JPH0367794B2 - - Google Patents

Info

Publication number
JPH0367794B2
JPH0367794B2 JP58241848A JP24184883A JPH0367794B2 JP H0367794 B2 JPH0367794 B2 JP H0367794B2 JP 58241848 A JP58241848 A JP 58241848A JP 24184883 A JP24184883 A JP 24184883A JP H0367794 B2 JPH0367794 B2 JP H0367794B2
Authority
JP
Japan
Prior art keywords
laminate
base material
rolling
manufacturing
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58241848A
Other languages
Japanese (ja)
Other versions
JPS60133989A (en
Inventor
Takeshi Yasui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP24184883A priority Critical patent/JPS60133989A/en
Publication of JPS60133989A publication Critical patent/JPS60133989A/en
Publication of JPH0367794B2 publication Critical patent/JPH0367794B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、接合強度の良好な複合材の製造方法
に関する。 〔発明が技術的背景及びその問題点〕 異種金属を二層に接合した複合板は、電子機器
に多く使用されているが、最近特に接合強度の良
好な複合板が要求されている。 このような複合板を熱間圧延により製造する方
法として、母材と合せ材を重ねたものを2組対称
に重ねて組立てた複合板を圧延する対称圧延法
と、1組だけの複合板を圧延する非対称圧延法と
がある。 このうち非対称圧延の組立ては簡単であり溶接
部も少なく手間と工数が少ない。また合せ材が1
組であるため組立てた複合材も厚くならないので
板厚の制限が少ない等の利点がある。しかし、こ
の組立材は、対称圧延法の組立て材に比べ溶接部
の溶接強度が劣るため母材と合せ材の接合強度が
弱く圧延中に剥離をおこす欠点があり、合せ材が
ニツケル、母材がステンレス鋼の場合、特に改善
の余地があつた。 〔発明の目的〕 本発明は、特に非対称圧延法に適する接合強度
が大きい複合材の製造方法を提供することを目的
とする。 〔発明の概要〕 本発明は、上記の目的を達成するために合せ材
とは異なる材質であり、母材に対して溶接性が良
好で、かつ高温強度が近似した部材(以下「端部
材」という)を合せ材の少なくとも圧延加工を始
める側の端部に設け、前記部材と合せ材を母材に
重ね合わせて接合し圧延加工を施すことを特徴と
する複合材の製造方法を提供する。 本発明は、非対称圧延における剥離現象につい
て種々究明した結果、剥離は主に圧延加工を始め
る側の合せ材と母材との接合端部から起る確率が
高く、特に母材の厚さに対する合せ材の厚さの比
が15%以下の場合、特にその接合部から起る確率
が高いことを見い出した。本発明は、この知見に
基づいてなされたものである。即ち、本発明は、
合せ材の圧延加工を始める側の端部に母材に対し
て溶接性が良く、かつ高温強度が近似した部材を
設けることにより、発明を完成した。すなわち本
発明は、上記特性を有する端部材を用いることに
より、母材と端部材を重ね合わせて接合した際の
密着性を向上することが可能となる。 この密着性が向上することにより、圧延加工を
始める際に発生する確率の高い接合端部における
剥離を防止することが可能となり、その結果、合
せ材には圧延加工を開始する際の剥離の影響を受
けることがなく、合せ材の剥離を防止することが
可能となるのである。 溶接性の良好な部材としては、例えば、溶接す
る側の材料と溶接される側の材料の熱伝導率の差
が小さいことが好ましい。これにより溶接による
融け込み深さを同程度にし、溶接強度を向上させ
ることができる。具体的には熱伝導率の差は−
8w/m〓〜+8w/m〓の範囲が好ましく、−
4w/m〓〜+4w/m〓であれば更に好ましい。
又、端部材と合せ材との溶接性は、端部材と母材
との溶接性ほど求められていないが、高いほど好
ましい。例えばこの溶接性を改善する為に、端部
材は合せ材の熱伝導率との差として、−80〜8w/
m〓好ましくは−40〜40w/m〓の範囲に入る熱
伝導率を有する材料を選択すると良い。 また、高温強度が近似した部材としては、具体
的には900℃付近において−7〜+7Kg/mm2、さ
らには−3〜+3Kg/mm2程度の差以内におさめる
のが望ましい。このように端部材の高温強度を母
材の高温強度に近づけることにより、塑性変能を
母材と同程度にすることができ、熱間圧延(例え
ば800〜1200℃)の際の端部材の過度の流れ変形
を防止できる。これは端部材のみが過度の流れ変
形を生じると、端部材と母材の接合部において剥
離を生じやすくなるのためであり、この流れ変形
を防止することにより、端部材の剥離を防止する
ことが可能となるのである。 以上のように、端部材の特性を上のように規定
することにより、圧延加工を始める際の端部材の
剥離を防止することが可能となり、これにより合
せ材はその剥離の影響を受けることがなく、合せ
材の剥離を防止することが可能となるのである。 そして、端部材の圧延方向と直角方向の断面形
状としては合せ材の断面形状としては合せ材の断
面形状と同一が好ましい。すなわち、その厚さは
合せ材の板厚と同一で、その幅においても合せ材
の幅と同一であれば良いのである。 圧延方法は、非可逆式圧延方法と可逆式圧延方
法との2種がある。 非可逆式圧延方法とは、被圧延材を一方からの
み圧延ロールに通して圧延する方法であり、これ
に対し、可逆式圧延方法とは、一方から被圧延材
を圧延ロールに通し、再度被圧延材を反対方向に
通して圧延する方法である。 特に、本願発明を可逆式圧延方法に適用する場
合、合せ材の両端に端部材を設けることにより、
複合材のハガレ現象を低下できる。 溶接方法としては、TIG溶接、MIG溶接、レ
ーザー溶接、電子ビーム溶接等なんでも良いが、
経済性の点から、TIG溶接、MIG溶接が好まし
く、溶接深さが深くとれる点から電子ビーム溶接
が好まい。 この溶接は、合せ部材による端部材を母材と重
ね合せた後、その母材と接した部分を周縁部より
溶接し接合するのである。ここで、合せ材および
端部材は母材に溶接されなければならないが、合
せ材と端部材は溶接されなくとも本発明の目的を
達成することが可能である。 上記、溶接を起うことにより端部材および合せ
材を母材に溶接し、その後熱間圧延を施し、さら
に圧延を繰り返すことにより複合材を製造する。
そして、得られた複合材の端部材が設けられてい
る部分を除去することにより、意図する合せ材と
母材を用いた複合材を製造することができる。 〔発明の実施例〕 本発明の実施例及び比較例を第1表に示すこれ
らの複合材は、電子ビーム溶接により接合され、
その後900〜1000℃程度で熱間圧延を施こし、以
後更に圧延を繰り返す方法によつて複合材を製造
し、得られた複合材の端部材を除去することによ
り意図する複合材を製造した。この際、複合材の
歩留り(成功確率)をも第1表に併記する。第1
表の比較例1〜4からわかるように、複合比率が
減少するにつれて、成功確率が減少している。こ
れに対して実施例1〜5のいずれも90%以上の成
功確率を有しており、複合材の接合強度が向上し
ていることを示している。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a composite material with good bonding strength. [Technical background of the invention and its problems] Composite plates made by bonding two layers of dissimilar metals are often used in electronic devices, but recently there has been a demand for composite plates with particularly good bonding strength. There are two methods for producing such composite plates by hot rolling: a symmetrical rolling method in which two sets of base material and laminate are stacked symmetrically and a composite plate is assembled, and the other is a method in which only one set of composite plates is rolled. There is an asymmetric rolling method. Among these, the assembly of asymmetric rolling is simple and there are few welded parts, requiring less effort and man-hours. Also, the laminating material is 1
Since it is a set, the assembled composite material does not become thick, so there are advantages such as fewer restrictions on plate thickness. However, this assembled material has the disadvantage that the welding strength of the welded part is inferior to that of materials assembled using the symmetrical rolling method, so the bonding strength between the base material and the laminate is weak and peeling occurs during rolling. In the case of stainless steel, there was particularly room for improvement. [Object of the Invention] An object of the present invention is to provide a method for manufacturing a composite material with high bonding strength, which is particularly suitable for asymmetric rolling. [Summary of the Invention] In order to achieve the above object, the present invention provides a member (hereinafter referred to as an "end member") that is made of a material different from the laminated material, has good weldability to the base material, and has similar high-temperature strength. Provided is a method for manufacturing a composite material, which comprises: providing a laminate at least at the end of the laminate on the side where rolling is to be started, and superimposing the member and the laminate onto a base material, joining them, and subjecting them to rolling. As a result of various investigations into peeling phenomena in asymmetric rolling, the present invention found that peeling is likely to occur mainly at the joint end of the laminate and base material on the side where rolling starts, and that peeling is particularly likely to occur at the joint end of the laminate and base material on the side where rolling starts. It has been found that when the ratio of the material thickness is 15% or less, the probability of occurrence is particularly high at the joint. The present invention has been made based on this knowledge. That is, the present invention
The invention was completed by providing a member that has good weldability to the base material and has similar high-temperature strength to the end of the laminate on the side where the rolling process begins. That is, in the present invention, by using an end member having the above characteristics, it is possible to improve the adhesion when the base material and the end member are overlapped and joined. By improving this adhesion, it is possible to prevent peeling at the joint edges, which is likely to occur when rolling is started, and as a result, the laminate is affected by peeling when starting rolling. This makes it possible to prevent the laminated material from peeling off. As a member having good weldability, for example, it is preferable that the difference in thermal conductivity between the material on the side to be welded and the material on the side to be welded is small. This makes it possible to make the penetration depth by welding the same and to improve the welding strength. Specifically, the difference in thermal conductivity is −
The range of 8w/m〓 to +8w/m〓 is preferable, and -
It is more preferable if it is 4w/m〓~+4w/m〓.
Further, the weldability between the end member and the laminate material is not as required as the weldability between the end member and the base material, but the higher the weldability, the better. For example, in order to improve this weldability, the difference in thermal conductivity of the end members from the bonding material is -80~8w/
It is preferable to select a material having a thermal conductivity in the range of -40 to 40 w/m. Further, as a member having similar high-temperature strength, specifically, it is desirable that the difference be within a range of -7 to +7 Kg/mm 2 at around 900°C, and more preferably within a difference of about -3 to +3 Kg/mm 2 . By making the high-temperature strength of the end member close to that of the base material in this way, it is possible to make the plastic deformation comparable to that of the base material, and the end member during hot rolling (e.g. 800 to 1200°C) Excessive flow deformation can be prevented. This is because if only the end member undergoes excessive flow deformation, separation is likely to occur at the joint between the end member and the base material, and by preventing this flow deformation, separation of the end member can be prevented. becomes possible. As described above, by specifying the characteristics of the end members as above, it is possible to prevent the end members from peeling off when rolling starts, and as a result, the laminate material is not affected by the peeling. This makes it possible to prevent the laminate from peeling off. The cross-sectional shape of the end member in the direction perpendicular to the rolling direction is preferably the same as the cross-sectional shape of the laminate. That is, it is sufficient if its thickness is the same as the plate thickness of the laminate, and its width is also the same as the width of the laminate. There are two types of rolling methods: an irreversible rolling method and a reversible rolling method. The irreversible rolling method is a method in which the material to be rolled is passed through the rolling rolls only from one side and rolled.In contrast, the reversible rolling method is a method in which the material to be rolled is passed through the rolling rolls from one side and then rolled again. This is a method in which the rolled material is rolled in the opposite direction. In particular, when applying the present invention to a reversible rolling method, by providing end members at both ends of the laminated material,
It can reduce the peeling phenomenon of composite materials. Any welding method can be used, such as TIG welding, MIG welding, laser welding, electron beam welding, etc.
TIG welding and MIG welding are preferred from the economic point of view, and electron beam welding is preferred because it allows for a deep welding depth. In this welding, after the end member of the mating member is overlapped with the base material, the portion in contact with the base material is welded and joined from the peripheral edge. Here, the laminate material and the end member must be welded to the base material, but the object of the present invention can be achieved even if the laminate material and the end member are not welded. The end members and the laminate are welded to the base material by welding, followed by hot rolling, and further rolling is repeated to produce a composite material.
Then, by removing the portion of the obtained composite material where the end member is provided, a composite material using the intended laminate material and base material can be manufactured. [Examples of the Invention] Examples and comparative examples of the present invention are shown in Table 1. These composite materials were joined by electron beam welding,
Thereafter, a composite material was manufactured by hot rolling at about 900 to 1000° C. and further repeated rolling thereafter, and the intended composite material was manufactured by removing the end members of the obtained composite material. At this time, the yield (probability of success) of the composite material is also listed in Table 1. 1st
As can be seen from Comparative Examples 1 to 4 in the table, the probability of success decreases as the composite ratio decreases. On the other hand, all of Examples 1 to 5 had a success probability of 90% or more, indicating that the bonding strength of the composite material was improved.

〔発明の効果〕〔Effect of the invention〕

本願発明は、異なる部材を合せ材の端部に設け
ることにより、接合強度が大きい複合材の製造方
法を提供できる。
The present invention can provide a method for manufacturing a composite material with high joint strength by providing different members at the ends of the laminate material.

Claims (1)

【特許請求の範囲】 1 合せ材とは異なる材質であり、母材に対して
溶接性が良好で、かつ高温強度が近似した部材を
合せ材の少なくとも圧延加工を始める側の端部に
設け、前記部材と合せ材を母材に重ね合わせて接
合し圧延加工を施すことを特徴とする複合材の製
造方法。 2 母材の厚さに対して合せ材の厚さは15%以下
である(但し0を含まない。)特許請求の範囲第
1項に記載の複合材の製造方法。 3 前記部材の熱伝導率と母材の熱伝導率との差
は−8w/m〓〜8w/m〓である特許請求の範囲
第1項に記載の複合材の製造方法。 4 前記部材は、合せ材に対して溶接性が良好で
ある特許請求の範囲第1項および第2項に記載の
複合材の製造方法。 5 前記部材の熱伝導率と合せ材の熱伝導率との
差は−80w/m〓−80w/m〓である特許請求の
範囲第4項に記載の複合材の製造方法。 6 前記部材の引張り強度と母材の引張り強度と
の差は900℃で−7〜7Kg/mm2である特許請求の
範囲第1項乃至第5項に記載の複合材の製造方
法。 7 前記部材及び母材はステンレス鋼であり、合
せ材はニツケル又はニツケル合金である特許請求
の範囲第1項乃至第6項に記載の複合材の製造方
法。
[Scope of Claims] 1. A member that is made of a different material from the laminate material, has good weldability to the base material, and has similar high-temperature strength is provided at least at the end of the laminate material on the side where the rolling process starts; A method for manufacturing a composite material, which comprises superimposing and bonding the member and the laminate onto a base material and subjecting them to rolling processing. 2. The method for manufacturing a composite material according to claim 1, wherein the thickness of the laminate material is 15% or less (but not including 0) of the thickness of the base material. 3. The method for manufacturing a composite material according to claim 1, wherein the difference between the thermal conductivity of the member and the thermal conductivity of the base material is -8w/m to 8w/m. 4. The method for manufacturing a composite material according to claims 1 and 2, wherein the member has good weldability with respect to the laminated material. 5. The method for manufacturing a composite material according to claim 4, wherein the difference between the thermal conductivity of the member and the thermal conductivity of the laminate is -80 w/m -80 w/m. 6. The method for manufacturing a composite material according to claims 1 to 5, wherein the difference between the tensile strength of the member and the tensile strength of the base material is -7 to 7 Kg/mm 2 at 900°C. 7. The method for manufacturing a composite material according to claims 1 to 6, wherein the member and base material are stainless steel, and the mating material is nickel or a nickel alloy.
JP24184883A 1983-12-23 1983-12-23 Production of composite material Granted JPS60133989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24184883A JPS60133989A (en) 1983-12-23 1983-12-23 Production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24184883A JPS60133989A (en) 1983-12-23 1983-12-23 Production of composite material

Publications (2)

Publication Number Publication Date
JPS60133989A JPS60133989A (en) 1985-07-17
JPH0367794B2 true JPH0367794B2 (en) 1991-10-24

Family

ID=17080403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24184883A Granted JPS60133989A (en) 1983-12-23 1983-12-23 Production of composite material

Country Status (1)

Country Link
JP (1) JPS60133989A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211153A (en) * 1975-07-17 1977-01-27 Nippon Steel Corp Method of manufacture of rolled steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211153A (en) * 1975-07-17 1977-01-27 Nippon Steel Corp Method of manufacture of rolled steel sheet

Also Published As

Publication number Publication date
JPS60133989A (en) 1985-07-17

Similar Documents

Publication Publication Date Title
US3664816A (en) Steel-to-aluminum transition piece
JPS6029593B2 (en) Manufacturing method of Ti-clad steel
US3495319A (en) Steel-to-aluminum transition joint
JPH0367794B2 (en)
JPS6018205A (en) Manufacture of titanium-clad steel material
JPS63130281A (en) Titanium clad steel and its manufacture
JPH0780061B2 (en) Method for producing titanium clad steel sheet with excellent bondability
JPS6114919B2 (en)
KR930006111B1 (en) Method of clading
JPH01313193A (en) Manufacture of clad steel plate
JPS6039477B2 (en) Manufacturing method of clad steel plate
JPS60115384A (en) Production of composite material by brazing and rolling
JPS60135248A (en) Clad steel and manufacture thereof
JP2790767B2 (en) Brazed honeycomb panel
JPH04143085A (en) Hot press welding method of aluminum material and copper material
JP2548130B2 (en) Method of joining sintered alloy members
JPS62203694A (en) Junction method for metallic foil
JPS6356371A (en) Manufacture of titanium clad steel sheet
JPS58135779A (en) Production of clad material
JPH05177363A (en) Production of copper clad steel products
JPH01317691A (en) Production of clad steel plate
JPS58100626A (en) Manufacture of clad steel plate
JPH05169283A (en) Manufacture of clad steel sheet
JPS5831398B2 (en) Manufacturing method of corrugated waveguide
JPS5886989A (en) Joint welding method by diffusion welding