more particularly to a heat treatment container used when annealing a heat treatment object made of a compound semiconductor single crystal.

[従来の技術] 一般に、化合物半導体単結晶は、LED、LD、
受光素子等の光素子やFET等の基板の高速デバ
イスとして用いられ、また光素子およびFETを
共に形成するOEIC等にも用いられるようになつ
てきた。かかる化合物半導体単結晶の製造方法と
しては、液体封止チヨクラルスキー法(LEC法)
のように、結晶の原料融液に種結晶を浸漬し、こ
れを引き上げて単結晶を育成する方法や、徐冷法
(GF)、水平ブリツジマン法(HB法)、垂直ブリ
ツジマン法(VB法)のように、結晶の原料融液
を徐々に固化させて単結晶を育成する方法があ
る。
[Prior art] In general, compound semiconductor single crystals are used in LEDs, LDs,
It is used as a high-speed device for optical devices such as photodetectors and substrates such as FETs, and has also come to be used in OEICs and the like in which optical devices and FETs are formed together. A method for producing such a compound semiconductor single crystal is the liquid-encapsulated Czyochralski method (LEC method).
There are methods such as immersing a seed crystal in the crystal raw material melt and pulling it up to grow a single crystal, methods such as slow cooling method (GF), horizontal Bridgeman method (HB method), vertical Bridgeman method (VB method) Another method is to gradually solidify a crystal raw material melt to grow a single crystal.

このような各種の化合物半導体単結晶の製造方
法は、それぞれ差異はあるものの、基本的には、
成長結晶と原料融液との間に温度勾配を生じさ
せ、原料融液から結晶を固化させるものであり、
結晶成長が行なわれている固液界面は融点にある
が、既に結晶が成長した部分は、常に融点よりも
低温下に晒されている点で共通している。したが
つて、上記化合物半導体単結晶の製造方法では、
いずれも成長結晶内の特性が不均一になつてい
た。このため、これら化合物半導体単結晶を用い
たデバイスでは、ウエハ内でのデビス特性のバラ
ツキが大きく、特にデイスクリートの高周波
FETやデイジタルIC等では、そのバラツキを原
因として、歩留りが悪くなつてしまい、化合物半
導体デバイスの普及が妨げられていた。
Although there are differences in the manufacturing methods of these various compound semiconductor single crystals, basically they are as follows:
A temperature gradient is created between the growing crystal and the raw material melt to solidify the crystal from the raw material melt.
The solid-liquid interface where crystal growth is occurring is at the melting point, but the part where the crystal has already grown is always exposed to a temperature lower than the melting point. Therefore, in the above method for manufacturing a compound semiconductor single crystal,
In both cases, the characteristics within the grown crystals were non-uniform. For this reason, devices using these compound semiconductor single crystals have large variations in device characteristics within the wafer, especially at high frequencies in discretes.
Variations in FETs, digital ICs, etc. have led to poor yields and have hindered the spread of compound semiconductor devices.

従来、デバイス特性のバラツキを改善するため
に、種々の方法が提案されている。例えばGaAs
等の−族化合物半導体単結晶の製造にあつて
は、バラツキの原因が成長結晶中の転位によるも
のとして、原料にIn等の不純物をドーピングして
無転位結晶を形成することが行なわれていた。し
かし、このドーピング法は、結晶の無転位化を図
ることはできるが、デバイス特性のバラツキは若
干減少するだけで、満足できるものではなかつ
た。また、第3図に示すように、成長結晶のイン
ゴツト、円筒研削後のブロツク、ウエハ等を被熱
処理物として、これをアニールする方法も行なわ
てていた。
Conventionally, various methods have been proposed to improve variations in device characteristics. For example, GaAs
In the production of - group compound semiconductor single crystals such as, etc., the source material was doped with impurities such as In to form dislocation-free crystals, assuming that the cause of variation was due to dislocations in the growing crystal. . However, although this doping method can make the crystal dislocation-free, it only slightly reduces the variation in device characteristics, and is not satisfactory. Furthermore, as shown in FIG. 3, a method has been used in which an ingot of a grown crystal, a block after cylindrical grinding, a wafer, etc. is used as the object to be heat treated, and the object is annealed.

第3図において、1は抵抗加熱炉における石英
製またはアルミナ製の炉芯管で、炉芯管1の両端
には、ステンレス製の端板2が固着されている。
被熱処理物3を収納する熱処理容器4は、石英製
アンプルからなつており、被熱処理物3は、例え
ば5×10-7Torr程度の高真空に排気した熱処理
容器4内に封入されている。熱処理容器4内に
As等の族元素も同等に封入されている場合も
ある。熱処理容器4は、炉芯管1内の所定位置に
配置され、炉芯管1の外側には、熱処理容器4を
囲繞可能なヒータ5が炉芯管1の軸方向へ移動可
能に配設されている。
In FIG. 3, reference numeral 1 denotes a quartz or alumina furnace core tube in a resistance heating furnace, and stainless steel end plates 2 are fixed to both ends of the furnace core tube 1.
The heat treatment container 4 that houses the heat treatment object 3 is made of a quartz ampoule, and the heat treatment object 3 is sealed in the heat treatment container 4 which is evacuated to a high vacuum of, for example, about 5×10 -7 Torr. Inside the heat treatment container 4
Group elements such as As may also be similarly included. The heat treatment container 4 is arranged at a predetermined position within the furnace core tube 1, and a heater 5 that can surround the heat treatment container 4 is arranged on the outside of the furnace core tube 1 so as to be movable in the axial direction of the furnace core tube 1. ing.

第3図に示す熱処理装置によりアニールを行な
うには、熱処理容器4に封入された被熱処理物3
を、ヒータ5によつて、結晶の融点より低い所定
温度まで加熱し5時間程度保持する。その後、第
3図において仮想線で示すように、ヒータ5を移
動させ、被熱処理物3に対する加熱を停止し、所
定の速度で冷却を行なう。
To perform annealing using the heat treatment apparatus shown in FIG.
is heated by the heater 5 to a predetermined temperature lower than the melting point of the crystal and maintained for about 5 hours. Thereafter, as shown by the imaginary line in FIG. 3, the heater 5 is moved to stop heating the object 3 to be heat treated, and the object 3 is cooled at a predetermined rate.

[発明が解決しようとする課題] しかし、上記従来のアニール法においては、確
実かに結晶特性の均一化が図れるものの、必ずし
も十分ではなく、転位密度(EPD)が増加した
り、転位の移動によるスリツプラインが発生する
という問題があつた。
[Problems to be Solved by the Invention] However, although the conventional annealing method described above can definitely make the crystal properties uniform, it is not necessarily sufficient, and the dislocation density (EPD) increases and There was a problem with slip lines.

すなわち、従来のアニール法において用いる熱
処理容器4は、被熱処理物3を真空封入する石英
アンプルのみからなつており、アニール温度を結
晶の融点よりも低いいずれの温度にしても、冷却
過程において被熱処理物3の結晶内で冷却速度の
異なる部分が生じ、熱応力が生じていた。つま
り、アニールの冷却過程においては、被熱処理物
3の熱の大半が輻射熱として放出され、特に熱処
理容器4が透明な石英アンプルでは、被熱処理物
3の外部が内部よりも速く冷却されるので、結晶
内に熱応力を生じてしまい、EPDの増加やスリ
ツプラインの発生を惹起していたのである。
That is, the heat treatment container 4 used in the conventional annealing method consists only of a quartz ampoule that vacuum-seals the object 3 to be heat treated, and even if the annealing temperature is set to any temperature lower than the melting point of the crystal, the object 3 to be heat treated will not be heated during the cooling process. Parts with different cooling rates occurred within the crystal of Product 3, causing thermal stress. In other words, in the cooling process of annealing, most of the heat of the object 3 to be heat treated is released as radiant heat, and in particular, if the heat treatment container 4 is a transparent quartz ampoule, the outside of the object 3 to be heat treated is cooled faster than the inside. This created thermal stress within the crystal, leading to an increase in EPD and the formation of slip lines.

本発明は、かかる従来の問題点に鑑みてなされ
たもので、結晶特性の均一化を図ることができる
とともに、転位密度の増加やスリツプラインの発
生を抑制できる熱処理容器を提供することを目的
とする。
The present invention was made in view of such conventional problems, and an object of the present invention is to provide a heat treatment container that can uniformize crystal properties and suppress increase in dislocation density and generation of slip lines. do.

[課題を解決するための手段] 上記目的を達成するために、本発明は、化合物
半導体単結晶からなる被熱処理物をアニールする
際に、その被熱処理物を収納する熱処理容器にお
いて、被熱処理物を封入するアンプルの内側また
は外側に、高熱伝導率の材質からなり被熱処理物
を囲繞するシールドを設けた。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a heat treatment container that stores the heat treatment object when annealing the heat treatment object made of a compound semiconductor single crystal. A shield made of a material with high thermal conductivity and surrounding the object to be heat treated was provided on the inside or outside of the ampoule enclosing the object.

本発明において、シールドを形成する高熱伝導
率の材質としては、例えば単一の素材としてはグ
ラフアイト、pBN、SiC、Mo等が適しており、
複合の素材ではヒートパイプ等が適している。一
方、アルミナ、石英(不透明)等のように熱伝導
率の低いものは不適当である。また、シールド
は、アンプルの内側・外側のいずれに設けてもよ
いが、特にシールド筒部の両端開口部を筒部と同
じ材質の端板で閉塞し、軸方向への熱の流出を防
止すると最も好ましい。さらに、シールドをグラ
フアイト、Mo等のように空気と反応し易い材質
で形成する場合には、シールドを不活性ガス、
N2ガスまたは真空雰囲気下にすることが好まし
い。
In the present invention, suitable materials with high thermal conductivity for forming the shield include, for example, graphite, pBN, SiC, Mo, etc. as a single material.
For composite materials, heat pipes etc. are suitable. On the other hand, materials with low thermal conductivity such as alumina and quartz (opaque) are unsuitable. The shield may be provided either on the inside or outside of the ampoule, but in particular, it is recommended to close the openings at both ends of the shield tube with end plates made of the same material as the tube to prevent heat from escaping in the axial direction. Most preferred. Furthermore, if the shield is made of a material that easily reacts with air, such as graphite or Mo, the shield may be made of an inert gas,
It is preferable to use N 2 gas or vacuum atmosphere.

[作用] 上記構成の熱処理容器を用いてアニールを行な
えば、冷却過程において、シールドによつて輻射
冷却が防止され、冷却は主として熱伝導によるこ
とになるので、被熱処理物の温度分布が均一化さ
れ、熱応力を著しく低減させることができる。
[Function] If annealing is performed using the heat treatment container with the above configuration, the radiation cooling is prevented by the shield during the cooling process, and cooling is mainly done by heat conduction, so the temperature distribution of the object to be heat treated becomes uniform. thermal stress can be significantly reduced.

[実施例] LEC法により育成したGaAs単結晶をアニール
する例について説明する。第1図は、本実施例に
おける熱処理装置を示すもので、従来と同一部分
については第3図と同一符号をもつて示し、説明
を省略する。
[Example] An example of annealing a GaAs single crystal grown by the LEC method will be described. FIG. 1 shows a heat treatment apparatus in this embodiment, and the same parts as in the conventional apparatus are designated by the same reference numerals as in FIG. 3, and the explanation thereof will be omitted.

第1図の熱処理装置では、端板2に、真空排気
管8が接続されており、炉芯管1内を高真空に排
気できるようになつている。
In the heat treatment apparatus shown in FIG. 1, a vacuum exhaust pipe 8 is connected to the end plate 2, so that the inside of the furnace core tube 1 can be evacuated to a high vacuum.

熱処理容器9は、被熱処理物3を封入するアン
プル4と、このアンプル4を収納して被熱処理物
3を囲繞するグラフアイト製のシールド10とか
ら構成されている。シールド10は、円筒状のシ
ールド筒部10aと、このシールド筒部10aの
両端をそれぞれ閉塞する端板10bとからなつて
いる。
The heat treatment container 9 includes an ampoule 4 that encloses the object 3 to be heat treated, and a shield 10 made of graphite that houses the ampoule 4 and surrounds the object 3 to be heat treated. The shield 10 includes a cylindrical shield tube portion 10a and end plates 10b that close both ends of the shield tube portion 10a.

本実施例では、直径3インチに円筒研削を施し
たブロツクを被熱処理物3とし、これをアンプル
4内に5×10-7Torrで真空封入した。そして、
このアンプル4をシールド10内に収納し、その
シールド10を炉芯管1内の所定の位置に配置し
た。次に、炉芯管1内を真空排気管8を介して真
空状態とし、ヒータ5により、被熱処理物3を結
晶の融点(1238℃)よりも低温の1100℃で5時間
加熱した。
In this example, the heat-treated object 3 was a cylindrical-ground block having a diameter of 3 inches, and this was vacuum-sealed into an ampoule 4 at 5×10 -7 Torr. and,
This ampoule 4 was housed in a shield 10, and the shield 10 was placed at a predetermined position within the furnace core tube 1. Next, the inside of the furnace core tube 1 was evacuated via the evacuation tube 8, and the heat-treated material 3 was heated for 5 hours at 1100° C., which is lower than the melting point of the crystal (1238° C.), using the heater 5.

その後、第1図において仮想線で示すように、
ヒータ5を移動させ、被熱処理物3に対する加熱
を停止し、約20℃/minの速度で冷却を行なつ
た。
After that, as shown by the imaginary line in FIG.
The heater 5 was moved to stop heating the object 3 to be heat treated, and cooling was performed at a rate of about 20° C./min.

このようにして、アニールを行なつた後の被熱
処理物3を適当な位置で切断し、その切断面にお
けるEPDを測定した。その測定結果を第2図に
示す。第2図において、横軸のA,B,C,Dは
それぞれ結晶のロツト名を示し、縦軸はEPD(cm
-2)を示す。なお、比較のために、アニール温度
等の条件を上記実施例と同様にして第3図に示す
従来例によりアニールを行なつたものについても
EPDを測定し、第2図に併記した。第2図にお
いて、E,F,G,Hはそれぞれ従来例のものの
結晶のロツト名を示す。
After annealing in this manner, the heat-treated object 3 was cut at an appropriate position, and the EPD at the cut surface was measured. The measurement results are shown in FIG. In Figure 2, A, B, C, and D on the horizontal axis indicate the lot names of the crystals, and the vertical axis indicates EPD (cm
-2 ). For comparison, annealing was performed using the conventional example shown in Figure 3 with the same conditions as the annealing temperature and other conditions as in the above example.
The EPD was measured and is also shown in Figure 2. In FIG. 2, E, F, G, and H each indicate the lot name of the crystal of the conventional example.

第2図から判るように、本実施例によるもの
は、アニール後のEPD(実線で示す)はアニール
前のEPD(破線で示す)と殆ど変わらないが、従
来方法によるものは、アニール法のEPDがアニ
ール前のEPDに比べて著しく増加している。
As can be seen from FIG. 2, the EPD after annealing (indicated by a solid line) in this example is almost the same as the EPD before annealing (indicated by a broken line), but in the case of the conventional method, the EPD obtained by annealing is is significantly increased compared to the EPD before annealing.

また、本実施例によるものでは、スリツプライ
ンの発生が認められなかつたが、従来方法による
ものでは、アニール後にスリツプラインが発生し
ていた。
Further, in the case of the present example, no slip lines were observed, whereas in the case of the conventional method, slip lines were formed after annealing.

なお、上記実施例では、被熱処理物3として円
筒研削後のブロツクを使用したが、インゴツトや
ウエハでも同様の効果が得られた。ウエハの場合
には、石英製またはグラフアイト製の治具を用い
てアンプル4内に立て掛けて配置するとよい。
In the above embodiment, a block after cylindrical grinding was used as the object 3 to be heat treated, but the same effect could be obtained with an ingot or a wafer. In the case of a wafer, it is preferable to use a jig made of quartz or graphite to lean it up in the ampoule 4.

[発明の効果] 以上のように、本発明の熱処理容器によれば、
被熱処理物を封入するアンプルの内側または外側
に、高熱伝導率の材質からなり被熱処理物を囲繞
するシールドを設けたので、シールドによつて輻
射冷却が防止され、冷却は主として熱伝導による
ことになつて、被熱処理物の温度分布が均一化さ
れ、熱応力が著しく低減する。そのため、結晶特
性の均一化が図れるとともに、EPDの増加やス
リツプラインの発生を抑制できるという効果があ
る。
[Effects of the Invention] As described above, according to the heat treatment container of the present invention,
A shield made of a material with high thermal conductivity and surrounding the object to be heat-treated is provided inside or outside the ampoule that encloses the object to be heat-treated, so that radiation cooling is prevented by the shield, and cooling is mainly done by thermal conduction. As a result, the temperature distribution of the object to be heat treated is made uniform, and thermal stress is significantly reduced. Therefore, the crystal properties can be made uniform, and the increase in EPD and the occurrence of slip lines can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の熱処理容器を用い
た熱処理装置を示す一部破断正面図、第2図は本
発明の一実施例および従来例の熱処理容器を用い
てアニールを行なつた後のEPD測定結果を示す
グラフ、第3図は従来例の熱処理容器を用いた熱
処理装置を示す一部破断正面図である。 3……被熱処理物、4……アンプル、9……熱
処理容器、10……シールド、10a……シール
ド筒部、10b……端板。
FIG. 1 is a partially cutaway front view showing a heat treatment apparatus using a heat treatment container according to an embodiment of the present invention, and FIG. 2 is a partially cutaway front view showing a heat treatment apparatus using a heat treatment container according to an embodiment of the present invention and a conventional example. A graph showing the subsequent EPD measurement results, and FIG. 3 is a partially cutaway front view showing a heat treatment apparatus using a conventional heat treatment container. 3... object to be heat treated, 4... ampoule, 9... heat treatment container, 10... shield, 10a... shield cylinder part, 10b... end plate.

Claims (1)

【特許請求の範囲】 1 化合物半導体単結晶をアニールする際に、そ
の被熱処理物を収納する熱処理容器において、被
熱処理物を封入するアンプルの内側または外側
に、高熱伝導率の材質からなり被熱処理物を囲繞
するシールドを設けたことを特徴とする熱処理容
器。 2 高熱伝導率の材質がグラフアイト、pBN、
SiC、Moまたはヒートパイプであることを特徴
とする請求項1記載の熱処理容器。
[Scope of Claims] 1. When annealing a compound semiconductor single crystal, in a heat treatment container that stores the object to be heat treated, a material to be heat treated made of a material with high thermal conductivity is placed on the inside or outside of an ampoule that encloses the object to be heat treated. A heat treatment container characterized by being provided with a shield that surrounds an object. 2 Materials with high thermal conductivity are graphite, pBN,
The heat treatment container according to claim 1, characterized in that it is SiC, Mo, or a heat pipe.
JP11299288A 1988-05-09 1988-05-09 Heat treatment vessel Granted JPH01282200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11299288A JPH01282200A (en) 1988-05-09 1988-05-09 Heat treatment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11299288A JPH01282200A (en) 1988-05-09 1988-05-09 Heat treatment vessel

Publications (2)

Publication Number Publication Date
JPH01282200A JPH01282200A (en) 1989-11-14
JPH0368000B2 true JPH0368000B2 (en) 1991-10-24

Family

ID=14600713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11299288A Granted JPH01282200A (en) 1988-05-09 1988-05-09 Heat treatment vessel

Country Status (1)

Country Link
JP (1) JPH01282200A (en)

Also Published As

Publication number Publication date
JPH01282200A (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US6780244B2 (en) Method for producing a semiconductor crystal
JP5931825B2 (en) Method for producing silicon carbide single crystal ingot
WO2016051485A1 (en) Silicon carbide single crystal wafer and method for producing silicon carbide single crystal ingot
JP6200018B2 (en) Silicon carbide single crystal wafer
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
CN110484965B (en) Gallium oxide crystal and growth method and growth device thereof
JP2008239480A (en) Semiconductor crystal
JP4224195B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal
JPH02145499A (en) Growing method for gallium arsenide single crystals
JPH0368000B2 (en)
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JP3724870B2 (en) Pyrolytic boron nitride crucible
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JP2944426B2 (en) Molecular beam epitaxy equipment
JPH08188499A (en) Production of gallium-arsenic single crystal
JP3198971B2 (en) Molecular beam epitaxy equipment
KR100416738B1 (en) APPARATUS FOR FABRICATING ZnSe SINGLE CRYSTAL BY VAPOR CRYSTAL GROWTH METHOD
JPH0784360B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPH0651275U (en) Silicon carbide single crystal growth equipment
JP2773441B2 (en) Method for producing GaAs single crystal
JPH0543400A (en) Production of gaas single crystal
SU1730217A1 (en) Method of growing low-dislocation single crystals of gallium arsenide