JPH0367463B2 - - Google Patents

Info

Publication number
JPH0367463B2
JPH0367463B2 JP25829986A JP25829986A JPH0367463B2 JP H0367463 B2 JPH0367463 B2 JP H0367463B2 JP 25829986 A JP25829986 A JP 25829986A JP 25829986 A JP25829986 A JP 25829986A JP H0367463 B2 JPH0367463 B2 JP H0367463B2
Authority
JP
Japan
Prior art keywords
mold
slab
release agent
mold release
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25829986A
Other languages
Japanese (ja)
Other versions
JPS63115655A (en
Inventor
Tomoaki Kimura
Tadashi Nishino
Masaaki Kuga
Hirosuke Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kawasaki Steel Corp filed Critical Hitachi Ltd
Priority to JP25829986A priority Critical patent/JPS63115655A/en
Publication of JPS63115655A publication Critical patent/JPS63115655A/en
Publication of JPH0367463B2 publication Critical patent/JPH0367463B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0665Accessories therefor for treating the casting surfaces, e.g. calibrating, cleaning, dressing, preheating
    • B22D11/0668Accessories therefor for treating the casting surfaces, e.g. calibrating, cleaning, dressing, preheating for dressing, coating or lubricating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連鋳機により鋳片を熱間圧延で減厚圧
延可の高温鋳片製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a high-temperature slab in which the slab can be hot-rolled to reduce its thickness using a continuous casting machine.

〔従来技術〕[Prior art]

鋳片の熱間圧延で減厚圧延する連鋳機として
は、特開昭60−18201号公報によつて開示された
ように、連続機の断熱帯からカツタ出口に至る間
の適宜の位置にスラブ端部の加熱装置を設けて投
入熱量を削減できるようにしたものが知られてい
る。また特開昭60−54247号公報によつて開示さ
れたようにツインベルトを使用して撓みを防止す
るもの、及び特開昭60−83747号公報をよつて開
示されたように2個のドラムを用いてロールギヤ
ツプの距離を調整して板厚を均一にするものな
ど、回転する鋳型を使用して高速化を図り高温の
鋳片を製造して、これを再加熱しないで直接圧延
するものが知られている。
As a continuous casting machine for hot rolling slabs to reduce their thickness, as disclosed in Japanese Patent Application Laid-Open No. 18201/1983, a continuous casting machine is installed at an appropriate position between the insulation zone of the continuous machine and the cutter outlet. It is known that a heating device is provided at the end of the slab to reduce the amount of heat input. Also, as disclosed in JP-A No. 60-54247, twin belts are used to prevent deflection, and as disclosed in JP-A-60-83747, two drums are used. There are methods that use rotating molds to produce high-temperature slabs and roll them directly without reheating. Are known.

このような回転する鋳型を使用する鋳造機では
高速化が可能なので、一般に高温鋳片を製造する
上で有利である。一方板材用の鋳片を得るときの
最小鍛冶比は通常3乃至4であるが、鋳片の板厚
はこの鍛冶比を考慮して最小の板厚となるように
鋳造される。
Casting machines using such rotating molds can operate at high speeds and are generally advantageous in producing high-temperature slabs. On the other hand, the minimum forging ratio when obtaining a slab for plate material is usually 3 to 4, and the slab is cast to have the minimum thickness in consideration of this forging ratio.

このような連鋳機において、鋳型の冷却区間長
は最大鋳造速度で設計されており、従つてこのよ
うな高速鋳造において最も高温な鋳片が製造でき
る。
In such a continuous casting machine, the length of the cooling section of the mold is designed for the maximum casting speed, so that the hottest slab can be produced in such high-speed casting.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら実際の連鋳作業において鋳造開始
及び終了時は勿論、次工程での各種操業状況によ
り屡々鋳造速度を低下させる必要が発生する場合
がある。従つて鋳造区間長は一定であるからこの
ような場合には必然的に鋳片温度が低下するとい
う問題があつた。
However, in actual continuous casting operations, it is often necessary to reduce the casting speed not only at the start and end of casting but also due to various operating conditions in the next process. Therefore, since the length of the casting section is constant, there is a problem that the temperature of the slab inevitably decreases in such a case.

本発明は上記事情報に鑑みてなされたものであ
り、鋳造速度が低下した場合にも鋳型出側の鋳片
の温度が高温を維持することのできる高温鋳片鋳
造法を提供することを目的とする。
The present invention has been made in view of the above information, and an object of the present invention is to provide a high-temperature slab casting method that can maintain the temperature of the slab on the exit side of the mold at a high temperature even when the casting speed decreases. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成するために、鋳型の
壁面と、この壁面で冷却造形される鋳片の凝固殻
面との間に形成される離型剤層の厚みを、鋳造速
度にほぼ反比例して増減させるようにしたもので
ある。
In order to achieve the above object, the present invention aims to increase the thickness of the mold release agent layer formed between the wall surface of the mold and the solidified shell surface of the slab that is cooled and shaped on this wall surface in approximately inverse proportion to the casting speed. It is designed to increase or decrease the amount.

〔作用〕[Effect]

上記の方法によると、離型剤の厚みが大である
と熱移動に対する熱抵抗が大きくなり、鋳片は冷
却されにくくなる。この離型剤の厚みを調整する
ことによに常時高温の鋳片を得ることができる。
According to the above method, if the thickness of the mold release agent is large, the thermal resistance to heat transfer becomes large, making it difficult for the slab to be cooled. By adjusting the thickness of this mold release agent, a slab that is constantly hot can be obtained.

〔実施例〕〔Example〕

以下、本発明に係る高温鋳片製造法の一実施例
を図面を参照して説明する。
EMBODIMENT OF THE INVENTION Hereinafter, one Example of the high temperature slab manufacturing method based on this invention is demonstrated with reference to drawings.

第1図に本実施例に使用する連鋳機の一例を示
す。この連鋳機は双ベルト式であり、鋳型は矢印
A方向に移動する1対のベルト1a,1bと、上
部に設けられた1対のサイドダム2a,2bとに
より構成されている。この鋳型の上部はノズル3
の挿入を容易にするようにR型4に拡げられてい
る。前記1対のベルト1a,1bの背面にはそれ
ぞれパツド5a,5bが設けられており、これら
のパツド5a,5bには多数のヘツダ管6が配設
され、これらのヘツダ管6にはベルト1a,1b
の背面に開口されたノズル7が設けられている。
そしてノズル7よりヘツダ管7を介して高圧の冷
却水がベルト1a,1bの背面に噴出されように
なつている。この冷却水がパツド5a,5bとボ
ルト1a,1bの間の面に流れ、ベルト1a,1
bを冷却するとともに流体抵抗圧により、ベルト
1a,1bが浮上するように水膜8が形成されて
いる。ベルト1a,1bはそれぞれ3個のベルト
ガイドローラ9a,10a,11a及び9b,1
0b,11bによつて回転自在に支持され、かつ
張力が付与され矢印A方向に回転駆動されてい
る。また前記鋳型の上部開孔部には溶湯12が入
つたタンデツシユ13が設けられており、このタ
ンデツシユ13の下部に設けられた前記ノズル3
を介して鋳型に注湯して一定湯面14を形成する
ようになつている。鋳型の下部には鋳片15を曲
げるベンデイングローラ16と、さらに鋳片15
を曲げ直す矯正ローラ17が設けられている。ベ
ルト1a,1bの上方には、これらのベルト1
a,1bに離型剤18を塗布するためのヘツダ管
19a,19bが設けられている。ヘツダ管19
aにはノズル20と導管21が取付けられてお
り、この導管21には可変吐出ポンプ22が接続
されている。ヘツダ管19bについても図示して
いなが同様にノズル20、導管21及びポンプ2
2が設けられている。23の可変吐出ポンプ22
を制御する制御盤である。
FIG. 1 shows an example of a continuous casting machine used in this example. This continuous casting machine is of a twin-belt type, and the mold is composed of a pair of belts 1a, 1b that move in the direction of arrow A, and a pair of side dams 2a, 2b provided at the top. The top of this mold is nozzle 3
It is widened into an R-shape 4 to facilitate insertion. Pads 5a and 5b are provided on the back surfaces of the pair of belts 1a and 1b, respectively, and a large number of header pipes 6 are disposed in these pads 5a and 5b. ,1b
A nozzle 7 that is open on the back side is provided.
High-pressure cooling water is spouted from the nozzle 7 through the header pipe 7 onto the back surfaces of the belts 1a and 1b. This cooling water flows to the surface between the pads 5a, 5b and the bolts 1a, 1b, and the belts 1a, 1
A water film 8 is formed so that the belts 1a and 1b float due to the fluid resistance pressure while cooling the belts 1a and 1b. The belts 1a, 1b each have three belt guide rollers 9a, 10a, 11a and 9b, 1
It is rotatably supported by 0b and 11b, and is rotationally driven in the direction of arrow A with tension applied thereto. Further, a tundish 13 containing molten metal 12 is provided in the upper opening of the mold, and the nozzle 3 provided in the lower part of this tundish 13
The molten metal is poured into the mold through the molten metal to form a constant molten metal level 14. At the bottom of the mold, there is a bending roller 16 for bending the slab 15, and a bending roller 16 for bending the slab 15.
A straightening roller 17 is provided to re-bend. Above the belts 1a and 1b, these belts 1
Header pipes 19a and 19b are provided for applying mold release agent 18 to a and 1b. Header pipe 19
A nozzle 20 and a conduit 21 are attached to the conduit 21, and a variable discharge pump 22 is connected to the conduit 21. The header pipe 19b is also not shown, but the nozzle 20, the conduit 21 and the pump 2
2 is provided. 23 variable discharge pump 22
This is the control panel that controls the

次に上述した連鋳機を用いて行う本実施例によ
る製造法を説明す弊。ベルト1a,1bの矢印A
方向への移動に従い鋳片15は下降し、最大鋳造
速度でベルトガイドローラ11の位置に到達した
ときに、鋳片15の内部中心まで溶湯12が固化
する。もしガイドローラ11以降でも鋳片15の
内部中心に固化していないと、鋳片15の内部に
大きな溶鋼静圧が作用しているから、鋳片15が
この静圧よりバルジングするので、上記のように
設計されている。従つて最大速度で最も高温の鋳
片15が得られる。鋳造以降の鋳片15はベンデ
イングローラ16で曲げられ、矯正ローラ17で
曲げ直され、次工程の図示しない圧延機によつて
所定の製品厚みに圧延される。
Next, we will explain the manufacturing method according to this embodiment using the above-mentioned continuous casting machine. Arrow A on belts 1a and 1b
As the slab 15 moves in the direction, the slab 15 descends, and when it reaches the position of the belt guide roller 11 at the maximum casting speed, the molten metal 12 solidifies to the center inside the slab 15. If the molten steel is not solidified at the center of the inside of the slab 15 even after the guide roller 11, a large static pressure is acting on the inside of the slab 15, and the slab 15 will bulge due to this static pressure. It is designed to. Therefore, the hottest slab 15 is obtained at the maximum speed. The slab 15 after casting is bent by bending rollers 16, re-bent by straightening rollers 17, and then rolled to a predetermined product thickness by a rolling mill (not shown) in the next step.

このような連鋳機において、ベルト1が溶湯1
2に接触する前に離型剤18を塗布する。この離
型剤18としては菜種油、シリコン油または炭素
系の煤などを用い、この離型剤18をN2、Arガ
スと混合し、かつ霧化した状態でヘツダ管19か
らノズル20を介しポンプ22の圧力によりベル
ト1に吹きつけて離型剤層24を形成する。この
離型剤層24の厚みは制御盤23の指令に基づき
可変吐出ポンプ22を調整して離型剤量を制御す
ることにより調整する。
In such a continuous casting machine, the belt 1 carries the molten metal 1.
A mold release agent 18 is applied before contacting the mold. Rapeseed oil, silicone oil, carbon-based soot, or the like is used as the mold release agent 18. The mold release agent 18 is mixed with N 2 and Ar gas, and the atomized state is pumped from the header pipe 19 through the nozzle 20. The mold release agent layer 24 is formed by spraying onto the belt 1 with a pressure of 22. The thickness of the mold release agent layer 24 is adjusted by adjusting the variable discharge pump 22 based on commands from the control panel 23 to control the amount of mold release agent.

次に本実施例の作用を説明する。鋳型壁面と鋳
片15の凝固殻面間に介在させる離型剤18のう
ち、特に油類のものは一般に鋳片15の高温作用
により微細な粒子に分解され、鋳型壁面に付着し
ている。従つて当初に塗布して離型剤の厚みに相
当した空気膜が鋳型壁面と凝固殻面との間に存在
することになり、熱抵抗が生じる。また溶融パウ
ダはSiO2、CaO3、Al2O3などが主成分であるた
め、それ自体が熱抵抗大であり熱移動を抑制す
る。
Next, the operation of this embodiment will be explained. Among the mold release agents 18 interposed between the mold wall surface and the solidified shell surface of the slab 15, especially oil-based agents are generally decomposed into fine particles by the high temperature action of the slab 15 and adhered to the mold wall surface. Therefore, an air film corresponding to the thickness of the initially applied mold release agent is present between the mold wall surface and the solidified shell surface, resulting in thermal resistance. Furthermore, since the molten powder is mainly composed of SiO 2 , CaO 3 , Al 2 O 3 and the like, it itself has high thermal resistance and suppresses heat transfer.

離型剤の厚みをs、空気膜あるいはパウダの熱
伝導率をλとすれば、熱移動係数はK=λ/sと
なる。空気膜が形成される離型剤では、 λ=0.03Kcal/mhr℃であるから、離型剤の厚
みを10μm程度にとれば、 K=3000Kcal/m2hr℃となる。
If the thickness of the mold release agent is s, and the thermal conductivity of the air film or powder is λ, then the heat transfer coefficient is K=λ/s. For a mold release agent that forms an air film, λ = 0.03 Kcal/mhr°C, so if the thickness of the mold release agent is set to about 10 μm, K = 3000 Kcal/m 2 hr°C.

パウダでは概略λ=0.1Kcal/mhr℃であるか
ら、この厚みを33μmにすれば、 K=3000Kcal/m2hr℃となる。
For powder, λ = approximately 0.1 Kcal/mhr°C, so if this thickness is set to 33 μm, K = 3000 Kcal/m 2 hr°C.

すなわち、熱移動係数Kは離型剤厚みに比例し
て変化する。一方鋳型での鋳片凝固区間Lは一定
であるから、鋳造速度vに反比例して鋳型内での
冷却時間tが決まる。すなわちt=L/vとな
る。冷却時間tが長いとそれだけ鋳片は冷えるの
で、この場合は熱移動係数Kを小さくする。すな
わち、離型剤厚みsを大きくすればよいことがわ
かる。以上の理由により、一定の冷却長を有する
鋳型内での凝固熱の冷却を、最高速度での鋳造を
基準にして、これにより速度が遅くなるに従い離
型剤の厚みを大の方向に調整してゆき、鋳型内の
鋳片が冷えすぎないようにし、常時高温の鋳片を
製造することを可能にするものである。
That is, the heat transfer coefficient K changes in proportion to the thickness of the mold release agent. On the other hand, since the slab solidification interval L in the mold is constant, the cooling time t in the mold is determined in inverse proportion to the casting speed v. That is, t=L/v. The longer the cooling time t, the colder the slab becomes, so in this case, the heat transfer coefficient K is made smaller. In other words, it can be seen that it is sufficient to increase the thickness s of the mold release agent. For the above reasons, cooling of solidification heat in a mold with a fixed cooling length is based on casting at the highest speed, and as the speed becomes slower, the thickness of the mold release agent is adjusted to increase. This prevents the slab in the mold from getting too cold, making it possible to produce slabs that are constantly hot.

例えば第1図に示す連鋳機では、鋳造される鋳
片15の厚みは20乃至50mm、板幅は700乃至1600
mmであり、鋳造速度の最大は10乃至20m/minの
ものが一般的である。そして鋳型冷却長は3000乃
至4000mmとなつている。このように高速では鋳造
する場合の鋳片温度は、鋼材を鋳込む場合最大鋳
造速度時において鋳型出側で1150℃程度である。
従来の製造法では鋳造速度が最大時に対して50%
低下すると、鋳片温度は約200℃低下したが、本
実施例により離型剤層24の厚さを調整すると最
大速度時とほぼ同等の鋳片温度が得られ、再加熱
する必要がない。すなわち熱間圧延に必要な温度
は圧延機入側で1000℃であり、第1図に示すよう
な鋳型出側で1150℃の鋳片温度が圧延機入側まで
に至る間に冷える分を150℃も見込めるので、再
加熱することなく直接圧延することが可能であ
る。
For example, in the continuous casting machine shown in Fig. 1, the thickness of the slab 15 to be cast is 20 to 50 mm, and the plate width is 700 to 1600 mm.
mm, and the maximum casting speed is generally 10 to 20 m/min. The mold cooling length is 3000 to 4000 mm. When casting at such high speeds, the temperature of the slab at the exit side of the mold is approximately 1150°C at the maximum casting speed when casting steel materials.
With conventional manufacturing methods, the casting speed is 50% of the maximum
When the speed decreased, the slab temperature decreased by about 200°C, but by adjusting the thickness of the mold release agent layer 24 according to this example, the slab temperature was almost the same as that at the maximum speed, and there was no need to reheat it. In other words, the temperature required for hot rolling is 1000℃ at the entrance of the rolling mill, and the temperature required for hot rolling is 150℃, which is the temperature of the slab that is 1150℃ at the mold exit as shown in Figure 1. ℃, so it is possible to roll directly without reheating.

第2図にロールコータ方式で離型剤を塗布する
第2の実施例を示す。この方式はタンク25内に
入つている離型剤18を矢印B方向に回転する1
対のコータロール26,27を介してベルト1a
の上面に塗布して離型剤層24を形成する方式で
ある。この場合はコータロール26,27の回転
速度の調整により離型剤層24の厚みを調整す
る。
FIG. 2 shows a second embodiment in which a mold release agent is applied using a roll coater method. In this method, the mold release agent 18 contained in the tank 25 is rotated in the direction of arrow B.
Belt 1a is passed through a pair of coater rolls 26 and 27.
In this method, a mold release agent layer 24 is formed by coating the upper surface of the mold release agent layer 24. In this case, the thickness of the mold release agent layer 24 is adjusted by adjusting the rotational speed of the coater rolls 26 and 27.

上述した各実施例は双ベルト方式の連鋳機を使
用した場合について説明したが、特開昭60−
83747号公報によつて示されたような双ドラム方
式の連鋳機を使用する場合にも適用でき、同等の
効果を有する。この場合にはドラム表面に形成さ
れる離型剤層の厚みを離型速度の大小によつて調
整すればよい。また固定鋳型の場合には供給する
離型剤パウダ量を調整する。しかしながら固定鋳
型方式の場合は、鋳造される鋳片の厚さが比較的
厚く、鋳型を出た後の鋳片をスプレー冷却によつ
て冷却することが主体であるので、離型剤層の厚
み調整によつて保持温度を制御する効果は少な
い。
Each of the above-mentioned embodiments has been explained using a twin-belt type continuous casting machine.
It can also be applied when using a twin-drum type continuous casting machine as shown in Publication No. 83747, and has the same effect. In this case, the thickness of the mold release agent layer formed on the drum surface may be adjusted by adjusting the mold release speed. In addition, in the case of a fixed mold, the amount of mold release agent powder to be supplied is adjusted. However, in the case of the fixed mold method, the thickness of the slab to be cast is relatively thick, and since the slab is mainly cooled by spray cooling after leaving the mold, the thickness of the mold release agent layer is Controlling the holding temperature by adjustment has little effect.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、連鋳機で高温
鋳片を製造するときに、鋳造速度にほぼ反比例し
て離型剤層の厚みを調整するようにしたので、鋳
造速度が低下しても鋳型出側の鋳片の温度を高温
に維持することができる。
As described above, according to the present invention, when producing high-temperature slabs using a continuous casting machine, the thickness of the release agent layer is adjusted in almost inverse proportion to the casting speed, so that the casting speed is reduced. Also, the temperature of the slab on the exit side of the mold can be maintained at a high temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る高温鋳片製造法の一実施
例を示す断面図、第2図は本発明の他の実施例を
示す断面図であ幣。 1a,1b……ベルト、2a,2b……サイド
ダム、12……溶湯、15……鋳片、18……離
型剤、24……離形剤層。
FIG. 1 is a cross-sectional view showing one embodiment of the high-temperature slab manufacturing method according to the present invention, and FIG. 2 is a cross-sectional view showing another embodiment of the present invention. 1a, 1b... Belt, 2a, 2b... Side dam, 12... Molten metal, 15... Slab, 18... Mold release agent, 24... Mold release agent layer.

Claims (1)

【特許請求の範囲】 1 連続的に注湯される溶湯を移動式に鋳型で冷
却して連続した鋳片を製造する連鋳機における高
温鋳片製造法において、 前記鋳型の壁面と、この壁面で冷却造形される
鋳片の凝固殻面との間に形成される離型剤層の厚
みを、鋳造速度にほぼ反比例して増減させること
を特徴とする高温鋳片製造法。 2 特許請求の範囲第1項において、鋳型は回転
式であり、離型剤は鋳型が溶湯の湯面と接触する
直前に塗布されることを特徴とする高温鋳片製造
法。
[Scope of Claims] 1. A high-temperature slab manufacturing method using a continuous casting machine, in which continuously poured molten metal is cooled in a movable mold to produce continuous slabs, comprising: a wall surface of the mold; A method for producing a high-temperature slab characterized by increasing or decreasing the thickness of a release agent layer formed between the solidified shell surface of the slab that is cooled and shaped in approximately inverse proportion to the casting speed. 2. The method for producing a high-temperature slab according to claim 1, wherein the mold is of a rotating type, and the mold release agent is applied immediately before the mold comes into contact with the surface of the molten metal.
JP25829986A 1986-10-31 1986-10-31 Production of cast slab with high temperature Granted JPS63115655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25829986A JPS63115655A (en) 1986-10-31 1986-10-31 Production of cast slab with high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25829986A JPS63115655A (en) 1986-10-31 1986-10-31 Production of cast slab with high temperature

Publications (2)

Publication Number Publication Date
JPS63115655A JPS63115655A (en) 1988-05-20
JPH0367463B2 true JPH0367463B2 (en) 1991-10-23

Family

ID=17318327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25829986A Granted JPS63115655A (en) 1986-10-31 1986-10-31 Production of cast slab with high temperature

Country Status (1)

Country Link
JP (1) JPS63115655A (en)

Also Published As

Publication number Publication date
JPS63115655A (en) 1988-05-20

Similar Documents

Publication Publication Date Title
US4951734A (en) Process for the production of a steel strip
US5303766A (en) Apparatus and method for the manufacture of hot-rolled steel
US20020029865A1 (en) Method of and apparatus for continuous casting of steel strip
KR100304759B1 (en) Continuous casting equipment operation method
WO2022057925A1 (en) Improving surface quality of twin roll cast and hot rolled thin strip steel
WO1996001710A1 (en) Method of casting and rolling steel using twin-roll caster
CA1296505C (en) Continuous casting of thin metal strip
CA3006862C (en) Method and apparatus for near net shape casting (nnsc) of metals and alloys
US4582114A (en) Continuous casting apparatus for the production of cast sheets
JP2003512934A (en) Manufacture of thin steel strip
JP2003531009A (en) Method and apparatus for continuously casting metal
US6209620B1 (en) Method and apparatus for producing coated hot-rolled and cold-rolled strip
JPH0367463B2 (en)
WO1996001708A1 (en) Twin-roll caster and rolling mill for use therewith
WO2000050189A1 (en) In-line continuous cast-rolling process for thin slabs
JP3423818B2 (en) Method for producing austenitic stainless steel sheet slab
JPS5841656A (en) Continuous casting device for thin sheet
JPH10249408A (en) Manufacture device for stainless steel sheet
US6161608A (en) Method and apparatus for producing coated slabs of metal, particularly strips of steel
JPH09141408A (en) Secondary cooling method in continuous casting
JPH11221651A (en) Method for making forged product subjected to coating and apparatus therefor
JPS6216722B2 (en)
JPS61189850A (en) Continuous casting method of steel slab
JPH02290651A (en) Method and apparatus for continuously casting cast strip
JPH0359762B2 (en)