JPH0367341B2 - - Google Patents

Info

Publication number
JPH0367341B2
JPH0367341B2 JP60053848A JP5384885A JPH0367341B2 JP H0367341 B2 JPH0367341 B2 JP H0367341B2 JP 60053848 A JP60053848 A JP 60053848A JP 5384885 A JP5384885 A JP 5384885A JP H0367341 B2 JPH0367341 B2 JP H0367341B2
Authority
JP
Japan
Prior art keywords
power supply
supply line
block
line
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60053848A
Other languages
Japanese (ja)
Other versions
JPS61212039A (en
Inventor
Toshihiro Okabe
Akira Yamagiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60053848A priority Critical patent/JPS61212039A/en
Publication of JPS61212039A publication Critical patent/JPS61212039A/en
Publication of JPH0367341B2 publication Critical patent/JPH0367341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体集積回路の配線方式に係り、
特に半導体集積回路において給電配線領域を低減
させるのに好適な半導体集積回路の配線方式に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a wiring method for a semiconductor integrated circuit,
In particular, the present invention relates to a semiconductor integrated circuit wiring system suitable for reducing the power supply wiring area in a semiconductor integrated circuit.

〔発明の背景〕[Background of the invention]

従来の半導体集積回路の配線方式について、第
3図乃至第5図により、4種類のタイミング信号
を1種類当り4個のインバータセルを用いて分配
する論理の例で説明する。
A conventional wiring system for a semiconductor integrated circuit will be explained with reference to FIGS. 3 to 5, using an example of logic in which four types of timing signals are distributed using four inverter cells for each type.

第3図において、1は入力信号11の反転信号
を出力信号12として出力する論理セルである。
出力信号12が立上がるとき、高電位レベルの給
電線13より電流iHが流れる。また出力信号1
2が立下がるとき、低電位レベルの給電線14に
対し電流iLが流れる。
In FIG. 3, 1 is a logic cell that outputs an inverted signal of an input signal 11 as an output signal 12. In FIG.
When the output signal 12 rises, a current iH flows from the power supply line 13 at a high potential level. Also output signal 1
2 falls, a current iL flows to the power supply line 14 at a low potential level.

第4図において、2は前記論理セル1を4個集
積したブロツクである。入力信号21は4個の論
理セル1に共通に入力されている。したがつて、
論理セル1の出力信号22は全て同一波形とな
り、このとき給電線23に流れる電流iBは、1
個の論理セルに流れる電流の4倍になる。なお、
第4図では低電位側の給電線は省略されている。
In FIG. 4, 2 is a block in which four logic cells 1 are integrated. The input signal 21 is commonly input to the four logic cells 1. Therefore,
The output signals 22 of the logic cell 1 all have the same waveform, and the current iB flowing through the power supply line 23 at this time is 1
This is four times the current flowing through each logic cell. In addition,
In FIG. 4, the power supply line on the low potential side is omitted.

第5図は、前記ブロツク2を4個チツプ上に配
置した集積回路3を示す。
FIG. 5 shows an integrated circuit 3 in which four blocks 2 are arranged on a chip.

各ブロツク2にはそれぞれ入力信号31が入力
されており、2個のブロツク2に給電線33がそ
れぞれ接続されている。給電線33は、チツプの
給電端子34に接続されている。いま、入力信号
線31にそれぞれ異なつた時刻に変化する信号
IN1,IN2,IN4を入力すると、給電線33に
流れる電流ic1,ic2は、1個の論理セル1の時
に流れる電流の4倍の電流が2回にわたつて流れ
ることになる。なお、低電位側の給電線は省略さ
れている。
An input signal 31 is input to each block 2, and a power supply line 33 is connected to each of the two blocks 2. The power supply line 33 is connected to a power supply terminal 34 of the chip. Now, there are signals on the input signal line 31 that change at different times.
When IN1, IN2, and IN4 are input, currents ic1 and ic2 flowing through the power supply line 33, which are four times the current flowing when one logic cell 1 flows, flow twice. Note that the power supply line on the low potential side is omitted.

かかる論理セルはタイミング信号の分配に使用
されている。該タイミング信号は、順序回路に
は、必要不可欠のものであり、チツプ内の多数の
フリツプフロツプ等の記憶セルに使用される。し
たがつて、タイミング分配用の論理セルは高駆動
能力のセルが使用される。このため1つのタイミ
ング分配用セルに流れる電流は、他の一般的な論
理セルに対し、数倍〜数10倍の電流が流れ、これ
に耐えられる電源線幅を確保しなければならない
ことになる。この結果、限られたチツプ面積に占
める給電線の面積が多大となり、通常信号線の配
線等を困難にし、最終的にはチツプサイズを拡大
しなければならないということにもなりかねない
ものであつた。
Such logic cells are used for timing signal distribution. The timing signal is indispensable for sequential circuits and is used for many memory cells such as flip-flops within a chip. Therefore, a high driving capacity cell is used as the logic cell for timing distribution. For this reason, the current flowing through one timing distribution cell is several to several tens of times higher than that of other general logic cells, and it is necessary to ensure a power line width that can withstand this current. . As a result, the area occupied by the feeder lines in the limited chip area becomes large, making wiring of normal signal lines difficult, and ultimately leading to the need to increase the chip size. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、給電のために必要な配線の面
積を最小限のものとし、チツプサイズを極力小さ
くし得る半導体集積回路の配線方式を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wiring system for a semiconductor integrated circuit that can minimize the area of wiring required for power supply and minimize the chip size.

〔発明の概要〕[Summary of the invention]

本発明の半導体集積回路の配線方式は、セルの
出力信号が変化する瞬間のみ電流が流れるという
半導体素子、例えばCMOSの特性と、複数のタ
イミングに同期して動作する論理回路では、同一
時刻に出力信号が変化するセル数は、タイミング
の相数に反比例することに着目し、同一の給電線
に接続する同一時刻に変化するセル数を限定する
ことにより給電線幅を最少幅とすることを可能に
したものである。
The wiring method of the semiconductor integrated circuit of the present invention is based on the characteristics of semiconductor devices, such as CMOS, in which current flows only at the moment when the output signal of the cell changes, and in logic circuits that operate in synchronization with multiple timings, outputs are output at the same time. Focusing on the fact that the number of cells whose signal changes is inversely proportional to the number of timing phases, it is possible to minimize the feed line width by limiting the number of cells connected to the same feed line that change at the same time. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図及び第2図に
より説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第2図は、タイミング分配用の高駆動能力セル
(以下、セルという。)41を4個実装したブロツ
ク4を示す。
FIG. 2 shows a block 4 in which four high driving capacity cells (hereinafter referred to as cells) 41 for timing distribution are mounted.

4個のセル41には、それぞれ信号線42が入
力されており、セル41の出力は、信号線43に
よりフリツプフロツプ(図示せず)等の入力とし
て分配される。セル41への給電は、給電線44
より行われる。なお、低電位側の給電線は省略し
てある。
A signal line 42 is input to each of the four cells 41, and the output of the cell 41 is distributed via a signal line 43 as an input to a flip-flop (not shown) or the like. Power is supplied to the cell 41 through a power supply line 44
It is done more. Note that the power supply line on the low potential side is omitted.

いま、入力信号線42にそれぞれ信号IN1,
IN2,IN3,IN4を位相をずらして入力したと
すると、出力信号線43にそれぞれOUT1,
OUT2,OUT3,OUT4の信号が出力される。
この時、給電線441〜444に流れる電流は、
iB1〜iB4のようになり、したがつて給電線4
4にはiBに示すようにある時刻では1つのセル
41に流れる電流量しか流れないことになる。
Now, signals IN1 and IN1 are connected to the input signal line 42, respectively.
If IN2, IN3, and IN4 are input with different phases, OUT1 and IN4 are input to the output signal line 43, respectively.
OUT2, OUT3, and OUT4 signals are output.
At this time, the current flowing through the power supply lines 441 to 444 is
iB1 to iB4, so feeder line 4
4, as shown in iB, only the amount of current flows through one cell 41 at a certain time.

第1図は、前記ブロツク4を、4個配置した集
積回路5を示すものである。各ブロツク4にはそ
れぞれ入力信号線51が4本ずつ入力されてお
り、給電は2個のブロツク4に対し同一の給電線
52により行われる。給電線52は、チツプの給
電端子53に接続されている。入力信号は、第2
図で示したのと同じく、IN1,IN2,IN3,
IN4である。したがつて1つのブロツク4に着
目すると、該ブロツク内で出力波形が変化してい
るセル、即ち電流が流れているセルは唯一であ
り、給電線521〜524にはセル41の1個分
の電流が流れるのみである。ゆえに、給電線52
にはic1,ic2に示すように、ある時刻ではセル
41は2個分の電流が流れるだけである。
FIG. 1 shows an integrated circuit 5 in which four blocks 4 are arranged. Four input signal lines 51 are input to each block 4, and power is supplied to the two blocks 4 through the same power supply line 52. The power supply line 52 is connected to a power supply terminal 53 of the chip. The input signal is the second
As shown in the figure, IN1, IN2, IN3,
It is IN4. Therefore, if we focus on one block 4, there is only one cell in the block whose output waveform is changing, that is, a cell through which current is flowing, and the power supply lines 521 to 524 have a cell corresponding to one cell 41. Only current flows. Therefore, the feeder line 52
As shown in ic1 and ic2, only two currents flow through the cell 41 at a certain time.

以上の構成を、前記従来例と比較すると、ブロ
ツク4内の給電線44および各ブロツク4への給
電線521〜524は、流れる電流量が4/1につ
き給電線幅も4/1となり、給電線52は同様に2/1
の給電線幅で良いことになる。
Comparing the above configuration with the conventional example, the amount of current flowing in the power feed line 44 in block 4 and the power feed lines 521 to 524 to each block 4 is 4/1, and the width of the feed line is also 4/1. Similarly, the wire 52 is 2/1
It would be good to have a feed line width of .

以上のように、第1図及び第2図の実施例では
ブロツク単位に同時刻に切替るセル数を1個に制
限したため、ブロツク内の電源線幅は、セル1個
に流れる電流に耐えられる給電線幅を確保すれば
良く、チツプの給電端子に接続する給電線幅も、
セル2個分の電流に耐えられる給電線幅で良いこ
とになり、従来にくらべ給電に必要とする給電線
が占める面積の割合を格段に減少させることがで
きる。
As described above, in the embodiments shown in FIGS. 1 and 2, the number of cells that can be switched at the same time in each block is limited to one, so the width of the power supply line within the block can withstand the current flowing through one cell. All you need to do is ensure the width of the power supply line, and the width of the power supply line connected to the power supply terminal of the chip is also
The width of the feeder line is sufficient to withstand the current of two cells, and the proportion of the area occupied by the feeder line required for power feeding can be significantly reduced compared to the conventional method.

なお、本実施例では、4種類の信号を一種類当
り4個のセルを用いて分配する論理としている
が、信号の種類数、信号の分配に必要とするセル
数に応じ最適なブロツク数を設定すれば良いこと
は言うまでもない。また、給電端子も2個に限定
したが、さら多数の端子を有するチツプであるな
らば、ブロツク単位に給電端子を使い分け、さら
に給電線幅を減少せしめることができることは明
らかである。
In this embodiment, the logic is to distribute four types of signals using four cells per type, but the optimum number of blocks can be determined depending on the number of signal types and the number of cells required for signal distribution. Needless to say, all you need to do is set it up. Further, although the number of power supply terminals is limited to two, it is clear that if the chip has a larger number of terminals, the power supply terminals can be used for each block and the width of the power supply line can be further reduced.

第6図及び第7図に本発明の他の実施例を示
す。第6図はセル51を8個実装した1つのブロ
ツク5を示したものである。該ブロツク5に、2
つの信号IN1,IN2が与えられ、それぞれ4個
のセル単位に共通に入力される。各セル51への
給電は給電線52により行われる。信号IN1,
IN2を位相をずらして入力することにより、そ
れぞれ4つを1組とする出力信号OUT1,OUT
2が位相をすらして得られる。第7図は、第6図
のブロツク5を8個配置して集積回路6を構成し
たものである。各ブロツク5には、2つのブロツ
ク単位にそれぞれ位相をずらして2つずつ入力信
号INi,INj(i=1,3,5,7,j=2,4,
6,8)が共通に与えられている。即ち、本実施
例においては、1ブロツク5内に8個のセル51
を実装しても、該ブロツク内の電源線幅はセル4
個に流れる電流に耐えられる給電線幅でよい。
Other embodiments of the present invention are shown in FIGS. 6 and 7. FIG. 6 shows one block 5 in which eight cells 51 are mounted. In the block 5, 2
Two signals IN1 and IN2 are provided and are commonly input to each of the four cells. Power is supplied to each cell 51 through a power supply line 52 . Signal IN1,
By inputting IN2 with a phase shift, output signals OUT1 and OUT are made into a set of four, respectively.
2 is obtained by smoothing the phase. FIG. 7 shows an integrated circuit 6 in which eight blocks 5 of FIG. 6 are arranged. Each block 5 receives two input signals INi, INj (i=1, 3, 5, 7, j=2, 4,
6, 8) are commonly given. That is, in this embodiment, there are eight cells 51 in one block 5.
Even if it is implemented, the power supply line width in the block is
The width of the feeder line may be sufficient to withstand the current flowing individually.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、給電線
に流れる電流量が時間軸に対し平準化されるた
め、少ない給電線幅による配線が可能となる。し
たがつて、チツプ面積に占める電源配線領域を低
減せしめることができる。このため、さらに、よ
り高密度の集積回路を提供することができる。
As described above, according to the present invention, the amount of current flowing through the power supply line is equalized with respect to the time axis, so that wiring with a small width of the power supply line is possible. Therefore, the power supply wiring area occupying the chip area can be reduced. Therefore, even higher density integrated circuits can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のチツプ内ブロツク
配置図およびその波形図、第2図は第1図におけ
るブロツク内構成図およびその波形図、第3図は
従来技術における基本的論理セルの構成図および
その波形図、第4図は従来技術におけるブロツク
内構成図および波形図、第5図は従来技術におけ
るチツプ内ブロツク配置図およびその波形図、第
6図は本発明の他の実施例のブロツク内構成図、
第7図は第6図のブロツクを使用したチツプ内ブ
ロツク配置図である。 1……セル、11……入力信号線、12……出
力信号、13……給電線、14……給電線、2…
…ブロツク、21……入力信号線、22……出力
信号線、23……給電線、3……チツプ(集積回
路)、31……給電端子、34……給電端子、4
……ブロツク、41……セル、42……入力信号
線、43……出力信号、44……給電線、5……
チツプ(集積回路)、51……入力信号線、52
……給電線、53……給電端子。
FIG. 1 is a block layout diagram and its waveform diagram in a chip according to an embodiment of the present invention, FIG. 2 is a block diagram and its waveform diagram in FIG. 1, and FIG. 3 is a diagram of the basic logic cell in the prior art. A block diagram and its waveform diagram; FIG. 4 is an intra-block diagram and waveform diagram in the prior art; FIG. 5 is an in-chip block layout diagram and its waveform diagram in the prior art; FIG. 6 is another embodiment of the present invention. The block diagram of
FIG. 7 is a block layout diagram within a chip using the blocks shown in FIG. 6. 1... Cell, 11... Input signal line, 12... Output signal, 13... Power feed line, 14... Power feed line, 2...
... block, 21 ... input signal line, 22 ... output signal line, 23 ... power supply line, 3 ... chip (integrated circuit), 31 ... power supply terminal, 34 ... power supply terminal, 4
... Block, 41 ... Cell, 42 ... Input signal line, 43 ... Output signal, 44 ... Power supply line, 5 ...
Chip (integrated circuit), 51... Input signal line, 52
...Power supply line, 53...Power supply terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の論理セルの集合体であるブロツクを
複数個内蔵した集積回路において、該集積回路に
複数の給電端子と、該給電端子に接続する第1の
給電線と、該第1の給電線から前記ブロツクに給
電する第2の給電線と、該第2の給電線と接続す
る第3のブロツク内給電線と、該第3の給電線か
らブロツク内論理セルに給電する第4の給電線と
からなる給電線を具備し、同一時刻に動作する複
数個の論理セルは複数個のブロツクに分割して実
装し、且つ同一時刻に動作する論理セルを含む複
数のブロツクは、異なる給電端子より給電すべく
ブロツク配置とすることを特徴とする半導体集積
回路の配線方式。
1. In an integrated circuit that includes a plurality of blocks that are aggregates of a plurality of logic cells, the integrated circuit has a plurality of power supply terminals, a first power supply line connected to the power supply terminal, and the first power supply line. a second power supply line that supplies power to the block from the second power supply line; a third intra-block power supply line that connects to the second power supply line; and a fourth power supply line that supplies power from the third power supply line to the logic cells within the block. Multiple logic cells operating at the same time are divided into multiple blocks and multiple blocks including logic cells operating at the same time are connected to different power supply terminals. A wiring method for semiconductor integrated circuits characterized by a block arrangement for power supply.
JP60053848A 1985-03-18 1985-03-18 Wiring system for semiconductor integrated circuit Granted JPS61212039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053848A JPS61212039A (en) 1985-03-18 1985-03-18 Wiring system for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053848A JPS61212039A (en) 1985-03-18 1985-03-18 Wiring system for semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS61212039A JPS61212039A (en) 1986-09-20
JPH0367341B2 true JPH0367341B2 (en) 1991-10-22

Family

ID=12954186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053848A Granted JPS61212039A (en) 1985-03-18 1985-03-18 Wiring system for semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61212039A (en)

Also Published As

Publication number Publication date
JPS61212039A (en) 1986-09-20

Similar Documents

Publication Publication Date Title
US5140184A (en) Clock feeding circuit and clock wiring system
US4775942A (en) Seed and stitch approach to embedded arrays
US6246277B1 (en) Semiconductor integrated circuit device
EP0563973B1 (en) Master slice integrated circuit having a reduced chip size and a reduced power supply noise
JP3672889B2 (en) Semiconductor integrated circuit and layout method thereof
US4593205A (en) Macrocell array having an on-chip clock generator
JP2693564B2 (en) Single level multiplexer
CA1232354A (en) Semiconductor memory
JPH0358184B2 (en)
JPH0736517B2 (en) Redundant circuit
EP0090186B1 (en) Complementary logic circuit
JPH0367341B2 (en)
US5401988A (en) Standard cell layout arrangement for an LSI circuit
US5694328A (en) Method for designing a large scale integrated (LSI) layout
JPH0511555U (en) Memory logic array circuit
JPS5966218A (en) Delay circuit
US5900742A (en) Interface cell for a programmable integrated circuit employing antifuses
JPS58166743A (en) Master-slice substrate
US6980029B1 (en) Programmable integrated circuit architecture
JP2671537B2 (en) Semiconductor integrated circuit
JP2727978B2 (en) Bit slice layout cell
JPS63232352A (en) Master slice type semiconductor integrated circuit
JPH0249293A (en) Semiconductor memory
JPS6028243A (en) Microcell array
JPS58199539A (en) Master-slice type semiconductor integrated circuit device