JPH0366930B2 - - Google Patents
Info
- Publication number
- JPH0366930B2 JPH0366930B2 JP28544085A JP28544085A JPH0366930B2 JP H0366930 B2 JPH0366930 B2 JP H0366930B2 JP 28544085 A JP28544085 A JP 28544085A JP 28544085 A JP28544085 A JP 28544085A JP H0366930 B2 JPH0366930 B2 JP H0366930B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- pervaporation
- chitosan
- separation
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 83
- 238000005373 pervaporation Methods 0.000 claims description 54
- 238000000926 separation method Methods 0.000 claims description 46
- 229920001661 Chitosan Polymers 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 28
- 150000003839 salts Chemical class 0.000 claims description 16
- 229920002678 cellulose Polymers 0.000 claims description 14
- 239000001913 cellulose Substances 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 8
- 125000002091 cationic group Chemical group 0.000 claims description 6
- 229910021645 metal ion Inorganic materials 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 2
- 125000003563 glycoside group Chemical group 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 239000000203 mixture Substances 0.000 description 22
- 239000011259 mixed solution Substances 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 230000006196 deacetylation Effects 0.000 description 9
- 238000003381 deacetylation reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229940044175 cobalt sulfate Drugs 0.000 description 5
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 5
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 5
- 239000012466 permeate Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000005576 amination reaction Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000004696 coordination complex Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002338 glycosides Chemical group 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KTUQUZJOVNIKNZ-UHFFFAOYSA-N butan-1-ol;hydrate Chemical compound O.CCCCO KTUQUZJOVNIKNZ-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 150000008131 glucosides Chemical group 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/30—Cross-linking
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
〔産業上の利用分野〕
本発明は、水―有機液体混合物又は有機―有機
液体混合物を浸透気化法によつて分離するために
用いられる液体分離膜に関するものである。
〔従来の技術〕
従来、分離膜で区割された二つの室の供給液側
(一次側)に分離されるべき液体混合物を供給し、
透過液側(二次側)を減圧するか、又は不活性ガ
スを流すことによつて低蒸気圧に保ち、膜との親
和性の大きな成分を二次側に蒸気として優先的に
透過させる浸透気化法で水―有機液体混合物を分
離する方法が実施されており、このような浸透気
化法により水―有機液体混合物を分離した実験例
が種々報告されている。例えば米国特許第
2953502号にはセルロースアセテート膜やポリビ
ニルアルコール系膜を用いて共沸混合液体を分離
した実験例、J.Polymer SCI,Symposium No.
41,145―153(1973)にはセロフアン膜を用いて
水―メタノール混合液体をギ酸ナトリウムの存在
下で分離した実験例、Journal of Applied
Polymer Science vol、26(1981)の3223ページ
にはグラフト化ポリビニルアルコール膜を用いて
水―メタノール混合液体を分離した実験例、又、
特公昭54−10548、54−10549号及び特公昭59−
49041号にはイオン性基を導入した合成高分子膜
を用いた水―有機液体混合物を分離した実験例が
報告されている。
〔発明が解決しようとする問題点〕
浸透気化法は逆浸透法のように浸透圧による濃
度的な制限がないため、低濃度の液体混合物の分
離と限定されることなく、全ての範囲の濃度の液
体混合物の分離が可能であること、また蒸留法で
は分離の困難な共沸混合物が沸点の接近した異性
体(たとえばオルトとバラ異性体、シスとトラン
ス異性体)の分離が可能であることなどの特徴を
有している。
しかしながら、従来の浸透気化法に用いられる
分離膜には次のような問題があり、実用にいたつ
ていない。すなわち、混合液体が高分子膜を一回
通過することによる分離の割合〔一般に膜透過後
のA成分のB成分に対する重量比を膜透過前のA
成分のB成分に対する重量比で除した値を分離係
数αで表示する。すなわち、
αA B=透過液中の(WA/WB)/被透過液中の(WA/
WB)
(式中WA及びWBは、それぞれA成分及びB成分
の重量を示す。)〕が小さいため、目的とする濃度
まで分離または濃縮するには、非常に多数の膜を
透過させなければならず膜分離法の利点が十分発
揮できないことであり、とくに、高分子膜を透過
する透過速度〔一般に、単位膜表面積及び単位時
間当りの透過量、すなわちQ(Kg/m2hr)で表示
する〕が実用性のある高い値となつたとき、分離
係数αが非常に低くなつてしまうことである。
上記の膜は、いずれも数10程度の分離係数を有
する膜であり、分離性能は低い。したがつて、本
発明の目的は水―有機液体混合物又は有機―有機
液体混合物を浸透気化法で分離するにあたり、大
きい透過速度のもとで高い分離係数を得ることの
できる浸透気化用液体分離膜を提供することにあ
る。
〔問題点を解決するための手段〕
本発明者らはかかる目的を達成するため鋭意検
討を重ね、意外にも、従来浸透気化用の分離膜と
して全く用いられていなかつたイオン化したグリ
コシド系骨格を主鎖にもつ高分子から構成された
膜が、極めて高い分離機能を有する液体分離膜で
あることを見出し、本発明に至つた。すなわち本
発明は、対アニオンとの間に塩を形成しているカ
チオン性基を有するグリコシド系骨格を主鎖にも
つ高分子から構成された浸透気化用液体分離膜
(椅下、カチオン性多糖類系膜という)である。
本発明において、カチオン性基とは、塩を形成
し得るカチオン性基全てを含むが、かでも実用的
には、アンモニウム基又は多価金属イオンに配位
した窒素原子を有する金属錯体基が好ましい。ア
ンモニウム基としては、一般式−N+HnB4−n
(式中Rは炭素数1〜6までの炭化水素基、nは
1〜4の整数)で表されるイオン、−
NHCH2CH2NH2、−
NHCH2CH2NHCH2CH2NH2などのポリアミン、
[Industrial Application Field] The present invention relates to a liquid separation membrane used for separating water-organic liquid mixtures or organic-organic liquid mixtures by pervaporation. [Prior Art] Conventionally, a liquid mixture to be separated is supplied to the feed liquid side (primary side) of two chambers separated by a separation membrane,
A osmosis method that maintains a low vapor pressure by reducing the pressure on the permeate side (secondary side) or by flowing an inert gas, and allows components with high affinity with the membrane to preferentially permeate into the secondary side as vapor. A method of separating a water-organic liquid mixture by a vaporization method has been implemented, and various experimental examples have been reported in which a water-organic liquid mixture was separated by such a pervaporation method. For example, U.S. Patent No.
No. 2953502 includes an experimental example of separating azeotropic liquids using cellulose acetate membranes and polyvinyl alcohol membranes, J. Polymer SCI, Symposium No.
41, 145-153 (1973), an experimental example of separating water-methanol mixed liquid in the presence of sodium formate using a cellophane membrane, Journal of Applied
Polymer Science vol. 26 (1981), page 3223, contains an experimental example in which a water-methanol mixed liquid was separated using a grafted polyvinyl alcohol membrane.
Special Publication No. 54-10548, No. 54-10549 and Special Publication No. 59-
No. 49041 reports an experimental example in which a water-organic liquid mixture was separated using a synthetic polymer membrane into which ionic groups were introduced. [Problems to be solved by the invention] Since the pervaporation method does not have concentration limitations due to osmotic pressure like the reverse osmosis method, it is not limited to the separation of liquid mixtures with low concentrations, but can be applied over a wide range of concentrations. It is possible to separate azeotropic mixtures that are difficult to separate by distillation, and it is possible to separate isomers with close boiling points (for example, ortho and rose isomers, cis and trans isomers). It has the following characteristics. However, the separation membranes used in conventional pervaporation methods have the following problems and are not practical. In other words, the separation rate when a mixed liquid passes through a polymer membrane once [generally, the weight ratio of component A to component B after passing through the membrane is expressed as A before passing through the membrane.
The value divided by the weight ratio of the component to the B component is expressed as a separation coefficient α. That is, α A B = (W A /W B ) in the permeate / (W A /W B in the permeate)
W B ) (in the formula, W A and W B indicate the weights of component A and component B, respectively)] are small, so in order to separate or concentrate to the desired concentration, it is necessary to pass through a large number of membranes. In particular, the permeation rate through a polymer membrane [generally, the permeation rate per unit membrane surface area and unit time, that is, Q (Kg/m 2 hr)] ] becomes a high value that is practical, the separation coefficient α becomes extremely low. The above-mentioned membranes all have a separation coefficient of about 10, and have low separation performance. Therefore, an object of the present invention is to provide a liquid separation membrane for pervaporation that can obtain a high separation coefficient at a high permeation rate when separating water-organic liquid mixtures or organic-organic liquid mixtures by pervaporation. Our goal is to provide the following. [Means for Solving the Problems] In order to achieve the above object, the present inventors have made extensive studies, and surprisingly, they have developed an ionized glycoside skeleton, which has never been used as a separation membrane for pervaporation. The present inventors have discovered that a membrane composed of a polymer in the main chain is a liquid separation membrane having an extremely high separation function, leading to the present invention. In other words, the present invention provides a liquid separation membrane for pervaporation composed of a polymer having a glycoside skeleton as a main chain having a cationic group that forms a salt with a counter anion. It is called a system film). In the present invention, the cationic group includes all cationic groups that can form a salt, but from a practical standpoint, an ammonium group or a metal complex group having a nitrogen atom coordinated to a polyvalent metal ion is preferred. . The ammonium group has the general formula -N + HnB 4 -n
(wherein R is a hydrocarbon group having 1 to 6 carbon atoms, n is an integer of 1 to 4), -
NHCH 2 CH 2 NH 2 , −
Polyamines such as NHCH2CH2NHCH2CH2NH2 ,
【式】などの複素環構
造を有するアミンからつくられるアンモニウム基
等があげられ又、多価金属イオンに配位した窒素
原子を有する基とは、多糖類分子上の窒素原子が
多価金属イオンに配位結合することにより形成さ
れる金属錯体基で一般式Examples include ammonium groups made from amines having a heterocyclic structure such as [Formula], and groups having a nitrogen atom coordinated to a polyvalent metal ion. A metal complex group formed by coordinate bonding with the general formula
本発明の膜を用いれば、従来の膜を用いた分離
方法にくらべて高い分離係数を維持しつつ、大き
い透過速度で効率よく混合液体を処理することが
できる。このため分離システムのコンパクト化、
処理能力の増大、低コスト化が図られ、本発明は
化学工業などの分離精製プロセスの短縮化や省エ
ネルギー化への膜分離方法の実用化に有効であ
り、産業上の有用性が極めて大きいものである。
〔作 用〕
本発明の膜を用いて浸透気化法で有機液体混合
物を分離することにより、高い分離係数を維持し
つつ、大きい透過速度で効率よく混合液体を処理
することができるが、かかる効果は従来の知見か
らは全く予想しがたいことである。
かかる効果を生ずる理由は、多糖類がイオン化
することにより、極性分子(水など)との親和性
が増大すると同時に該イオン化によつてポリマー
分子が分離に適した立体配座をとることによると
考えられる。「従来の技術」中で述べたように、
単なるイオン化による親和性の向上だけでは、分
離性能は上がらず、イオン化とともにグルコシド
骨格による立体配座の固定が重要であることが示
唆される。
〔実施例〕
次に実施例により本発明を更に具体的に説明す
る。
実施例 1〜14
脱アセチル化度98モル%のキトサン膜(厚さ15
〜22μ)を、キトサンのアミノ基に対して1.3倍モ
ルの多塩基酸を含有するエタノール/水(50/50
重量比)混合液中に30℃で13時間浸漬し、イオン
架橋構造を有するキトサン塩膜を得た。該膜を有
効膜面積が7.0cm2の浸透気化装置に装着し、エタ
ノール/水(50/50重量比)混合液の分離を60
℃、0.3mmHgで行なつた。浸透気化開始6時間後
の分離係数α、透過速度Q(Kg/m2h)を第1表
に示す。
By using the membrane of the present invention, it is possible to efficiently treat a mixed liquid at a high permeation rate while maintaining a higher separation coefficient than in separation methods using conventional membranes. This makes the separation system more compact,
The present invention increases processing capacity and reduces costs, and is effective in practical application of membrane separation methods for shortening separation and purification processes in the chemical industry and saving energy, and has extremely great industrial utility. It is. [Function] By separating an organic liquid mixture by pervaporation using the membrane of the present invention, the mixed liquid can be efficiently treated at a high permeation rate while maintaining a high separation coefficient. is completely unpredictable based on conventional knowledge. The reason for this effect is thought to be that the ionization of the polysaccharide increases its affinity for polar molecules (water, etc.), and at the same time, the ionization causes the polymer molecules to adopt a conformation suitable for separation. It will be done. As mentioned in "Prior Art",
Merely improving affinity through ionization does not improve separation performance, suggesting that fixation of conformation by the glucoside skeleton is important in addition to ionization. [Example] Next, the present invention will be explained in more detail with reference to Examples. Examples 1 to 14 Chitosan membrane with a degree of deacetylation of 98 mol% (thickness 15
~22 μ) in ethanol/water (50/50) containing 1.3 times the mole of polybasic acid based on the amino group of chitosan
Weight ratio) was immersed in the mixed solution at 30°C for 13 hours to obtain a chitosan salt film having an ionic crosslinked structure. The membrane was attached to a pervaporation device with an effective membrane area of 7.0 cm2 , and the ethanol/water (50/50 weight ratio) mixture was separated for 60 minutes.
The test was carried out at 0.3 mmHg. Table 1 shows the separation coefficient α and permeation rate Q (Kg/m 2 h) 6 hours after the start of pervaporation.
【表】【table】
【表】
実施例 15
脱アセチル化度98モル%のキトサン膜(厚さ
17μ)をキトサンのアミノ基に対して1.3倍モルの
塩酸を含有するエタノール/水(50/50重量比)
混合液中に30℃、13時間浸漬し、キトサン塩膜を
得た。該膜をホルマリン2%を含有する塩酸酸性
のジオキサン/水(50/50重量比)溶液中に55分
間室温にて浸漬し、ホルマール架橋キトサン塩膜
を得た。該膜を用い、実施例1と同一の浸透気化
装置に装着してエタノール/水混合液(50/50重
量比)混合液の浸透気化分離を60℃、0.3mmHgで
行なつた。分離係数は17.92、透過速度Qは4.39
Kg/m2hcm2あつた。
実施例16、比較例1
脱アセチル化度98モル%のキトサン膜(厚さ
17μ)をキトサンのアミノ基に対し大過剰の無水
ピロメリツト酸を含有するジオキサン溶液中に20
時間室温下浸漬し、アミド結合により架橋したキ
トサンを得た。該架橋膜を塩酸濃度が1.5×
10-3mol/Kgのエタノール/水(50/50重量比)
混合液200g中に30℃、13時間浸漬し、架橋キト
サン塩膜を得た。該イオン化膜を実施例1と同一
の浸透気化装置に装着しエタノール/水(50/50
重量比)混合液の浸透気化分離を60℃、0.3mmHg
で行なつた。分離係数αは27.86、透過速Qは
4.85Kg/m2hであつた。比較例としてイオン化し
ていない架橋キトサン膜を用い全く同様な実験を
行なつたところ分離係数αは17.49、透過速度Q
は2.87Kg/m2hであつた。
実施例17〜18、比較例2
脱アセチル化度98モル%のキトサン膜(厚さ
17μ)をキトサンのアミノ基に対して1.3倍モルの
塩酸または酢酸を含有するエタノール/水(50/
50重量比)混合液中に30℃、13時間浸漬しキトサ
ン塩膜を得た。該膜を室温下、定長乾燥した後、
実施例1と同一の浸透気化装置に装着し、エタノ
ール/水(90/10重量比)混合液の浸透気化分離
を60℃、0.3mmHgで行なつた。また比較例として
定長乾燥したイオン化していないキトサン膜を用
い、同様な操作を行なつた。この膜性能結果を第
2表にあわせて示す。[Table] Example 15 Chitosan membrane with deacetylation degree of 98 mol% (thickness
17 μ) in ethanol/water (50/50 weight ratio) containing 1.3 times the mole of hydrochloric acid based on the amino group of chitosan.
It was immersed in the mixed solution at 30°C for 13 hours to obtain a chitosan salt film. The membrane was immersed in a dioxane/water (50/50 weight ratio) solution acidified with hydrochloric acid containing 2% formalin for 55 minutes at room temperature to obtain a formal crosslinked chitosan salt membrane. Using this membrane, it was attached to the same pervaporation apparatus as in Example 1, and pervaporation separation of an ethanol/water mixture (50/50 weight ratio) was carried out at 60° C. and 0.3 mmHg. Separation coefficient is 17.92, permeation rate Q is 4.39
Kg/m 2 hcm 2 heat. Example 16, Comparative Example 1 Chitosan membrane with a degree of deacetylation of 98 mol% (thickness
17μ) in a dioxane solution containing a large excess of pyromellitic anhydride relative to the amino groups of chitosan.
Chitosan crosslinked by amide bonds was obtained by soaking at room temperature for an hour. The crosslinked membrane was diluted with hydrochloric acid at a concentration of 1.5x.
10 -3 mol/Kg ethanol/water (50/50 weight ratio)
It was immersed in 200 g of the mixed solution at 30°C for 13 hours to obtain a crosslinked chitosan salt film. The ionized membrane was attached to the same pervaporation device as in Example 1, and ethanol/water (50/50
Weight ratio) Pervaporation separation of mixed liquid at 60℃, 0.3mmHg
I did it at Separation coefficient α is 27.86, permeation rate Q is
It was 4.85Kg/m 2 h. As a comparative example, a completely similar experiment was conducted using a non-ionized cross-linked chitosan membrane, and the separation coefficient α was 17.49, and the permeation rate Q was
was 2.87Kg/m 2 h. Examples 17-18, Comparative Example 2 Chitosan membrane with a degree of deacetylation of 98 mol% (thickness
17 μ) in ethanol/water (50/
50% by weight) mixture at 30°C for 13 hours to obtain a chitosan salt film. After drying the film for a fixed length at room temperature,
The same pervaporation apparatus as in Example 1 was installed, and pervaporation separation of an ethanol/water (90/10 weight ratio) mixed solution was carried out at 60°C and 0.3 mmHg. Further, as a comparative example, a non-ionized chitosan membrane that had been dried over a fixed length was used and the same operation was carried out. The membrane performance results are also shown in Table 2.
【表】
実施例 19〜24
脱アセチル化度98モル%のキトサン膜(厚さ15
〜20μ)を種々の濃度の硫酸を含んだエタノー
ル/水(50/50重量比)混合液に30℃で13時間浸
漬することにより第3表に示すようなイオン化度
の異なつた部分イオン化キトサン硫酸塩膜を調整
した。該膜を実施例1と同一の浸透気化装置に装
着しエタノール/水(50/50重量比)混合液の浸
透気化分離を60℃、0.3mmHgで行なつた。6時間
後の膜性能を第3表に示す。[Table] Examples 19 to 24 Chitosan membrane with a degree of deacetylation of 98 mol% (thickness 15
~20μ) in an ethanol/water (50/50 weight ratio) mixture containing various concentrations of sulfuric acid at 30°C for 13 hours to produce partially ionized chitosan sulfuric acid with different degrees of ionization as shown in Table 3. A salt film was prepared. The membrane was installed in the same pervaporation apparatus as in Example 1, and the pervaporation separation of an ethanol/water (50/50 weight ratio) mixture was carried out at 60° C. and 0.3 mmHg. The membrane performance after 6 hours is shown in Table 3.
【表】
* キトサンのアミノ基に対するモル%
実施例 25〜30
脱アセチル化度98モル%のキトサン膜(厚さ17
〜20μ)をキトサンのアミノ基に対して等モルの
硫酸を含有するエクタノール/水(50/50重量
比)混合液中に30℃、13時間浸漬し、キトサン硫
酸塩膜を得た。該膜を用い実施例1と同一の浸透
気化装置に装着し第4表に示すような各種濃度の
エタノール水溶液の浸透気化分離を60℃、0.3mm
Hgで行なつた。6時間後の膜性能を第4表に示
す。[Table] * Mol% of amino groups in chitosan
Examples 25-30 Chitosan membrane with a degree of deacetylation of 98 mol% (thickness 17
~20μ) was immersed at 30°C for 13 hours in a mixed solution of ectanol/water (50/50 weight ratio) containing equimolar sulfuric acid to the amino group of chitosan to obtain a chitosan sulfate film. Using this membrane, it was attached to the same pervaporation apparatus as in Example 1, and ethanol aqueous solutions of various concentrations as shown in Table 4 were permeabilized and separated at 60°C and 0.3 mm.
I did it with Hg. The membrane performance after 6 hours is shown in Table 4.
【表】
実施例 31〜32
水で膨潤した脱アセチル化度98モル%のキトサ
ン膜(厚さ17〜20μ)を第16表に示すような酸無
水物の10重量%のジオキサン溶液(酸無水物はキ
トサン塩のアミノ基に対し大過剰存在)200mlに
室温下18時間浸漬し、N―アシル化キトサン膜を
得た。該N−アシル化キトサン膜を1.5×
10-3mol/Kg濃度の硫酸を含有するエタノール/
水(50/50重量比)混合液に30℃、13時間浸漬
し、硫酸イオン化N―変性キトサン膜を得た。こ
のイオン化膜を実施例1と同一の浸透気化装置に
装着し、エタノール/水(50/50重量比)混合液
の浸透気化分離を60℃、0.3mmHgで行なつた。6
時間後の膜性能を第5表に示す。[Table] Examples 31 to 32 Chitosan membranes (thickness 17 to 20μ) with a degree of deacetylation of 98 mol% and swollen with water were mixed with dioxane solutions (acid anhydrides) containing 10% by weight of acid anhydrides as shown in Table 16. The material was immersed in 200 ml of chitosan salt (existing in large excess relative to the amino groups of the salt) at room temperature for 18 hours to obtain an N-acylated chitosan film. The N-acylated chitosan membrane was heated 1.5x
Ethanol containing sulfuric acid at a concentration of 10 -3 mol/Kg/
It was immersed in a water (50/50 weight ratio) mixture at 30°C for 13 hours to obtain a sulfuric acid ionized N-modified chitosan membrane. This ionization membrane was installed in the same pervaporation apparatus as in Example 1, and pervaporation separation of an ethanol/water (50/50 weight ratio) mixed solution was carried out at 60° C. and 0.3 mmHg. 6
The membrane performance after time is shown in Table 5.
【表】
比較例 3〜4
実施例31と同じN―変性キトサン膜をそのまま
実施例1と同一の浸透気化装置に装着しエタノー
ル/水(50/50重量比)混合液の浸透気化分離を
60℃、0.3mmHgで行なつた。6時間後の膜性能を
第6表に示す。[Table] Comparative Examples 3 to 4 The same N-modified chitosan membrane as in Example 31 was attached to the same pervaporation device as in Example 1, and the pervaporation separation of the ethanol/water (50/50 weight ratio) mixture was carried out.
The test was carried out at 60°C and 0.3mmHg. The membrane performance after 6 hours is shown in Table 6.
【表】
実施例 33〜43
東京化成製のキトサン(脱アセチル化度50モル
%)を常法により酢酸塩水溶液として、該水溶液
から乾式製膜し、製膜後中和することにより得ら
れた膜厚2〜30μのキトサン膜を実施例1と同じ
浸透気化装置に装着し、水/エタノール(50/50
重量比)混合液に第7表に示す各種の金属の硫酸
塩をその濃度が1×10-2mol/Kgとなるように溶
解させたものをそれぞれ温度60℃で供給し、1mm
Hgで浸透気化分離を行なつた。浸透気化を開始
して6時間後の分離係数と透過速度を測定した。
また6時間後に膜を浸透気化装置から取り外し、
膜中の金属イオン濃度を原子吸光法で定量した。
膜の外観と金属イオン濃度の測定結果を第7表に
示す。
比較例 5[Table] Examples 33 to 43 Chitosan manufactured by Tokyo Kasei (degree of deacetylation: 50 mol%) was made into an acetate aqueous solution by a conventional method, dry film was formed from the aqueous solution, and the film was neutralized after film formation. A chitosan membrane with a thickness of 2 to 30μ was attached to the same pervaporation device as in Example 1, and water/ethanol (50/50
Weight ratio) The sulfates of various metals shown in Table 7 were dissolved in the mixed solution at a concentration of 1 x 10 -2 mol/Kg, and each was supplied at a temperature of 60°C, and 1 mm
Pervaporative separation was performed with Hg. The separation coefficient and permeation rate were measured 6 hours after starting pervaporation.
After 6 hours, the membrane was removed from the pervaporation device.
The metal ion concentration in the film was determined by atomic absorption spectrometry.
Table 7 shows the appearance of the membrane and the measurement results of metal ion concentration. Comparative example 5
【表】
実施例33で用いたのと同一のキトサン膜を実施
例1と同一の浸透気化装置に装着し金属塩が添加
されていない水/エタノール(50/50重量比)混
合液を温度60℃で供給して実施例33と同様の操作
を行なつた。浸透気化を開始して6時間後の分離
係数αは9.67、透過速度は4.57Kg/m2hでであつ
た。
実施例 44〜47
実施例33で用いたのと同一のキトサン膜を実施
例1と同一の浸透気化装置に装着し、各種のマグ
ネシウム塩(試薬特級)を、第8表に示す金属イ
オン濃度となるように溶解した水/エタノール
(50/50重量比)混合液をそれぞれ60℃で供給し
て1mmHgで浸透気化を行なつた。浸透気化を開
始して6時間後の分離係数と透過速度を第8表に
示す。[Table] The same chitosan membrane used in Example 33 was attached to the same pervaporation device as in Example 1, and a water/ethanol (50/50 weight ratio) mixture without any metal salts was heated at a temperature of 60°C. The same operation as in Example 33 was carried out by supplying at ℃. Six hours after starting pervaporation, the separation coefficient α was 9.67, and the permeation rate was 4.57 Kg/m 2 h. Examples 44 to 47 The same chitosan membrane used in Example 33 was attached to the same pervaporation device as in Example 1, and various magnesium salts (reagent special grade) were added to the metal ion concentrations shown in Table 8. A mixed solution of water/ethanol (50/50 weight ratio) was supplied at 60° C. and pervaporation was performed at 1 mmHg. Table 8 shows the separation coefficient and permeation rate 6 hours after starting pervaporation.
【表】
実施例 48
実施例33で用いたのと同一のキトサン膜を硫酸
コバルト(試薬特級)を溶解せしめた水/エタノ
ール(50/50重量比)混合液中に13時間浸漬し
た。得られた膜はピンク色透明で、膜中にコバル
トイオンが9.8モル%(対キトサンN原子)存在
していることから得られた膜はキトサン―コバル
ト錯体膜である。
このキトサン−コバルト錯体膜を実施例1と同
一の浸透気化装置に装着し、水―エタノール
(50/50重量比)混合液を用い、60℃、1mmHgで
浸透気化を行なつた。浸透気化を開始して6時間
後の分離係数αと透過速度はそれぞれ73.3、2.30
Kg/m2hであつた。
実施例 49
脱アセチル化度99mol%のキトサン膜(膜厚
15μ)を装着した浸透気化装置(有効膜面積28.3
cm2)に硫酸コバルトが1.5×10-3mol/Kgを溶解さ
せた水/エタノール(50/50重量比)混合液を温
度60℃で供給し、常にエタノール濃度を50重量%
に維持しつつ、透過側を真空ポンプにて1mmHg
に吸引した。分離係数が844に達した後、混合液
のエタノール濃度を順次上げていつたときの各濃
度での分離係数、透過速度を第9表に示す。ま
た、エタノール濃度が81.7重量%のとき、混合液
の温度を40℃に下げたところ、分離係数は3010、
透過速度は0.12Kg/m2hを示した。[Table] Example 48 The same chitosan membrane used in Example 33 was immersed for 13 hours in a water/ethanol (50/50 weight ratio) mixed solution in which cobalt sulfate (special grade reagent) was dissolved. The obtained film is pink and transparent, and the film contains 9.8 mol % of cobalt ions (based on chitosan N atoms), so the obtained film is a chitosan-cobalt complex film. This chitosan-cobalt complex membrane was attached to the same pervaporation apparatus as in Example 1, and permeabilization was carried out at 60° C. and 1 mmHg using a water-ethanol (50/50 weight ratio) mixed solution. Separation coefficient α and permeation rate 6 hours after starting pervaporation are 73.3 and 2.30, respectively.
Kg/m 2 h. Example 49 Chitosan membrane with a degree of deacetylation of 99 mol% (film thickness
pervaporation device (effective membrane area 28.3
A water/ethanol (50/50 weight ratio) mixture in which 1.5 × 10 -3 mol/Kg of cobalt sulfate was dissolved in cm 2 ) was supplied at a temperature of 60°C, and the ethanol concentration was always 50% by weight.
1mmHg on the permeate side using a vacuum pump while maintaining
was aspirated. Table 9 shows the separation coefficient and permeation rate at each concentration when the ethanol concentration of the mixed solution was gradually increased after the separation coefficient reached 844. In addition, when the ethanol concentration was 81.7% by weight, when the temperature of the mixed liquid was lowered to 40℃, the separation coefficient was 3010,
The permeation rate was 0.12Kg/m 2 h.
【表】
実施例 50
実施例33で用いたのと同一のキトサン膜を実施
例1と、同一の浸透気化装置に装着し、60℃に加
熱された硫酸コバルトが1.0×10-2mol/Kgとなる
ように存在せしめた水/t―ブタノール(50/50
重量比)混合液を供給して60℃、0.3mmHgで浸透
気化分離を行つた。浸透気化を開始して6時間後
の分離係数αは671.2、透過速度は1.98Kg/m2hr
であつた。
実施例 51
実施例33で用いたのと同一のキトサン膜を実施
例1と同一の浸透気化装置に装着し硫酸コバルト
を1.0×10-2mol/Kgとなるように溶解せしめ、25
℃の水/アセトン(50/50重量比)混合液を供給
して1mmHgで浸透気化分離を行なつた。浸透気
化を開始して6時間後の分離係数はαは234.5、
透過速度は1.81Kg/m2hであつた。
実施例 52〜54
25%水酸化ナトリウム水溶液1Kg中に、セルロ
ース膜(U.C.C社製)、を24時間浸漬後、セルロ
ース膜をとり出し、膜に付着した過剰のアルカリ
を紙にてふきとり、アルカリセルロース膜を得
た。パラートルエンスルホン酸(トシル)クロリ
ド60gを溶解したベンゼン500g中にアルカリセ
ルロース膜を室温下、24時間浸漬し、トシル化セ
ルロース膜を得た。アミノ化反応に用いるアミン
が高沸点(>70℃)であれば、アミン20gを溶か
したジメチルホルムアミド200ml中に、トシル化
セルロース膜を窒素雰囲気下、70℃、48時間浸漬
し、アミノ化反応を行なう。アミンが低沸点であ
る場合(<70℃)、アミン水溶液とトシル化セル
ロース膜をオートクレーブ中に入れ、50〜70℃、
48時間アミノ化反応を行なう。
得られたアミノ化セルロース膜を3%水酸化ナ
トリウム水溶液200g中に浸漬し、70℃で2時間
未反応のトシル基を加水分解して、アミノ化セル
ロース膜を得た。
膜厚35μの該アミノ化セルロース膜を実施例1
と同一の浸透気化装置に装着し水/エタノール
(50/50重量比)混合液に硫酸コバルトが1.5×
10-3mol/Kgとなるように溶解させたものをそれ
ぞれ温度60℃で供給し、0.3mmHgで、浸透気化分
離を行なつた。浸透気化を開始して、6時間後の
膜性能を第10表に示す。浸透気化実験終了後、膜
を回収したところ、第10表に示した膜はすべて赤
かつ色に着色しており、Co2-錯体が生成してい
ることが確認された。[Table] Example 50 The same chitosan membrane used in Example 33 was attached to the same pervaporation device as in Example 1, and cobalt sulfate heated to 60°C was 1.0×10 -2 mol/Kg. Water/t-butanol (50/50
(weight ratio) mixed solution was supplied and pervaporative separation was performed at 60°C and 0.3 mmHg. Separation coefficient α 6 hours after starting pervaporation is 671.2, permeation rate is 1.98 Kg/m 2 hr
It was hot. Example 51 The same chitosan membrane used in Example 33 was attached to the same pervaporation device as in Example 1, and cobalt sulfate was dissolved at a concentration of 1.0×10 -2 mol/Kg.
A water/acetone (50/50 weight ratio) mixture at 1 mmHg was supplied to carry out pervaporative separation at 1 mmHg. The separation coefficient α 6 hours after starting pervaporation is 234.5.
The permeation rate was 1.81 Kg/m 2 h. Examples 52 to 54 After immersing a cellulose membrane (manufactured by UCC) in 1 kg of 25% sodium hydroxide aqueous solution for 24 hours, the cellulose membrane was taken out, excess alkali adhering to the membrane was wiped off with paper, and the alkali cellulose A membrane was obtained. An alkali cellulose membrane was immersed in 500 g of benzene in which 60 g of para-toluenesulfonic acid (tosyl) chloride was dissolved at room temperature for 24 hours to obtain a tosylated cellulose membrane. If the amine used in the amination reaction has a high boiling point (>70°C), the tosylated cellulose membrane is immersed in 200 ml of dimethylformamide in which 20 g of the amine is dissolved at 70°C for 48 hours in a nitrogen atmosphere to carry out the amination reaction. Let's do it. If the amine has a low boiling point (<70°C), place the amine aqueous solution and tosylated cellulose membrane in an autoclave and heat at 50-70°C.
Perform the amination reaction for 48 hours. The obtained aminated cellulose membrane was immersed in 200 g of a 3% aqueous sodium hydroxide solution, and unreacted tosyl groups were hydrolyzed at 70° C. for 2 hours to obtain an aminated cellulose membrane. Example 1 The aminated cellulose membrane with a thickness of 35μ
Cobalt sulfate was added 1.5× to the water/ethanol (50/50 weight ratio) mixture by attaching it to the same pervaporation device.
Each solution was dissolved at a concentration of 10 -3 mol/Kg and supplied at a temperature of 60°C, and pervaporative separation was performed at 0.3 mmHg. Table 10 shows the membrane performance 6 hours after starting pervaporation. When the membranes were collected after the pervaporation experiment, all of the membranes shown in Table 10 were colored red, confirming that Co 2 -complexes were produced.
【表】【table】
【表】
実施例 55〜59
アミノ化セルロース膜を、硫酸濃度1.5×
10-3mol/Kgのエタノール/水(50/50重量比)
混合液200g中に30℃で13時間浸漬し、イオン化
セルロース誘導体塩膜を得た。該膜を実施例1と
同一の浸透気化装置に装着し、水/エタノール
(50/50重量比)混合液体を60℃で供給し、0.3mm
Hgで、浸透気化分離を行なつた。浸透気化を開
始して6時間後の膜性能を第11表に示す。[Table] Examples 55 to 59 Aminated cellulose membranes were treated with a sulfuric acid concentration of 1.5×
10 -3 mol/Kg ethanol/water (50/50 weight ratio)
It was immersed in 200 g of the mixed solution at 30° C. for 13 hours to obtain an ionized cellulose derivative salt film. The membrane was attached to the same pervaporation device as in Example 1, and a water/ethanol (50/50 weight ratio) mixed liquid was supplied at 60°C to form a 0.3 mm
Pervaporative separation was performed with Hg. Table 11 shows the membrane performance 6 hours after starting pervaporation.
【表】
比較例 6〜10
アミノ化セルロース膜を全くイオン化すること
なく実施例55と同じ浸透気化分離を行なつた。結
果を第12表に示す。[Table] Comparative Examples 6 to 10 The same pervaporative separation as in Example 55 was carried out without ionizing the aminated cellulose membrane at all. The results are shown in Table 12.
Claims (1)
ン性基を有するグリコシド系骨格を主鎖にもつ高
分子から構成された浸透気化用液体分離膜。 2 該カチオン性基がアンモニウム基又は/及び
多価金属イオンに配位した窒素原子を有する基で
ある特許請求の範囲第1項記載の浸透気化用液体
分離膜。 3 該高分子がキトサン塩又はキトサン誘導体塩
である特許請求の範囲第1項又は第2項記載の浸
透気化用液体分離膜。 4 該高分子がカチオン性のセルロース誘導体塩
である特許請求の範囲第1項又は第2項記載の浸
透気化用液体分離膜。[Scope of Claims] 1. A liquid separation membrane for pervaporation comprising a polymer having a glycoside skeleton as a main chain having a cationic group forming a salt with a counter anion. 2. The liquid separation membrane for pervaporation according to claim 1, wherein the cationic group is an ammonium group or/and a group having a nitrogen atom coordinated to a polyvalent metal ion. 3. The liquid separation membrane for pervaporation according to claim 1 or 2, wherein the polymer is a chitosan salt or a chitosan derivative salt. 4. The liquid separation membrane for pervaporation according to claim 1 or 2, wherein the polymer is a cationic cellulose derivative salt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP44385 | 1985-01-08 | ||
JP60-443 | 1985-01-08 | ||
JP60-63429 | 1985-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS627403A JPS627403A (en) | 1987-01-14 |
JPH0366930B2 true JPH0366930B2 (en) | 1991-10-21 |
Family
ID=11473942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28544085A Granted JPS627403A (en) | 1985-01-08 | 1985-12-20 | Cationic polysaccharides type liquid separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS627403A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02135134A (en) * | 1988-11-16 | 1990-05-24 | Katokichi:Kk | Membrane for separating water-alcohol mixed liquid |
KR100313661B1 (en) * | 1999-10-13 | 2001-11-15 | 김충섭 | Polyion complex membranes for separation of organic mixtures, and preparation thereof |
KR101949882B1 (en) * | 2011-06-07 | 2019-04-22 | 임텍스 멤브레인스 코포레이션 | Replenising liquid material to membrane |
-
1985
- 1985-12-20 JP JP28544085A patent/JPS627403A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS627403A (en) | 1987-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4944881A (en) | Liquid separation membrane for pervaporation | |
KR0142678B1 (en) | Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same | |
US5160619A (en) | Composite reverse osmosis membrane and production thereof | |
EP1926544B1 (en) | Preparation method of polyamide thin film composite reverse osmosis membrane and polyamide thin film composite reverse osmosis membrane prepared therefrom | |
EP1707255B1 (en) | Composite polyamide reverse osmosis membrane and method of producing the same | |
Mochizuki et al. | Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. II. The permselectivity of chitosan membrane | |
JPS6322163B2 (en) | ||
JPH031056B2 (en) | ||
US6325218B1 (en) | Polyion complex separation membrane with a double structure | |
JP2682071B2 (en) | Cross-linked polyamide reverse osmosis membrane treatment method | |
JPH0366930B2 (en) | ||
WO1993022040A1 (en) | Separating membrane made from polyion complex | |
IT1311984B1 (en) | PROCEDURE FOR THE PREPARATION OF GABAPENTIN. | |
JPS63305904A (en) | Modifying method for sulfonic acid-type semi permeable membrane | |
JP2769608B2 (en) | Complex ion type separation membrane and method for producing the same | |
JPH0372336B2 (en) | ||
JPH0367731B2 (en) | ||
JPH0516291B2 (en) | ||
JPS63283704A (en) | Selective semipermeable membrane of polyimide | |
JPS61404A (en) | Separation of water-organic liquid mixture | |
JPH0559777B2 (en) | ||
Le Tran et al. | Separation performance of poly (vinyl alcohol) based nanofiltration membranes crosslinked by malic acid for salt solutions | |
JP2942787B2 (en) | Composite membrane and method for separating liquid mixture using the same | |
JP3101357B2 (en) | Separation membrane for pervaporation | |
JPH0547251B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |