JPH0367731B2 - - Google Patents

Info

Publication number
JPH0367731B2
JPH0367731B2 JP15886686A JP15886686A JPH0367731B2 JP H0367731 B2 JPH0367731 B2 JP H0367731B2 JP 15886686 A JP15886686 A JP 15886686A JP 15886686 A JP15886686 A JP 15886686A JP H0367731 B2 JPH0367731 B2 JP H0367731B2
Authority
JP
Japan
Prior art keywords
membrane
polymer
separating
liquid mixture
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15886686A
Other languages
Japanese (ja)
Other versions
JPS6316005A (en
Inventor
Akira Mochizuki
Yoshio Sato
Takashi Ogawara
Shuzo Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15886686A priority Critical patent/JPS6316005A/en
Publication of JPS6316005A publication Critical patent/JPS6316005A/en
Publication of JPH0367731B2 publication Critical patent/JPH0367731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は液体混合物を分離する方法に関する。
更に詳しくは、少なくとも2成分からなる液体混
合物を分離する方法において、対アニオンとの間
に塩を形成しているカチオ性基を有するグリコシ
ド系骨格を主鎖にもつ高分子から構成された膜を
用い、蒸気透過法によつて分離する液体混合物の
分離方法に関する。 〔従来の技術〕 膜を用いた液体分離法は、近年脚光を浴び多く
の研究例が報告されている。例えば浸透気化法に
ついては米国特許第2953502号にセルロースアセ
テート膜やポリビニルアルコール系膜を用いて共
沸混合液体を分離した実験例、J.Polymer SCI、
Symposium No.41、145−153(1973)にセロフア
ン膜を用いて水−メタノール混合液体をギ酸ナト
リウムの存在下で分離した実験例、Journal of
Applied Polymer Science vol、26(1981)の
3223ページにグラフト化ポリビニルアルコール膜
を用いて水−メタノール混合液体を分離した実験
例、又、特公昭54−10548、54−10549号及び特公
昭59−49041号にイオン性基を導入した合成高分
子膜を用いて水−有機液体混合物を分離した実験
例が報告されている。 また、蒸気透過法としては、例えば米国特許第
4405409にセルロースアセテート系膜を用い、水
蒸気を選択的に透過させる方法が記載されてい
る。 〔発明が解決しようとする問題点〕 浸透気化法は従来簡単な方法では分離の困難な
例えば共沸混合物や沸点の接近した異性体(オル
トとパラ異性体、シスとトランス異性体等)の分
離が可能であることなどの特徴を有しているが従
来の浸透気化法においては、分離膜に次のような
問題があり、実用にいたつていない。すなわち、
混合液体が高分子膜を一回通過することによる分
離の割合〔一般に膜透過後のA成分のB成分に対
する重量比を膜透過前のA成分のB成分に対する
重量比で除した値を分離係数αで表示する。すな
わち、 αA B=透過液中の(WA/WB)/被透過液中の(
WA/WB) (式中WA及びWBは、それぞれA成分及びB成分
の重量を示す。)〕が小さいため、目的とする濃度
まで分離または濃縮するには、非常に多数の膜を
透過させなければならず膜分離法の利点が十分発
揮できないことであり、とくに、高分子膜を透過
する透過速度〔一般に、単位膜表面積及び単位時
間当りの透過量、すなわちQ(Kg/m2hr)で表示
する〕が実用性のある高い値となつたとき、分離
係数αが非常に低くなつてしまうことである。 一方、蒸気透過分離法は、上記浸透気化分離法
と同様な利点を有するが、やはり分離性能の十分
な膜が見い出されておらず、実用化に至つていな
いのが現状である。 従つて本発明の目的は、工業的に有利な液体混
合物の分離方法を提供することにある。 〔問題を解決するための手段〕 本発明者らは、かかる目的を達成するために鋭
意検討を重ね、対アニオンとの間に塩を形成して
いるカチオン性基を有するグリコシド系骨格を主
鎖にもつ高分子から構成された膜を用い、蒸気透
過により液体混合物を分離すると極めて工業的に
有利に分離できることを見出し、本発明に到達し
た。すなわち、本発明は、少なくとも2成分から
なる液体混合物を分離する方法において、対アニ
オンとの間に塩を形成しているカチオ性基を有す
るグリコシド系骨格を主鎖にもつ高分子から構成
された膜を用い、蒸気透過によつて分離すること
を特徴とする液体混合物の分離方法である。 本発明方法において用いられるカチオン性基を
有するグリコシド系骨格を主鎖にもつ高分子から
構成された膜においてカチオン性基とは、塩を形
成し得るカチオン性基全てを含むが、なかでも実
用的には、アンモニウム基又は多価金属イオンに
配位した窒素原子を有する金属錯体基が好まし
い。アンモニウム基としては、一般式−N+HnR4
−n(式中Rは炭素数1〜6までの炭化水素基、
nは1〜4の整数)で表されるイオン、−
NHCH2CH2NH2、−
NHCH2CH2NHCH2CH2NH2などのポリアミン、
[Industrial Field] The present invention relates to a method for separating liquid mixtures.
More specifically, in a method for separating a liquid mixture consisting of at least two components, a membrane composed of a polymer having a glycosidic skeleton as a main chain having a cationic group forming a salt with a counter anion is used. This invention relates to a method for separating liquid mixtures by vapor permeation. [Prior Art] Liquid separation methods using membranes have been in the spotlight in recent years, and many research examples have been reported. For example, regarding the pervaporation method, there is an experimental example in which an azeotropic liquid mixture was separated using a cellulose acetate membrane or a polyvinyl alcohol membrane in U.S. Patent No. 2953502, J. Polymer SCI,
Symposium No. 41, 145-153 (1973) Experimental example of separating water-methanol mixed liquid in the presence of sodium formate using a cellophane membrane, Journal of
Applied Polymer Science vol, 26 (1981)
On page 3223, there is an experimental example in which a water-methanol mixed liquid was separated using a grafted polyvinyl alcohol membrane, and synthetic polymers with ionic groups introduced in Japanese Patent Publications No. 54-10548, No. 54-10549, and No. 59-49041. Experimental examples have been reported in which water-organic liquid mixtures were separated using molecular membranes. In addition, as a vapor permeation method, for example, U.S. Patent No.
No. 4405409 describes a method of selectively permeating water vapor using a cellulose acetate membrane. [Problems to be solved by the invention] The pervaporation method is used to separate azeotropic mixtures and isomers with close boiling points (ortho and para isomers, cis and trans isomers, etc.) that are difficult to separate using conventional simple methods. However, in the conventional pervaporation method, the separation membrane has the following problems and has not been put into practical use. That is,
Separation rate when a mixed liquid passes through a polymer membrane once [Generally, the separation coefficient is the value obtained by dividing the weight ratio of component A to component B after passing through the membrane by the weight ratio of component A to component B before passing through the membrane. Display as α. That is, α A B = (W A /W B ) in permeate/( in permeate liquid)
W A /W B ) (in the formula, W A and W B indicate the weight of component A and component B, respectively)] is small, so it takes a very large number of membranes to separate or concentrate to the desired concentration. The advantages of membrane separation methods cannot be fully exploited because the membrane separation method has to be allowed to pass through the polymer membrane. 2 hr) reaches a practically high value, the separation coefficient α becomes extremely low. On the other hand, the vapor permeation separation method has the same advantages as the above-mentioned pervaporation separation method, but a membrane with sufficient separation performance has not yet been found and it has not yet been put into practical use. Therefore, an object of the present invention is to provide an industrially advantageous method for separating liquid mixtures. [Means for Solving the Problem] In order to achieve the above object, the present inventors have made extensive studies and have constructed a main chain consisting of a glycosidic skeleton having a cationic group that forms a salt with a counter anion. The inventors have discovered that separation of liquid mixtures by vapor permeation using a membrane made of a polymer having 200% is very industrially advantageous, and have arrived at the present invention. That is, the present invention provides a method for separating a liquid mixture consisting of at least two components, in which a polymer composed of a polymer having a glycosidic skeleton as a main chain and having a cationic group forming a salt with a counter anion is used. This is a method for separating a liquid mixture, which uses a membrane and performs separation by vapor permeation. In the membrane composed of a polymer having a glycosidic skeleton having a cationic group as its main chain, which is used in the method of the present invention, the cationic group includes all cationic groups that can form salts. is preferably an ammonium group or a metal complex group having a nitrogen atom coordinated to a polyvalent metal ion. As an ammonium group, the general formula −N + HnR 4
-n (wherein R is a hydrocarbon group having 1 to 6 carbon atoms,
ion represented by (n is an integer from 1 to 4), -
NHCH 2 CH 2 NH 2 , −
Polyamines such as NHCH2CH2NHCH2CH2NH2 ,

【式】【formula】

【式】などの複素環 構造を有するアミンからつくられるアンモニウム
基等があげられる。又、多価金属イオンに配位し
た窒素原子を有する基とは、多糖類分子上の窒素
原子が多価金属イオンに配位結合することにより
形成される金属錯体基で一般式
Examples include ammonium groups made from amines having a heterocyclic structure such as [Formula]. In addition, a group having a nitrogen atom coordinated to a polyvalent metal ion is a metal complex group formed when a nitrogen atom on a polysaccharide molecule coordinates to a polyvalent metal ion, and has the general formula

〔実施例〕〔Example〕

次に実施例により本発明を更に具体的に説明す
る。 実施例 1〜6 脱アセチル化度98モル%のキトサン膜(厚さ
22μm)をキトサンのアミノ基に対し、0.1〜1.8
倍当量の酸を含有するエタノール/水(50/50重
量比)混合液中に室温下13時間浸漬し、イオン化
したキトサン塩膜を得た。該膜を有効膜面積が
7.0cm2の蒸気透過装置に装着し、第1表に示す液
体混合物の蒸気を常圧で該膜面に供給し、膜の2
次側を0.3mmHgとして蒸気透過分離を行なつた。
分離係数αH2O、透過速度Q(g/m2h)を第1表
に示す。
Next, the present invention will be explained in more detail with reference to Examples. Examples 1 to 6 Chitosan membrane with a degree of deacetylation of 98 mol% (thickness
22 μm) to the amino group of chitosan, 0.1 to 1.8
An ionized chitosan salt film was obtained by immersing it in a mixed solution of ethanol/water (50/50 weight ratio) containing twice the equivalent amount of acid at room temperature for 13 hours. The effective membrane area of the membrane is
It is attached to a 7.0 cm 2 vapor permeation device, and the vapor of the liquid mixture shown in Table 1 is supplied to the membrane surface at normal pressure.
Vapor permeation separation was performed with the next side set to 0.3 mmHg.
Separation coefficient α H2O and permeation rate Q (g/m 2 h) are shown in Table 1.

【表】 実施例 7 脱アセチル化度98モル%のキトサンをポリマー
濃度が1wt%になるように1wt%酢酸溶液に溶解
し、該高分子溶液をガラス板上に流延し、自然風
乾することにより、キトサン・酢酸塩膜(厚さ
22μm)を得た。該膜を用い実施例1と同様にし
てエタノール/水混合蒸気(90/10重量比)の分
離を行なつた。分離係数αH2O、透過速度はそれぞ
れ89.2、100.5g/m2hであつた。 実施例 8、9 脱アセチル化度98モル%のキトサン膜(厚さ
22μm)をキトサンのアミノ基に対し、4倍量の
金属イオンを含有するエタノール/水混合液中に
60℃で13時間浸漬し、金属錯体膜を得た。該膜を
用い、エタノール/水混合蒸気(90/10重量比)
の分離を行なつた。分離係数αH2O、透過速度Q
(g/m2h)を第2表に示す。
[Table] Example 7 Chitosan with a degree of deacetylation of 98 mol% was dissolved in a 1 wt% acetic acid solution so that the polymer concentration was 1 wt%, and the polymer solution was cast onto a glass plate and air-dried. Chitosan-acetate film (thickness
22 μm) was obtained. Using this membrane, ethanol/water mixed vapor (90/10 weight ratio) was separated in the same manner as in Example 1. The separation coefficient α H2O and permeation rate were 89.2 and 100.5 g/m 2 h, respectively. Examples 8 and 9 Chitosan membrane with a degree of deacetylation of 98 mol% (thickness
22μm) in an ethanol/water mixture containing four times the amount of metal ions relative to the amino groups of chitosan.
A metal complex film was obtained by immersion at 60°C for 13 hours. Using this membrane, ethanol/water mixed vapor (90/10 weight ratio)
separation was carried out. Separation coefficient α H2O , permeation rate Q
(g/m 2 h) is shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、高い分離係数を維持しつ
つ、大きい透過速度で工業的に有利に液体混合物
を分離することができる。このため分離システム
のコンパクト化、処理能力の増大、低コスト化が
図られ、本発明は化学工業などの分離精製プロセ
スの短縮化や省エネルギー化への膜分離方法の実
用化に有効であり、産業上の有用性が極めて大き
いものである。
According to the method of the present invention, it is possible to industrially advantageously separate a liquid mixture at a high permeation rate while maintaining a high separation coefficient. Therefore, the separation system can be made more compact, the processing capacity can be increased, and the cost can be reduced.The present invention is effective in shortening the separation and purification process in the chemical industry, etc., and in practical application of membrane separation methods to save energy. The above-mentioned usefulness is extremely large.

Claims (1)

【特許請求の範囲】 1 少なくとも2成分からなる液体混合物を分離
する方法において対アニオンとの間に塩を形成し
ているカチオン性基を有するグリコシド系骨格を
主鎖にもつ高分子から構成された膜を用い、蒸気
透過によつて分離することを特徴とする液体混合
物の分離方法。 2 該カチオン性基がアンモニウム基又は/及び
多価金属イオンに配位した窒素原子を有する基で
ある特許請求の範囲第1項記載の液体混合物の分
離方法。 3 該高分子がキトサン塩又はキトサン誘導体塩
である特許請求の範囲第1項又は第2項記載の液
体混合物の分離方法。 4 該高分子がカチオン性のセルロース誘導体塩
である特許請求の範囲第1項又は第2項記載の液
体混合物の分離方法。
[Claims] 1. In a method for separating a liquid mixture consisting of at least two components, a polymer comprising a polymer having a glycosidic skeleton as a main chain and having a cationic group forming a salt with a counter anion. A method for separating a liquid mixture, which uses a membrane and is characterized by separation by vapor permeation. 2. The method for separating a liquid mixture according to claim 1, wherein the cationic group is an ammonium group or/and a group having a nitrogen atom coordinated to a polyvalent metal ion. 3. The method for separating a liquid mixture according to claim 1 or 2, wherein the polymer is a chitosan salt or a chitosan derivative salt. 4. The method for separating a liquid mixture according to claim 1 or 2, wherein the polymer is a cationic cellulose derivative salt.
JP15886686A 1986-07-08 1986-07-08 Separation of liquid mixture Granted JPS6316005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15886686A JPS6316005A (en) 1986-07-08 1986-07-08 Separation of liquid mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15886686A JPS6316005A (en) 1986-07-08 1986-07-08 Separation of liquid mixture

Publications (2)

Publication Number Publication Date
JPS6316005A JPS6316005A (en) 1988-01-23
JPH0367731B2 true JPH0367731B2 (en) 1991-10-24

Family

ID=15681111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15886686A Granted JPS6316005A (en) 1986-07-08 1986-07-08 Separation of liquid mixture

Country Status (1)

Country Link
JP (1) JPS6316005A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313661B1 (en) * 1999-10-13 2001-11-15 김충섭 Polyion complex membranes for separation of organic mixtures, and preparation thereof

Also Published As

Publication number Publication date
JPS6316005A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
US7361800B2 (en) Process for the separation of olefins from paraffins using membranes
EP0316525B1 (en) Polyamide reverse osmosis membranes
US4808313A (en) Liquid separation membrane for pervaporation
US6325218B1 (en) Polyion complex separation membrane with a double structure
EP0300428A2 (en) Rejection enhancing coatings for reverse osmosis membranes
EP0609446B1 (en) Separating membrane made from polyion complex
JP3015853B1 (en) Method for manufacturing reverse osmosis membrane
WO1986000819A1 (en) Separation of water from organic fluids
Goto et al. Separation of water/ethanol vapor mixtures through chitosan and crosslinked chitosan membranes
JPH0367731B2 (en)
KR101403345B1 (en) Reverse osmosis composite membrane for boron rejection and manufacturing method thereof
JPH0366930B2 (en)
JPS61404A (en) Separation of water-organic liquid mixture
JPS6366563B2 (en)
JPH0559777B2 (en)
JP3207565B2 (en) Method for producing water-soluble dye
JPH0547251B2 (en)
JPH05154365A (en) Water permselective type osmotic gasification film
JPH0423569B2 (en)
JPH0366932B2 (en)
JPS5934163B2 (en) Method for separating organic substances with carboxylic acid groups
JPH0829223B2 (en) Membrane separation method
JPS61222508A (en) Removal of coloring component
JPH0584433A (en) Composite membrane and method for separation of liquid mixture using that
JPS6339281B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term