JPH0367122B2 - - Google Patents

Info

Publication number
JPH0367122B2
JPH0367122B2 JP4402286A JP4402286A JPH0367122B2 JP H0367122 B2 JPH0367122 B2 JP H0367122B2 JP 4402286 A JP4402286 A JP 4402286A JP 4402286 A JP4402286 A JP 4402286A JP H0367122 B2 JPH0367122 B2 JP H0367122B2
Authority
JP
Japan
Prior art keywords
hollow
cross
fibers
peripheral
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4402286A
Other languages
Japanese (ja)
Other versions
JPS62206008A (en
Inventor
Tetsuya Motomya
Mikio Tashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4402286A priority Critical patent/JPS62206008A/en
Publication of JPS62206008A publication Critical patent/JPS62206008A/en
Publication of JPH0367122B2 publication Critical patent/JPH0367122B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高度に優れた三次元捲縮を呈し、優れ
た嵩高性、嵩回復性、保温性及び柔軟な風合を呈
する捲縮多孔中空繊維及びその製造方法に関す
る。更に、詳細にはカーペツト、ハイパイル、モ
ケツトや衣料用織編物等の他、特に詰綿に用いた
ときに羽毛調の優れた特性を示す捲縮多孔中空繊
維及びその製造方法に関する。 (従来技術) 溶融紡糸方法によつて繊維に三次元的捲縮を付
与する方法は従来から提案されているが、実用上
満足できるとはいい難い。即ち、 (A) 収縮性の異なる二種のポリマーをバイメタル
型あるいは芯成分を偏心させた芯さや型に複合
紡糸する方法がある。この方法は紡糸操作がか
なり難しく、品質の安定した製品を得にくく、
また紡糸装置が複雑であるた設備費が高い等の
欠点を有する。 (B) 溶液紡出糸の片側を加熱し、断面方向に異方
性を付与する方法、例えば(特公昭43−13351
号公報参照)がある。この方法は紡糸操作中に
各単繊維間の融着が起こるため満足な製品を得
ることが困難である。 (C) ポリマーがノズルから吐出される方向と吐出
糸条の引取方向との間にある角度をもたせ、繊
維の断面方向に不均一構造を生成させる方法
(例えば特公昭43−27539号公報参照)がある。
この方法はノズル出口でのポリマーの流動状態
を極度に乱すため紡糸調子が悪く、操業性が非
常に低い等の欠点を有する。 (D) 吐出直後の糸条に冷却用気流を吹きつけ、断
面方向に複屈折度の異方性を付与して三次元捲
縮繊維を得る方法(例えば特公昭38−7511号公
報参照)があり、この改良法として繊維横断面
の実質的中央または偏心した位置に単一の中空
部を設けて、より異方性を高める方法が特公昭
44−20497号公報、同45−36330号公報、同56−
29007号公報に記載されている。 更に、横断面形状が略四角形であつて、4個
の中空部を有するナイロン吐出糸条の断面を急
冷する方法が特開昭54−112242号公報に記載さ
れている。 しかしながら、これらの方法によつて得られ
る捲縮繊維では、充分に満足し得る嵩高性、嵩
回復性、保温性、及び風合を呈する捲縮繊維が
得られず、しかも最適条件の範囲が非常に狭
く、生産性も低い。 (発明の目的) 本発明は以上の事情を背景として為されたもの
であり、その目的とするところは、高度に優れた
三次元捲縮を呈し、優れた嵩高性、嵩回復性、保
温性、及び柔軟な風合を呈する捲縮多孔中空繊維
及びその工業的な製造方法を提供することにあ
る。 (構成) 本発明者等は、前記目的を達成すべく検討した
結果、1個の中空吐出孔に、3個の中空吐出孔の
夫々が単独でスリツトを介して連結されているノ
ズルから吐出された多孔中空繊維の片面を急冷す
ることにより、繊維横断面方向の異方性が拡大さ
れると共に、得られる捲縮繊維の風合が柔軟とな
ることを見い出し、本発明に到達した。 即ち、本発明は、熱可塑性重合体から成り、断
面形状が略円形である中空を有する中空部を少く
とも4個有する捲縮多孔中空繊維であつて、前記
中空部の少くとも1個の中央中空部に残余の周辺
中空部が直接接合されていると共に、周辺中空部
の少くとも1個の中空部が独立して中央中空部に
直接接合され、且つ断面異方性を有することを特
徴とする捲縮多孔中空繊維であり、また、熱可塑
性重合体を溶融紡糸して少くとも4個の中空部を
有する多孔中空繊維を製造するに際し、中央中空
部を形成する中央吐出孔に、周辺中空部を形成す
る中空吐出孔の夫々が単独でスリツトを介して連
結されているノズルから吐出された吐出糸条の片
側を、前記吐出糸条の走行方向に略直交する方向
から冷風を吹き付けて急速に冷却せしめ、次いで
得られる未延伸糸を延伸してから弛緩熱処理する
ことによつて、前記中空部の夫々の中空断面形状
が略円形であつて、且つ周辺中空部の少くとも1
個が独立して中央中空部に直接接合している繊維
に捲縮を発現させることを特徴とする捲縮多孔中
空繊維の製造方法である。 本発明においていう「断面異方性」とは、繊維
断面方向に複屈折率差等の物性差が存在すること
を言う。 本発明を図面により説明する。 第1図は本発明の多孔中空繊維の断面形状、第
2図は第1図に示す本発明の多孔中空繊維を得る
ためのノズルの断面形状、第3図イは従来の多孔
中空繊維の断面形状、第3図ロは第3図イの多孔
中空繊維を得るためのノズルの断面形状を夫々示
す。 第1図及び第3図イにおいて、E1〜E5は夫夫
の中空部を示し、点線は中空部夫々の接合個所を
示す。 本発明の多孔中空繊維は、第1図aに示す如
く、断面形状が略円形である中空を有する中空部
E1〜E4で形成されており、中央中空部E1に3個
の周辺中空部E2〜E4が直接接合していると共に、
周辺中空部E2〜E4の少くとも1個の周辺中空部
〔第1図aでは周辺中空部E4〕が独立して中央中
空部E1と直接接合しており、他の周辺中空部と
は接合していないことが大切である。 これに対して、第3図ロに示す断面形状のノズ
ルによつて得られる第3図イに示す従来の多孔中
空繊維では、中央中空部E1の周囲に周辺中空部
E2〜E4が接合しているものの、中空部E1〜E4
互いに隣接する2個の中空部と接合しているもの
である。 かかる第3図イに示す特開昭54−112242号公報
に示されている多孔中空繊維では、後述する実施
例で示す様に、充分な嵩高性を呈することができ
ない。しかも、中空部夫々に有する中空の断面形
状が長円であるため、嵩回復性も劣るものとな
る。 本発明の多孔中空繊維は、第1図bに示す如
く、周辺中空部E2〜E4が互いに接合することな
く、中央中空部E1と直接接合していたり、又は
中央中空部E1に接合する周辺中空部が第1図c
に示す如く3個以上あつてもよく、むしろ嵩高性
を向上できるため好ましい。 この様な本発明の多孔中空繊維は第2図に示す
断面形状のノズルによつて得ることができる。 かかるノズルについて、第2図bに示すノズル
を取り上げて説明する。 第2図bにおいてS1〜S11はスリツトを示し、
第1図bに示す中空部E1〜E4の形成はスリツト
S1とS2、スリツトS4とS5、スリツトS7とS8、及び
スリツトS10とS11とで成される。 そして、スリツトS4,S5を中心にスリツトS1
S2、スリツトS7,S8、スリツトS10,S11が周囲に
配置され、これら周囲に配置されているスリツト
群はスリツトS3,S6,S9を介して中心のスリツト
S4,S5に夫々単独に連結されているため、中央中
空部E1に周辺中空部E24が直接接合されるので
ある。 この第2図bに示すノズルから吐出された繊維
は第1図bに示す様に単一中空部を有する繊維が
あたかも接合している如き断面形状を呈し、かか
る断面形状を呈する繊維の片側を急冷することに
よつて容易に高度な断面異方性を付与することが
できるのである。 これに対し、第3図イの多孔中空繊維が得られ
るノズルとして、前述の特開昭54−112242号公報
には、第3図ロに示す形状のノズルが示されてい
る。 しかしながら、第3図イに示す様に略四角形の
断面形状が得られるならば、かかる繊維の片側に
冷却風を吹き付けても、風下側に回り込む冷却風
を減少できるため、かなり高度な断面異方性が付
与できるものの、この様に略四角形の断面形状を
得ることは困難であつて、実質的に円形の断面形
状となり易い。 このため、冷却風は風下側にも回り込むために
均一に冷却され易く、高度な断面異方性を付与で
きないのである。 また、第2図bに示すとは異なつて4個の中空
吐出孔が直列に連結されているノズルでは、吐出
糸条の片側から冷却風を吹き付けると、吐出糸条
の曲りが極めて大きくなり、融着等が発生し易く
なるため紡糸が極めて困難となる。 一方、前記4個の中空吐出孔が環状に配置さ
れ、且つ互いに隣接する中空吐出孔と連結されて
いるノズルでは、得られる多孔中空繊維の嵩回復
性が劣るものとなる。 本発明で用いるノズルとしては、第2図bの他
に、第2図a又はcに示すノズルも用いることが
でき、夫々第1図a又はcに示す断面形状の多孔
中空繊維を得ることができる。 次に、本発明において、第2図に示すノズルか
ら吐出された第1図に示す断面形状の繊維の片側
を急冷すべく、吐出糸条の片側に対し、吐出糸条
の走行方向に直交する方向から冷却風を吹き付け
て急速に冷却することが大切である。 ここで、冷却風の吹き付ける方向が吐出糸条の
走行方向に対し著く傾斜している場合には、繊維
の片側を急冷することができず、高度な断面異方
性を付与することができない。 かかる冷却風の風速は、0.2m/sec以上特に1
m/sec以上が好ましく、冷却風を吹き付ける位
置は紡糸口金面に近い程効果的であるが、良好な
操業性を維持するためには紡糸口金面下1〜35cm
が好ましい。 尚、冷却風用気体としては空気が最も経済的で
あるが、高分子溶融体に対して不活性な気体であ
れば何でもよく、その温度はできるだけ低温の方
が好ましいが、経済的見地から10〜40℃が好適で
ある。 かくして得られた糸条を更に延伸し、弛緩熱処
理することによつて、捲縮を発現することができ
る。 この際の延伸条件としては、紡糸工程で付与さ
れた高度の断面異方性が充分に保持される条件を
採用することが好ましい。 かかる延伸条件をポリエステル繊維の場合につ
いて具体的に述べると、延伸温度はTg±20℃
(Tg:ポリエステルのガラス転移点)の範囲内の
温度が好ましく、延伸倍率は最高延伸倍率の65〜
95%が好適である。 延伸方法は液浴延伸、ピン延伸等いかなる方法
によつてもよい。 また、弛緩熱処理としては、延伸後の糸条を構
成する各単繊維を可能な限り無拘束状態とし、次
いで熱処理することによつてなされる。熱処理温
度は100〜230℃が好ましい。かかる弛緩熱処理は
トウ状、マルチフイラメント状、ステープル状等
いかなる状態で行つてもよき、弛緩熱処理前に機
械捲縮を付与してもよい。 この様にして得られた捲縮多孔中空繊維の中空
率は5〜60%が好ましい。 ここで言う「中空率」とは、繊維横断面におけ
る中空部の総面積に対し、前記横断面の外周部で
囲まれた面積に対する比である。具体的に第1図
bを用いて説明すると、中空部総面積(SE)と
は中空部E14の合計面積であり、横断面の外周
部に囲まれた面積(ST)とは前記中空部面積
(SE)及び熱可塑性重合体が占める面積(SP)
との合計である。即ち、中空率は下記式で表わさ
れるものである。 中空率(%)=SE/SE+SP×100 かかる中空率が60%を越えると中空部が変形し
易くなる傾向があり、5%未満であれば断面方向
の異方性を充分に付与できなくなる傾向がある。 この中空率は多孔中空繊維を形成する中空部
夫々がほぼ等しい値になることが好ましい。 尚、本発明でいう熱可塑性重合体とは、溶融紡
糸可能な重合体のことであつて、かかる重合体の
例としては、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート等のポリエステル、ポリ
エチレン、ポロプロピレンなどのポリオレフイン
類、ナイロン6、ナイロン66などのポリアミド類
およびこれらを主とする共重合物や重合混合物で
ある。特に、エチレンテレフタレート単位が85モ
ル%以上であるポリエステルを用いると熱的性質
が良好で好ましい。かかるポリエステルにおい
て、15モル%未満の他の成分、例えば5−ソジウ
ムスルホイソフタル酸、イソフタル酸、アジピン
酸、ジエチレングリコール、ポリエチレングリコ
ール、ポリアルキレングリコール等の成分が共重
合されていてもよく、特に5−ソジウムスルホイ
ソフタル酸成分が共重合されているものが好まし
い。また、この様なポリエステルの固有粘度(25
℃の0−クロロフエノール中で測定した粘度から
求める)は0.35〜0.90のものが好ましい。 また、前記重合体には艶消剤、接着剤、帯電防
止剤、防炎剤等の添加剤を含有していてもよい。 (作用) 従来より知られている第3図ロに示すノズルか
ら吐出される繊維の片面を冷却する方法では、断
面異方性を充分に付与することができないため、
スタツフイングボツクスや流体処理ノズル等の物
理的な捲縮加工を併用しなければ、充分な捲縮が
得られないのである。 更に、第3図ロに示すノズルを用いて得られる
多孔中空繊維は、第3図イに示す如く、中空の断
面形状が長円であり、且つ中空部が最密状態に接
合されている。 これに対し、本発明においては、吐出された繊
維の断面形状を冷却風によつて均一に冷却され難
い形状としたため、冷却風が風下側に回り込み難
いので繊維断面の風上側と風下側との温度差を従
来のものに比して著しく大きくすることができ、
従来のものに比較して高度な断面異方性を有する
ことができるのである。 そして、かかる繊維に弛緩熱処理を施して捲縮
を発現させる結果、細かな捲縮を呈することがで
き、多孔中空繊維であるため良好な保温性及び柔
軟な風合も呈することができる。 しかも、均一性の良好な捲縮繊維を得るための
最適条件の範囲も従来の方法に比較して広くとれ
るため、生産性が良好で生産コスストを低下する
ことができる。 更に、本発明の多孔中空繊維は、断面形状が略
円形である中空を有する中空部で形成され、且つ
中空部の接合状態も最密状態ではないため、繊維
自体の剛性及び中空率を向上でき、且つ繊維間の
空隙も増大できる。 このため、本発明の捲縮多孔中空繊維は、屈曲
等による「中空つぶれ」又は「へたり」の発生を
防止できるため、優れた嵩回復性を呈することが
でき、更に前記捲縮と相俟つて優れた嵩高性を呈
することができるのである。 (発明の効果) 本発明の捲縮繊維は、カーペツト、ハイパイ
ル、モケツトや衣料用織編物等の他、特に詰綿に
用いたときに羽毛調の優れた特性を示す製品が得
られる。 (実施例) 更に、実施例により本発明を更に説明する。 実施例1〜3、比較例1 25℃の0−クロロフエノール中で測定した固有
粘度が0.65のポリエチレンテレフタレートを第1
表に示す断面形状のノズルから280℃で溶融吐出
し、750m/minで巻き取り、単繊維繊度25デニ
ールの未延伸糸を得た。吐出糸条の冷却は、口金
面下0.5〜15cmの位置で25℃の冷却用空気を1.0
m/secの流速で糸条の進向方向に対して垂直な
方向から吹き付けることにより行つた。このよう
にして得られた未延伸糸を集束して70万デニール
のトウにしたものを65℃の水浴中で3.5倍に延伸
した後トウ状で乾燥して130℃雰囲気中で弛緩熱
処理を行い、捲縮発現後64mmに切断した。かくし
て得られたステープルフアイバーをカードに通し
てウエツプをつくりふとん綿としその性能を測定
した。結果を第1表に併せて示す。
(Industrial Field of Application) The present invention relates to a crimped porous hollow fiber that exhibits highly excellent three-dimensional crimp, excellent bulkiness, bulk recovery, heat retention, and soft feel, and a method for producing the same. More specifically, the present invention relates to crimped porous hollow fibers that exhibit excellent feather-like properties when used in carpets, high piles, moquettes, clothing, etc., and especially in stuffing, and a method for producing the same. (Prior Art) Methods for imparting three-dimensional crimp to fibers by melt spinning have been proposed in the past, but these methods cannot be said to be practically satisfactory. That is, (A) there is a method in which two types of polymers with different contractility are composite-spun into a bimetal type or a core-sheath type in which the core component is eccentric. With this method, the spinning operation is quite difficult and it is difficult to obtain products with stable quality.
Further, it has drawbacks such as a complicated spinning device and high equipment costs. (B) A method of heating one side of the solution-spun yarn to impart anisotropy in the cross-sectional direction, for example (Japanese Patent Publication No. 43-13351
(See Publication No.). With this method, it is difficult to obtain a satisfactory product because fusion occurs between each single fiber during the spinning operation. (C) A method in which a non-uniform structure is created in the cross-sectional direction of the fiber by creating a certain angle between the direction in which the polymer is discharged from the nozzle and the direction in which the discharged yarn is taken (see, for example, Japanese Patent Publication No. 43-27539). There is.
This method has drawbacks such as extremely poor spinning performance and very low operability since the flow state of the polymer at the nozzle outlet is extremely disturbed. (D) A method for obtaining three-dimensional crimped fibers by blowing a cooling air stream onto the yarn immediately after discharge and imparting birefringence anisotropy in the cross-sectional direction (for example, see Japanese Patent Publication No. 7511/1983). However, as an improvement method to this, a method was proposed by Tokuko Sho to further increase the anisotropy by providing a single hollow section at the substantial center or eccentric position of the fiber cross section.
Publication No. 44-20497, Publication No. 45-36330, Publication No. 56-
It is described in Publication No. 29007. Further, JP-A-54-112242 describes a method of rapidly cooling the cross section of a nylon discharged yarn having a substantially rectangular cross-sectional shape and four hollow portions. However, with the crimped fibers obtained by these methods, it is not possible to obtain crimped fibers that exhibit sufficiently satisfactory bulk, bulk recovery, heat retention, and texture, and the range of optimal conditions is very limited. It is narrow and productivity is low. (Objective of the Invention) The present invention has been made against the background of the above circumstances, and its purpose is to provide a highly superior three-dimensional crimp, excellent bulkiness, bulk recovery, and heat retention. An object of the present invention is to provide a crimped porous hollow fiber exhibiting a flexible texture and an industrial method for producing the same. (Structure) As a result of studies to achieve the above object, the inventors of the present invention discovered that a nozzle in which each of three hollow discharge holes is individually connected to one hollow discharge hole through a slit. The inventors have discovered that by rapidly cooling one side of a porous hollow fiber, the anisotropy in the cross-sectional direction of the fiber is expanded and the texture of the resulting crimped fiber becomes soft, and the present invention has been achieved. That is, the present invention provides a crimped porous hollow fiber made of a thermoplastic polymer and having at least four hollow portions each having a substantially circular cross-sectional shape, the fiber having at least one central portion of the hollow portion. The remaining peripheral hollow part is directly joined to the hollow part, and at least one hollow part of the peripheral hollow part is independently directly joined to the central hollow part, and has cross-sectional anisotropy. In addition, when producing a porous hollow fiber having at least four hollow parts by melt-spinning a thermoplastic polymer, a central discharge hole forming a central hollow part is provided with a peripheral hollow fiber. One side of the discharged yarn discharged from a nozzle in which each of the hollow discharge holes forming the section are individually connected through a slit is rapidly blown with cold air from a direction substantially perpendicular to the traveling direction of the discharged yarn. The resulting undrawn yarn is then stretched and then subjected to a relaxation heat treatment, so that each of the hollow sections has a substantially circular cross-sectional shape, and at least one of the peripheral hollow sections has a substantially circular cross-sectional shape.
This is a method for producing crimped porous hollow fibers, which is characterized by crimping the fibers that are individually and directly joined to the central hollow part. In the present invention, "cross-sectional anisotropy" refers to the existence of physical property differences such as birefringence differences in the fiber cross-sectional direction. The present invention will be explained with reference to the drawings. Fig. 1 shows the cross-sectional shape of the porous hollow fiber of the present invention, Fig. 2 shows the cross-sectional shape of the nozzle for obtaining the porous hollow fiber of the present invention shown in Fig. 1, and Fig. 3 A shows the cross-section of the conventional porous hollow fiber. Figure 3B shows the cross-sectional shape of the nozzle for obtaining the porous hollow fiber of Figure 3A. In FIG. 1 and FIG. 3A, E 1 to E 5 indicate the hollow parts of the husband and husband, and the dotted lines indicate the joining points of the respective hollow parts. As shown in FIG. 1a, the porous hollow fiber of the present invention has a hollow portion having a substantially circular cross-sectional shape.
It is formed of E 1 to E 4 , and three peripheral hollow parts E 2 to E 4 are directly connected to the central hollow part E 1 , and
At least one of the peripheral hollow parts E2 to E4 (peripheral hollow part E4 in FIG. 1a) is independently and directly joined to the central hollow part E1 , and other peripheral hollow parts It is important that it is not connected to the On the other hand, in the conventional porous hollow fiber shown in FIG. 3A obtained by a nozzle having the cross-sectional shape shown in FIG .
Although E 2 to E 4 are joined, the hollow parts E 1 to E 4 are joined to two adjacent hollow parts. The porous hollow fiber shown in JP-A-54-112242 as shown in FIG. Moreover, since the cross-sectional shape of each hollow portion is an ellipse, the bulk recovery property is also poor. In the porous hollow fiber of the present invention, as shown in FIG . The peripheral hollow part to be joined is shown in Figure 1 c.
As shown in the figure, there may be three or more, which is preferable since the bulkiness can be improved. Such porous hollow fibers of the present invention can be obtained using a nozzle having the cross-sectional shape shown in FIG. Such a nozzle will be explained by taking up the nozzle shown in FIG. 2b. In Fig. 2b, S 1 to S 11 indicate slits;
The hollow parts E 1 to E 4 shown in Fig. 1b are formed by slits.
It is made up of S 1 and S 2 , slits S 4 and S 5 , slits S 7 and S 8 , and slits S 10 and S 11 . Then, centering on slits S 4 and S 5 , slits S 1 ,
S 2 , slits S 7 , S 8 , and slits S 10 , S 11 are arranged around the slits, and the slits arranged around these slits are connected to the center slit through the slits S 3 , S 6 , and S 9 .
Since they are each independently connected to S 4 and S 5 , the peripheral hollow parts E 2 to E 4 are directly joined to the central hollow part E 1 . The fiber discharged from the nozzle shown in Fig. 2b has a cross-sectional shape as if fibers having a single hollow part were joined together, as shown in Fig. 1b, and one side of the fiber exhibiting such a cross-sectional shape is A high degree of cross-sectional anisotropy can be easily imparted by rapid cooling. On the other hand, as a nozzle for obtaining the porous hollow fibers shown in FIG. 3A, the above-mentioned Japanese Patent Laid-Open No. 112242/1983 discloses a nozzle having the shape shown in FIG. 3B. However, if a substantially rectangular cross-sectional shape is obtained as shown in Figure 3A, even if cooling air is blown onto one side of the fiber, the amount of cooling air that wraps around to the lee side can be reduced, resulting in a fairly high degree of cross-sectional anisotropy. However, it is difficult to obtain such a substantially rectangular cross-sectional shape, and a substantially circular cross-sectional shape is likely to be obtained. For this reason, the cooling air flows around to the leeward side and tends to be uniformly cooled, making it impossible to impart a high degree of cross-sectional anisotropy. Furthermore, unlike the nozzle shown in FIG. 2b, in which four hollow discharge holes are connected in series, when cooling air is blown from one side of the discharged yarn, the bending of the discharged yarn becomes extremely large. Spinning becomes extremely difficult because fusion and the like tend to occur. On the other hand, in a nozzle in which the four hollow discharge holes are arranged in an annular manner and are connected to mutually adjacent hollow discharge holes, the bulk recovery properties of the resulting porous hollow fibers are poor. As the nozzle used in the present invention, in addition to FIG. 2b, the nozzle shown in FIG. can. Next, in the present invention, in order to rapidly cool one side of the fiber having the cross-sectional shape shown in FIG. 1 discharged from the nozzle shown in FIG. It is important to cool down quickly by blowing cooling air from any direction. Here, if the direction in which the cooling air is blown is significantly inclined with respect to the running direction of the discharged yarn, one side of the fiber cannot be rapidly cooled and a high degree of cross-sectional anisotropy cannot be imparted. . The speed of such cooling air is 0.2 m/sec or more, especially 1 m/sec.
m/sec or more is preferable, and the position where the cooling air is blown is more effective as it is closer to the spinneret surface, but in order to maintain good operability, it is necessary to blow the cooling air 1 to 35 cm below the spinneret surface.
is preferred. Although air is the most economical gas for cooling air, any gas may be used as long as it is inert to the polymer melt, and it is preferable that the temperature is as low as possible, but from an economical point of view, ~40°C is preferred. By further drawing the yarn thus obtained and subjecting it to relaxation heat treatment, crimp can be developed. As the stretching conditions at this time, it is preferable to adopt conditions in which the high degree of cross-sectional anisotropy imparted in the spinning process is sufficiently maintained. To describe the stretching conditions specifically for polyester fibers, the stretching temperature is Tg±20°C.
The temperature is preferably within the range of (Tg: glass transition point of polyester), and the stretching ratio is from 65 to the maximum stretching ratio.
95% is preferred. The stretching method may be any method such as liquid bath stretching or pin stretching. Further, the relaxation heat treatment is carried out by making each single fiber constituting the stretched yarn as unrestricted as possible, and then heat-treating it. The heat treatment temperature is preferably 100 to 230°C. Such relaxation heat treatment may be performed in any form such as tow, multifilament, staple, etc., and mechanical crimp may be applied before the relaxation heat treatment. The hollowness ratio of the crimped porous hollow fiber thus obtained is preferably 5 to 60%. The term "hollowness ratio" as used herein is the ratio of the area surrounded by the outer periphery of the cross section to the total area of the hollow portions in the cross section of the fiber. To explain specifically using FIG. 1b, the total area of the hollow portion (SE) is the total area of the hollow portions E1 to E4 , and the area surrounded by the outer periphery of the cross section (ST) is the area mentioned above. Hollow area (SE) and area occupied by thermoplastic polymer (SP)
This is the total of That is, the hollowness ratio is expressed by the following formula. Hollowness ratio (%) = SE / SE + SP × 100 When the hollowness ratio exceeds 60%, the hollow part tends to be easily deformed, and when it is less than 5%, it tends to be difficult to impart sufficient anisotropy in the cross-sectional direction. There is. It is preferable that the hollow ratios of the hollow portions forming the porous hollow fibers are approximately the same. The thermoplastic polymer used in the present invention refers to a polymer that can be melt-spun, and examples of such polymers include polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyolefins such as polyethylene and polypropylene. polyamides such as nylon 6 and nylon 66, and copolymers and polymer mixtures mainly made of these. In particular, it is preferable to use a polyester containing 85 mol % or more of ethylene terephthalate units because it has good thermal properties. In such a polyester, less than 15 mol% of other components such as 5-sodium sulfoisophthalic acid, isophthalic acid, adipic acid, diethylene glycol, polyethylene glycol, polyalkylene glycol, etc. may be copolymerized, especially 5-sodium sulfoisophthalic acid, isophthalic acid, adipic acid, diethylene glycol, polyethylene glycol, polyalkylene glycol, etc. - Those in which a sodium sulfoisophthalic acid component is copolymerized are preferred. In addition, the intrinsic viscosity of such polyester (25
The viscosity (determined from the viscosity measured in 0-chlorophenol at °C) is preferably 0.35 to 0.90. Further, the polymer may contain additives such as a matting agent, an adhesive, an antistatic agent, and a flame retardant. (Function) The conventionally known method of cooling one side of the fiber discharged from the nozzle shown in FIG. 3B cannot impart sufficient cross-sectional anisotropy.
Sufficient crimp cannot be obtained unless physical crimp processing such as a stuffing box or a fluid treatment nozzle is also used. Further, the porous hollow fiber obtained using the nozzle shown in FIG. 3B has an oval cross-sectional shape as shown in FIG. 3A, and the hollow portions are joined in a close-packed state. On the other hand, in the present invention, the cross-sectional shape of the discharged fibers is made into a shape that makes it difficult to be uniformly cooled by the cooling air, so that the cooling air is difficult to wrap around to the leeward side, so that the windward side and the leeward side of the fiber cross section are different. The temperature difference can be significantly increased compared to conventional ones,
It can have a higher degree of cross-sectional anisotropy than conventional ones. Then, as a result of subjecting such fibers to relaxation heat treatment to develop crimps, they can exhibit fine crimps, and since they are porous hollow fibers, they can also exhibit good heat retention and a flexible texture. Moreover, since the range of optimal conditions for obtaining crimped fibers with good uniformity can be set wider than in conventional methods, productivity can be improved and production costs can be reduced. Further, the porous hollow fiber of the present invention is formed of a hollow portion having a substantially circular cross-sectional shape, and the bonding state of the hollow portion is not in a close-packed state, so that the rigidity and hollowness ratio of the fiber itself can be improved. , and the voids between fibers can also be increased. Therefore, the crimped porous hollow fiber of the present invention can prevent the occurrence of "hollow collapse" or "settling" due to bending, etc., and can exhibit excellent bulk recovery properties. Therefore, it can exhibit excellent bulkiness. (Effects of the Invention) When the crimped fiber of the present invention is used for carpets, high piles, moquettes, woven and knitted fabrics for clothing, and especially for stuffing, products exhibiting excellent feather-like characteristics can be obtained. (Examples) Furthermore, the present invention will be further explained by examples. Examples 1 to 3, Comparative Example 1 Polyethylene terephthalate with an intrinsic viscosity of 0.65 measured in 0-chlorophenol at 25°C was
It was melted and discharged at 280° C. from a nozzle having the cross-sectional shape shown in the table, and wound at 750 m/min to obtain an undrawn yarn with a single fiber fineness of 25 denier. To cool the discharged yarn, blow 25°C cooling air at 1.0 cm at a position 0.5 to 15 cm below the mouth surface.
This was carried out by spraying at a flow rate of m/sec from a direction perpendicular to the direction in which the yarn travels. The undrawn yarn thus obtained was bundled into a 700,000 denier tow, which was stretched 3.5 times in a 65°C water bath, dried in tow form, and subjected to relaxation heat treatment in an atmosphere of 130°C. , and cut to 64 mm after crimp development. The staple fibers thus obtained were passed through a card to make a webbing, which was then used as a futon, and its performance was measured. The results are also shown in Table 1.

【表】 第1表に示す如く比較例1に比し、本発明の方
法によつて得られた繊維を用いたふとん綿は比容
積110cm3/g以上、圧縮率60%以上、回復率90%
以上の優れた嵩高性、耐ヘタリ性でソフトな風合
を呈する。実施例1〜3はいずれも紡糸調子は良
好であつたが、比較例は紡糸単繊維切れが発生し
た。 尚、第1表に示す捲縮数はJIS−L1074により
測定した値であり、比容積、圧縮率、回復率は
JIS−L1097により測定した値である。 実施例4、比較例2 25℃m−クレゾール中で測定した極限粘度が
1.1のナイロン6を第2図cに示すノズルを通し
て260℃で溶融吐出し、1500m/minで引取り、
単繊維繊度30デニールの未延伸糸を得た。この未
延伸糸の横断面は第1図cの如き多孔中空断面で
あつた。吐出糸条の冷却は口金面下1.5〜10cmの
位置で25℃の冷却用空気を0.8m/secの流速で糸
条の進行方向に対して垂直な方向から吹きつける
ことにより行つた。紡糸調子は全く問題なかつ
た。この未延伸糸条は単繊維数70本からなり、こ
の未延伸糸条を50℃の延伸温度で3.5倍にピン延
伸した後、130℃雰囲気中で弛緩熱処理して連続
的に巻取つた。得られた延伸熱処理糸をJIS−
L1074に従つて捲縮性能を測定したところ捲縮数
13.0ケ/25mm、捲縮弾性率91%の良好な捲縮を有
していた。尚、第3図ロに示すノズルを用いて同
様に片面急冷し、延伸後弛緩熱処理した場合の捲
縮数及び捲縮弾性率はそれぞれ4.0ケ/25mm、53
%となり非常に劣るものであつた。また紡糸時単
繊維切れが発生した。
[Table] As shown in Table 1, compared to Comparative Example 1, the futon cotton using the fiber obtained by the method of the present invention has a specific volume of 110 cm 3 /g or more, a compression rate of 60% or more, and a recovery rate of 90. %
It exhibits excellent bulkiness, resistance to settling, and a soft texture. In Examples 1 to 3, the spinning condition was good, but in the comparative example, spun single fiber breakage occurred. The number of crimp shown in Table 1 is the value measured according to JIS-L1074, and the specific volume, compression ratio, and recovery rate are
This is a value measured according to JIS-L1097. Example 4, Comparative Example 2 The intrinsic viscosity measured in 25°C m-cresol was
Nylon 6 of 1.1 was melted and discharged at 260℃ through the nozzle shown in Figure 2c, taken off at 1500m/min,
An undrawn yarn with a single fiber fineness of 30 denier was obtained. The cross section of this undrawn yarn was a porous hollow cross section as shown in FIG. 1c. The discharged yarn was cooled by blowing cooling air at 25° C. at a flow rate of 0.8 m/sec from a direction perpendicular to the traveling direction of the yarn at a position 1.5 to 10 cm below the face of the spinneret. There was no problem with the spinning condition. This undrawn yarn consisted of 70 single fibers, and was pin-stretched to 3.5 times at a drawing temperature of 50°C, then subjected to relaxation heat treatment in an atmosphere of 130°C, and continuously wound. The obtained drawn heat-treated yarn is JIS-
When crimp performance was measured according to L1074, the number of crimp
It had a good crimp of 13.0 pieces/25mm and a crimp modulus of 91%. Furthermore, when one side was similarly rapidly cooled using the nozzle shown in FIG.
%, which was very poor. Furthermore, single fiber breakage occurred during spinning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多孔中空繊維の断面形状、第
2図は第1図に示す本発明の多孔中空繊維を得る
ためのノズルの断面形状、第3図イは従来の多孔
中空繊維の断面形状、第3図ロは第3図イの多孔
中空繊維を得るためのノズルの断面形状を夫々示
す。
Fig. 1 shows the cross-sectional shape of the porous hollow fiber of the present invention, Fig. 2 shows the cross-sectional shape of the nozzle for obtaining the porous hollow fiber of the present invention shown in Fig. 1, and Fig. 3 A shows the cross-section of the conventional porous hollow fiber. Figure 3B shows the cross-sectional shape of the nozzle for obtaining the porous hollow fiber of Figure 3A.

Claims (1)

【特許請求の範囲】 1 熱可塑性重合体から成り、断面形状が略円形
である中空を有する中空部を少くとも4個有する
捲縮多孔中空繊維であつて、前記中空部の少くと
も1個の中央中空部に残余の周辺中空部が直接接
合されていると共に、周辺中空部の少くとも1個
の中空部が独立して中央中空部に直接接合され、
且つ断面異方性を有することを特徴とする捲縮多
孔中空繊維。 2 周辺中空部の夫々が独立して中央中空部に接
合されている特許請求の範囲第1項記載の捲縮多
孔中空繊維。 3 熱可塑性重合体がポリエチレンテレフタレー
トである特許請求の範囲第1項記載の捲縮多孔中
空繊維。 4 熱可塑性重合体を溶融紡糸して少くとも4個
の中空部を有する多孔中空繊維を製造するに際
し、中央中空部を形成する中空吐出孔に、周辺中
空部を形成する中空吐出孔の夫々が単独でスリツ
トを介して連結されているノズルから吐出された
吐出糸条の片側を、前記吐出糸条の走行方向に略
直交する方向から冷風を吹き付けて急速に冷却せ
しめ、次いで得られる未延伸糸を延伸してから弛
緩熱処理することによつて、前記中空部の夫々の
中空断面形状が略円形であつて、且つ周辺中空部
の少くとも1個が独立して中央中空部に直接接合
している繊維に捲縮を発現させることを特徴とす
る捲縮多孔中空繊維の製造方法。 5 周辺中空部の夫々が独立して中央中空部と接
合されている特許請求の範囲第4項記載の捲縮多
孔中空繊維の製造方法。 6 熱可塑性重合体がポリエチレンテレフタレー
トである特許請求の範囲第4項記載の捲縮多孔中
空繊維の製造方法。
[Scope of Claims] 1. A crimped porous hollow fiber made of a thermoplastic polymer and having at least four hollow portions each having a substantially circular cross-sectional shape, wherein at least one of the hollow portions has a substantially circular cross-sectional shape. The remaining peripheral hollow parts are directly joined to the central hollow part, and at least one hollow part of the peripheral hollow parts is independently joined directly to the central hollow part,
A crimped porous hollow fiber characterized by having cross-sectional anisotropy. 2. The crimped porous hollow fiber according to claim 1, wherein each of the peripheral hollow parts is independently joined to the central hollow part. 3. The crimped porous hollow fiber according to claim 1, wherein the thermoplastic polymer is polyethylene terephthalate. 4. When manufacturing a porous hollow fiber having at least four hollow parts by melt spinning a thermoplastic polymer, each of the hollow discharge holes forming the peripheral hollow part is connected to the hollow discharge hole forming the central hollow part. One side of the discharged yarn discharged from a nozzle connected through a slit is rapidly cooled by blowing cold air from a direction substantially perpendicular to the running direction of the discharged yarn, and then the undrawn yarn obtained By stretching and then subjecting to relaxation heat treatment, each of the hollow sections has a substantially circular cross-sectional shape, and at least one of the peripheral hollow sections is independently and directly joined to the central hollow section. 1. A method for producing crimped porous hollow fibers, characterized by causing the fibers in the fibers to develop crimps. 5. The method for producing a crimped porous hollow fiber according to claim 4, wherein each of the peripheral hollow portions is independently joined to the central hollow portion. 6. The method for producing crimped porous hollow fibers according to claim 4, wherein the thermoplastic polymer is polyethylene terephthalate.
JP4402286A 1986-03-03 1986-03-03 Crimped, porous hollow fiber and production thereof Granted JPS62206008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4402286A JPS62206008A (en) 1986-03-03 1986-03-03 Crimped, porous hollow fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4402286A JPS62206008A (en) 1986-03-03 1986-03-03 Crimped, porous hollow fiber and production thereof

Publications (2)

Publication Number Publication Date
JPS62206008A JPS62206008A (en) 1987-09-10
JPH0367122B2 true JPH0367122B2 (en) 1991-10-21

Family

ID=12680036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4402286A Granted JPS62206008A (en) 1986-03-03 1986-03-03 Crimped, porous hollow fiber and production thereof

Country Status (1)

Country Link
JP (1) JPS62206008A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850847A (en) * 1988-05-10 1989-07-25 E. I. Du Pont De Nemours And Company Spinneret for hollow fibers having curved spacing members projecting therefrom
US4836763A (en) * 1988-07-29 1989-06-06 E. I. Dupont De Nemours And Company Seven hole spinneret
JP4065592B2 (en) * 1997-02-20 2008-03-26 帝人ファイバー株式会社 High hollow polyester fiber, woven / knitted fabric, pile fiber product and nonwoven fabric structure using the same, and method for producing hollow polyester fiber
US6048615A (en) * 1998-01-30 2000-04-11 E. I. Du Pont De Nemours And Company Filament having a trilobal cross-section and a trilobal void
US6589653B2 (en) 2001-08-08 2003-07-08 E. I. Du Pont De Nemours And Company Filament having a quadrilobate exterior cross-section and a four-sided void

Also Published As

Publication number Publication date
JPS62206008A (en) 1987-09-10

Similar Documents

Publication Publication Date Title
JP7319470B2 (en) Method for producing spontaneously crimping elastic mixed yarn used for knitting
JPH0252004B2 (en)
JPH0367122B2 (en)
US5733656A (en) Polyester filament yarn and process for producing same, and fabric thereof and process for producing same
JP4346197B2 (en) Base for melt spinning
JP2694714B2 (en) Different shrinkage mixed yarn manufacturing method
JP4049940B2 (en) Heat-sealable composite fiber and method for producing the same
US5624752A (en) Spun yarn of polybenzazole fiber
JPH06287809A (en) Production of potentially crimping polyester fiber
JPH0641648B2 (en) Manufacturing method of latent bulky multifilament and its spinneret
JPH0342323B2 (en)
JPS6353282B2 (en)
JP2002061024A (en) Crimped porous hollow fiber
JPS61194208A (en) Production of polyamide multifilament
JPS63526B2 (en)
JPS62238818A (en) Production of polyester staple fiber
JPS58149318A (en) Polyester yarn and production thereof
JPH0474451B2 (en)
JPH04174753A (en) Nonwoven filament cloth
JPH0649728A (en) Combined filament yarn of spilitable conjugate fiber
JP4059681B2 (en) Process for producing pre-oriented yarn of polytrimethylene terephthalate
JPS584085B2 (en) Hollow fiber manufacturing method
JP3569347B2 (en) Method for producing polyester ultrafine fiber
KR880000377B1 (en) Multifilament having high latent bulkiness
JPS6338453B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees