JPH0367109B2 - - Google Patents

Info

Publication number
JPH0367109B2
JPH0367109B2 JP58075292A JP7529283A JPH0367109B2 JP H0367109 B2 JPH0367109 B2 JP H0367109B2 JP 58075292 A JP58075292 A JP 58075292A JP 7529283 A JP7529283 A JP 7529283A JP H0367109 B2 JPH0367109 B2 JP H0367109B2
Authority
JP
Japan
Prior art keywords
weight
resin
styrene
composition
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58075292A
Other languages
Japanese (ja)
Other versions
JPS59199745A (en
Inventor
Kazunobu Tanaka
Yasuo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP7529283A priority Critical patent/JPS59199745A/en
Publication of JPS59199745A publication Critical patent/JPS59199745A/en
Publication of JPH0367109B2 publication Critical patent/JPH0367109B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は高い耐熱変形温度を有する高耐衝撃性
の熱可塑性樹脂組成物に関するものである。 ビニル芳香族単量体と不飽和ジカルボン酸無水
物から成る共重合樹脂(例えばスチレン無水マレ
イン酸共重合樹脂)は公知である。このものは加
工性に秀れ、樹脂としての強度、硬度が高く透明
性も十分であることから有用であり、特にその高
い耐熱変形性の故に、スチレン−アクリロニトリ
ル共重合樹脂(以下SAN樹脂と略)に比しより
苛酷な熱的条件で使用するのに適している。しか
しながら本樹脂の強靭性、即ち耐衝撃強度の低さ
は、広汎な応用に自ずと限界をもたらしている。 一方ポリブタジエン或はスチレン−ブタジエン
共重合体の存在下ラジカル重合によつて、ビニル
芳香族単量体(例えばスチレン)と不飽和ニトリ
ル化合物(例えばアクリロニトリル)又は(メ
タ)アクリル酸エステル類(例えばメタクリル酸
メチル)の混合物をグラフト共重合して得られ
る、いわゆるABS樹脂或はMBS樹脂もまた公知
である。このものはマトリツクス樹脂としての例
えばスチレン−アクリロニトリル共重合樹脂又は
スチレン−メタクリル酸メチル共重合樹脂中にグ
ラフト又は未グラフトゴムが微細に分散して存在
するいわゆるゴムグラフト共重合樹脂であり、前
述の例えばスチレン−無水マレイン酸共重合樹脂
に比較してはるかに高い耐衝撃性を有するため、
家電・自動車の部品など広汎な用途があるが、一
方、その耐熱変形温度が十分でなく、例えば約80
℃以上の温度雰囲気下では、使用中変形したり、
変質したりする結果、やはりその応用には限界が
ある。 スチレン−無水マレイン酸共重合樹脂(A)といわ
ゆるABS樹脂(B)との複合組成物は、特公昭47−
50775号公報中に開示されており、この組成物は
(A)又は(B)単独では期待できない耐衝撃性と耐熱変
形温度とを共に改良した熱可塑性複合樹脂成形材
料を提供しうることを述べている。確かに(A)と(B)
の複合により両者の欠点を互いに補完しあう形で
樹脂の耐熱・耐衝撃性を若干向上させることが可
能であるが、文献、G.E.Molau,J.Polymer
Sci.,B(3),1007(1965)には、熱可塑性共重合
樹脂同志の組み合せ複合は、通常非相容
(incompatible)であり、相容(compatible)な
組み合せはむしろ例外であると記載されているこ
とからも予想されるように、単に(A)と(B)を組み合
せ複合するだけでは、その複合系樹脂組成物の物
性が実用的に十分なものとは言えずかつ複合系樹
脂組成物の成形性の指標である溶融流れ挙動も不
満足なものである。 本発明者らは、ビニル芳香族単量体−不飽和ジ
カルボン酸無水物共重合樹脂(A)と、ゴムグラフト
ビニル芳香族単量体−不飽和ニトリル(又は(メ
タ)アクリル酸エステル)単量体共重合樹脂(B)の
複合系樹脂組成物の物性向上を詳細に検討してい
る過程で本複合系樹脂組成物に物性改良剤とし
て、前記各樹脂と相互に親和性のあるゴムグラフ
トビニル芳香族単量体−不飽和ジカルボン酸無水
物(及び必要に応じて、これらと共重合可能な不
飽和ニトリル単量体又はメタクリル酸エステル単
量体の)共重合樹脂(C)を添加することにより当該
複合系樹脂組成物が実用的に秀れた耐熱変形性、
耐衝撃性を発現し、かつ、該複合系樹脂組成物の
成形性も複合成分樹脂(B)のそれよりも尚良好であ
るという驚くべき事実を見出し本発明を完成し
た。 即ち本発明は、 (A) 重合体重量基準でビニル芳香族単量体65〜95
重量部、不飽和ジカルボン酸無水物10〜35重量
部及び必要に応じてこれらと共重合可能なビニ
ル単量体0〜30重量部より成る共重合樹脂30〜
70重量% (B) 重合体組成物重量基準で、ポリブタジエン及
び/又はスチレン−ブタジエン共重合体から成
るゴム質重合体15〜70重量部の存在下に、ビニ
ル芳香族単量体及び不飽和ニトリル単量体又は
(メタ)アクリル酸エステル単量体の混合物30
〜85重量部をグラフト共重合せしめたグラフト
共重合樹脂20〜70重量%及び (C) 重合体組成物重量基準で、ポリブタジエン及
び/又はスチレン−ブタジエン共重合体から成
るゴム質重合体5〜50重量部の存在下に、ビニ
ル芳香族単量体、不飽和カルボン酸無水物及び
必要に応じてこれらと共重合可能な不飽和ニト
リル単量体又はメタクリル酸エステル単量体の
混合物50〜95重量部をグラフト共重合せしめた
グラフト共重合樹脂で、かつ、そのグラフト率
が30〜100重量%の範囲内にあるもの5〜40重
量% より成る耐熱・耐衝撃性複合系樹脂組成物であり
前記した如く成形が容易で実用的に高い耐熱・耐
衝撃性を有する新規な樹脂組成物を提供すること
を目的としている。 共重合樹脂(A)として代表的なものは、スチレン
−無水マレイン酸共重合体があげられる。本共重
合樹脂中の不飽和ジカルボン酸無水物含量は10〜
35重量%の範囲がよく、複合物の耐熱性や成形性
等を考慮すると、より好ましくは、10〜25重量%
である。複合する相手樹脂との親和性を増すため
第3の共重合可能なビニル単量体を共重合するこ
とは好ましいことである。例えばグラフト共重合
樹脂(B)としてABS樹脂を選択する場合は、好都
合な第3の単量体はアクリロニトリルが最適でグ
ラフト共重合樹脂(B)としてMBS樹脂が選ばれる
ときには第3の単量体はメタクリル酸メチルが好
適である。但し選択された第3の単量体の総量は
共重合体中30重量%を越えないことが望ましい。 共重合樹脂(A)の重合は、種々の方法、条件で実
施しうるが公知の溶液重合法、沈澱重合法、回分
式或は連続式の塊状重合法等、何れの方法にても
重合可能であり、具体例としては、温度80〜140
℃で熱開始又はラジカル開始剤の添加によつて、
ビニル芳香族単量体と不飽和ジカルボン酸無水物
の混合物をラジカル重合的に重合させる。この際
当該単量体の組み合せがスチレン−無水マレイン
酸である場合、強い交互共重合性があることの故
に、共重合樹脂組成を前記組成範囲内に抑え、か
つ、重合率変化に伴なう組成変化を最小限にする
ために微妙な単量体追添加技術が必要であるがこ
れについては本発明者らが先に提案した方法即ち
特開昭58−2313号公報にその例を見ることができ
る。尚、共重合樹脂(A)は本発明の樹脂組成物の耐
熱変形性を向上せしめるのに有効であるが、組成
物中の含有比率としては、30〜70重量%が望まし
く、より実際的には、複合樹脂組成物の耐熱性、
溶融流動性を高水準の値に維持するため、該複合
樹脂組成物中40重量%以上が望ましく、一方、組
成物の耐衝撃性を高度な値にするために65重量%
以下にとどめることが有益である。 共重合樹脂(A)のビニル芳香族単量体の例として
は、スチレン、α−メチルスチレン、核置換ハロ
ゲン化スチレン或はインデン等が使用可能であ
る。不飽和ジカルボン酸無水物の例としては無水
マレイン酸が最も一般的であるが、クロロマレイ
ン酸無水物、無水アコニツト酸、無水シトラコン
酸等も無水マレイン酸に一部代替する形で添加す
ることは可能である。 グラフト共重合樹脂(B)として代表的なものは
ABS樹脂或はMBS樹脂である。ABS樹脂又は
MBS樹脂は、通常未グラフトゴム質重合体、ゴ
ムグラフト共重合体及びマトリツクス形成硬質樹
脂としてのスチレン−アクリロニトリル又はスチ
レン−メタクリル酸メチル共重合体の混合物であ
り、混合物中のゴム含量は、グラフト及び未グラ
フトゴムの総和で15〜70重量%の範囲であること
が良く、特に本発明の複合樹脂組成物の耐衝撃性
を高水準に維持するためグラフト共重合樹脂(B)中
には15〜60重量%の水準に保つことが望ましい。
ゴム質重合体の含量は高ければ高いほど、最終組
成物中のゴム質重合体を高含有量に保つことがで
き、ひいては最終複合組成物の耐衝撃性を高くす
ることができるが、余りにその含有量が高すぎる
と混練又は成形操作の過程で、ゴム質重合体相互
の架橋等による変質のため溶融流れが著しく低下
したり或は着色したりしてかえつて最終組成物の
物性を低下させる。 マトリツクス樹脂を形成する成分、即ちビニル
芳香族単量体の例としては、前記のスチレン、α
−メチルスチレン、核置換スチレン等から選択し
うるが好ましいのは、スチレン及び/又はα−メ
チルスチレンである。マトリツクス樹脂を形成す
る他の単量体、即ち不飽和ニトリル化合物又は
(メタ)アクリル酸エステルの例としてはアクリ
ロニトリル、メタクリロニトリル、クロトノニト
リル又はメタクリル酸メチル、アクリル酸メチ
ル、メタクリル酸エチル等広汎な単量体群から選
択することができるが、より具体的な例としてア
クリロニトリル又はメタクリル酸メチルが好都合
である。マトリツクス樹脂を構成するビニル芳香
族単量体と、これと共重合可能な単量体の組み合
せの総量は、グラフト共重合樹脂(B)中30〜85重量
%が好ましく、より好適には、40〜85重量%であ
る。又この組み合せの比率は、スチレン等のビニ
ル芳香族単量体が過半を占めることが望ましく、
具体的には、スチレン等ビニル芳香族単量体を50
〜95重量%にすると良い。 グラフト共重合樹脂(B)の重合は、従来の公知の
方法即ち熱又はラジカル開始剤によつて温度50〜
140℃でゴム質重合体を、マトリツクス形成樹脂
成分である単量体混合物に溶解しておき塊状で重
合する方法、或は、ゴム質重合体のラテツクスを
乳化剤の存在下、水系で単量体混合物を添加して
重合させる乳化重合法、さらには、いわゆる塊状
懸濁重合法等どのような方法でも重合できる。し
かしながら前記した如く(B)成分樹脂中のゴム質重
合体を高含有率に維持するためには乳化重合法に
よる方がより好ましい。 次に、本発明に重要な役割を果す複合系物性改
良剤即ちグラフト共重合樹脂(C)については以下に
述べる重合体設計が必要であり、そのためにゴム
グラフトビニル芳香族単量体−不飽和ジカルボン
酸無水物共重合樹脂(C)の重合の検討が詳細になさ
れた。本グラフト共重合樹脂(C)を設計する上での
主たる要因となるものは、文献箕浦、森、工化、
61、109(1958)を参考にすると、 ゴム質重合体の種類 ゴム質重合体にグラフト(=マトリツクス相
を形成)する樹脂の種類の選択 グラフト率 が最も重要であると考えられる。は公知のポリ
ブタジエン又はスチレン−ブタジエン共重合体か
ら選択することに大きな障害はない。但し、後者
の場合スチレン−ブタジエンランダム共重合体又
は、スチレン分が過半を占めるブロツク共重合体
単独を選択する時は、後述するグラフト率の制御
に若干の困難を生ずる。 本樹脂(C)の枝ポリマーの選択は、次のように考
えられる。即ち、最終複合組成物のマトリツクス
樹脂相(連続相)を形成するのが共に極性の高い
ビニル芳香族単量体−不飽和ニトリル単量体又
は、ビニル芳香族単量体−不飽和ジカルボン酸無
水物単量体の共重合体の複合物であるので、複合
系の耐熱性を高水準に維持する必要からも、最終
的にビニル芳香族単量体−不飽和ジカルボン酸無
水物単量体の組み合せを選択した。 グラフト共重合樹脂のグラフト率は、前掲の文
献等にも明らかな如く、グラフト共重合条件、ラ
ジカル開始剤の濃度、グラフトすべき単量体の濃
度等非常に多くの要因を持つ。本発明の完成のた
め数多くのグラフト共重合実験が行なわれ詳細検
討の結果、大略次のことが判明し、以後の複合系
物性改良剤としてのグラフト共重合体構造設計に
役立てられた。即ち、グラフトされるゴム質重合
体(以下幹ポリマーと略)としてポリジエン化合
物又はビニル芳香族単量体−脂肪族ジエン化合物
共重合体を、又グラフト共重合樹脂成分(以下枝
ポリマーと略)として、ビニル芳香族単量体−不
飽和ジカルボン酸無水物の組み合せを用いる時、 イ 重合温度100〜130℃での熱開始ラジカルグラ
フト共重合では、塊状重合条件で約20〜80重量
%のグラフト率が達成される。 ロ 枝ポリマー成分としての不飽和ジカルボン酸
無水物初期仕込量を増すと重合速度が増すと共
にグラフト率も増大する。この場合、当然枝ポ
リマー中の不飽和ジカルボン酸無水物含量も増
加する。 ハ イの条件下で分子量調節剤(例えばターシヤ
リードデシルメルカプタン)を用いると、グラ
フト率は低下する。一方ラジカル開始剤を添加
するとグラフト率は向上する。 グラフト共重合樹脂(C)の調製は、後に具体例と
して詳述されるが、一般的に次の如く行なうのが
好ましい。即ちゴム質重合体としてポリブタジエ
ン及び/又はスチレン−ブタジエン共重合体を所
定量ビニル芳香族単量体と不飽和ジカルボン酸無
水物から成る単量体混合物に溶解する。この時の
ゴム質重合体の量は、重合反応速度、重合時間等
を勘案して決定される。また初期の単量体混合物
の仕込比は所望するグラフト共重合樹脂のマトリ
ツクス形成樹脂組成に対応して決められるが、ス
チレン−無水マレイン酸共重合の場合を第1図に
例をとり、単量体初期仕込組成と生成共重合体組
成の関係を説明する。 第1図は、横軸に単量体仕込組成比を、縦軸
に、生成共重合体の微分組成比を目盛つたもの
で、具体例としてスチレン−無水マレイン酸共重
合を重合温度90℃で実施する時の単量体組成比と
その際の生成共重合体の組成比を示す図である。
例えば横軸a点は単量体組成比がスチレン/無水
マレイン酸=0.9932/0.0068の重量比の時、生成
する共重合体組成比はスチレン/無水マレイン酸
=0.80/0.20(点b)となることを示している。
従つてこの関係図から逆に生成共重合体組成比が
0.920/0.080(点c)のものを得るには単量体組
成比を点dの0.9982/0.0018にする必要があるこ
とを例示するものである。但し、本図の縦軸は、
生成共重合体の微分組成(瞬時組成)であり、単
量体組成比は重合の進行と共に常に変化するの
で、前記特開昭58−2313号公報等を参考にして、
一定組成比の共重合体を得るために、不足する単
量体を系内に追添加する必要がある。 ゴム質重合体を単量体混合物に溶解したのち
は、重合系を不活性ガスで置換し熱重合の場合は
100〜140℃、ラジカル開始剤を用いる重合の場合
は80〜120℃で重合を開始する。ビニル芳香族単
量体と不飽和ジカルボン酸無水物の共重合は、一
定組成の共重合体をうるのに通常は不飽和ジカル
ボン酸無水物の追添加を行なう。所定の重合率に
達するか又は所定の重合時間経過後は重合混合物
を急冷するか又は重合禁止剤を投入して重合を停
止し、真空乾燥器中に移液して高真空(1〜
5Torr)下、高温(160〜240℃)で脱揮する。脱
揮後の残余物は乳白色塊状物であり、必要に応じ
粉砕機等で微細粉化する。得られた粉末は、溶剤
分別法でゴム質重合体含有成分とビニル芳香族単
量体及び不飽和ジカルボン酸無水物の共重合体成
分とに分別され原試料と分別法による溶媒可溶分
及び溶媒不溶分の3試料について不飽和ジカルボ
ン酸無水物含有量(重量%)を求め次の式によつ
てそのグラフト率を算出した。 グラフト率(G)=ゴム質重合体にグラフトしたマトリツ
スク樹脂の重量(g)/ゴム質重合体の重量(g)×10
0(%)=c/b−c×100
(%) 但し b;分別可溶分中の不飽和ジカルボン酸無水物の
含有率〔−〕 c;分別不溶分中の不飽和ジカルボン酸無水物の
含有率〔−〕 複合系物性改良剤としてのグラフト共重合樹脂
(C)のグラフト率は、最終複合組成物の物性を高水
準に保つために重要である。本樹脂のグラフト率
が30%よりも低いとき、樹脂(C)はその大部分が、
マトリツクス形成樹脂成分であるスチレン−無水
マレイン酸共重合樹脂であり、現実には、樹脂(A)
と、樹脂(B)の複合系に、若干のゴム質重合体と成
分樹脂(A)の類似物を添加するケースと同様であり
複合系改質剤として有効に作用しない。逆にグラ
フト率が100%を越えるときは、ゴム質重合体に
グラフトしたマトリツクス樹脂成分(枝ポリマ
ー)が、幹ポリマーの性質を抑え、むしろ枝ポリ
マーそのものの性質が強く反映される結果これ又
複合組成物の性質を高水準に維持しえない。この
ことを今少し詳しく説明するには複合系樹脂組成
物の物性を改良するグラフト共重合樹脂(C)の作用
効果について推定する必要がある。 複合樹脂の最大弱点は、その耐衝撃性の低下に
あると考えるのは妥当であり、かつその弱さは複
合樹脂相構造をミクロ的に解析するとその相界面
が破壊の開始点になることが一般的に認められて
いる。従つて複合樹脂の物性を向上するために、
その複合相界面を補強する成分の添加が有効であ
ることは勿論である。実験によれば樹脂(A)と樹脂
(B)の複合に於て界面を補強する成分は、樹脂(C)中
のグラフト共重合体成分であると思われるが、本
グラフト共重合体樹脂のグラフト率が30〜100%
の範囲外のものは、複合相界面を有効に補強しえ
ないことが判つた。即ちグラフト率が余りに小さ
くとも又余りに大きくとも共に本グラフト共重合
樹脂(殊に純グラフト共重合)が複合相界面に局
在せず、むしろ成分樹脂(B)中又は(A)中にほとんど
とり込まれてしまう結果、その添加効果が小さく
なると推定される。 成分樹脂(A)、グラフト共重合樹脂(B)及び複合系
物性改良剤としてのグラフト共重合樹脂(C)の複合
の方法は、公知のいかなる方法も採用できる。例
えば(A)、(B)及び(C)に共通する溶媒例えばハロゲン
化炭化水素と芳香族化合物又は脂肪族ケトン類と
芳香族化合物の組合せ溶媒中で3成分を混合溶解
し後に溶媒を蒸発させて所望の混合物を得ること
も可能である。しかしながらより実際的な混合方
法としては通常のタンブラーミキサー、ヘンシエ
ルミキサー等を用い、粉末及び/又はペレツトの
ブレンドを行なつたのち、単軸又は2軸の30mmφ
又は40mmφの混練押出機を用いてペレツト化する
のが好都合である。混練押出機での条件は温度
200〜240℃、スクリユー回転数30〜60rpm、滞留
時間数分が望ましい。この複合組成物中の成分(A)
及び(B)の比率は、複合組成物に要求される物性を
考慮して任意に選ぶことができるが、耐熱・耐衝
撃性かつ高流動性の複合樹脂組成物を得るために
(A)は全組成物中30〜70重量%なお好ましくは、40
〜60重量%の範囲で選ばれるべきである。同様に
成分(B)は、最終複合樹脂組成物の耐衝撃性を高水
準に維持するために20重量%以上、また耐熱性や
溶融流動性を下げないためには70重量%以下に限
定する必要がある。更に好ましいのは全組成物中
20〜35重量%である。なおこのことは必然的に物
性改良剤であるグラフト共重合樹脂(C)の量の全組
成物中の好ましい量を5〜40重量%に規定する。 尚、本組成物には、樹脂の熱劣化を防ぐための
熱安定剤、組成物の流動性や離型性を改良するた
めの滑剤等は勿論のこと公知の充填剤、顔料等を
添加することは、最終複合組成物の物性を極端に
低下させない物質及び量である限り問題はない。
混合・混練された樹脂組成物は通常のペレツト又
は細片状に切断し、公知のプレス成形法或は射出
成形法、押出成形法等によつて任意に賦形しう
る。賦形した試片は以下に示す方法によつて物性
評価試験を行なつた。 アイゾツド衝撃試験 ASTM D−138 熱変形温度測定試験 ASTM D−648 溶融流動試験 JIS K−6760 以下に本発明の実施例を示す。特に断りがない
限り数字は重量部数を示す。 スチレン−無水マレイン酸共重合樹脂(A)の重合例 撹拌翼、還流冷却器、自動温度調節器、熱媒循
環ジヤケツト等を装着した20のステンレス反応
管にスチレン(ST)9.93Kg、無水マレイン酸
(MAH)を0.07Kg投入し溶解する。N2置換のの
ち撹拌しながら反応器内温を120℃に昇温する。
内温が110℃に上つたところで重合反応を開始と
し、以後内温120℃で4時間重合する。この重合
期間中は、生成する共重合体の単量体としての成
分組成比を一定にするためMAHを融体で遂次追
添加する。その追添加スケジユールは重合速度、
共重合体組成及びスチレン−無水マレイン酸共重
合に於ける単量体反応性比から計算される。 所定時間の重合終了後、重合混合物を冷却しな
がら真空乾燥器中に移し、2Torrで160℃に昇温
して未反応単量体を脱揮した。得られたブロツク
状の透明共重合樹脂A1は粉砕機にて粉砕し微粉
末とした。収量は3.7Kgであり、生成樹脂のアル
カリ滴定によれば、共重合体樹脂中の無水マレイ
ン酸単位は6.7重量%、ウベローデ粘度計を用い
る、テトラヒドロフラン中30℃での溶液粘度
ηsp/c(濃度c=0.5g/dl)は1.01であつた。 上記と同じ方法により、単量体初期仕込と追添
加スケジユールが異なるだけの樹脂A2,A3
各々えた。単量体混合物中の無水マレイン酸が多
くなると若干重合速度が増すため最終の重合率は
A1<A2<A3の順に高くなつた。A1〜A3の分析値
等を表−に示す。 【表】 ゴムクラフトスチレン−無水マレイン酸共重合樹
脂(C)の重合例 撹拌翼、還流冷却器、自動温度調節器、熱媒循
環ジヤケツト等を装着した20のスチレン反応缶
に所定量のスチレン(ST)、無水マレイン酸
(MAH)及び溶媒を投入し、撹拌溶解したのち、
必要量のゴム質重合体を小片に切つて投入溶解す
る。溶解が完了したら必要に応じ分子量調節剤を
添加したのち、系をN2置換し、熱媒を循環させ
て、反応器内温を130℃に昇温する。撹拌槽内温
が120℃になつた時、重合開始とし、それ以後重
合液内温は130℃に維持しながら前記(A)樹脂の重
合と同様に、重合体組成制御のためのMAH追添
加を行なう。重合時間5時間後反応器を冷却しな
がら内容物を真空乾燥器中に移し、1Torr、180
℃に昇温して脱揮した。ブロツク状の乳白色樹脂
は少量ずつ粉砕器で微粉砕した。このようにして
得られた4種のグラフト共重合樹脂C1〜C4の分
析結果を表−に示す。 【表】 スチレン−アクリロニトリル−無水マレイン酸三
元共重合樹脂(SAM樹脂と略)の重合例 撹拌翼、還流冷却器、自動温度調節器、熱媒循
環ジヤケツト等を装着した5のステンレス反応
缶に、スチレン2.7Kg、アクリロニトリル0.27Kg、
無水マレイン酸0.03Kg(重量比で90対9対1に相
当)の各単量体を秤量し混合する。系内をN2
置換したのち、熱媒循環槽の温度を昇温して内温
を90℃に上げる。途中内温が85℃になれば、重合
開始としてこの時点から重合によつて消費される
アクリロニトリル−無水マレイン酸単量体混合物
を10分間隔で追添加する。この間重合液内温は90
℃に維持する。重合時間2.5時間で追添加を停止
し、160分後系を急冷して重合を停止し、熱安定
剤としてチバガイギー社製Irganox1010を0.5重量
部添加して真空脱揮処理を行なつた。得られた生
成物の分析値は表−に示す。 ゴムグラフトスチレン−アクリロニトリル−無水
マレイン酸共重合樹脂(HI−SAM樹脂と略)の
重合例 ゴムグラフト共重合樹脂(C)の重合と略同様であ
るが、アクリロニトリルが加わると、ポリブタジ
エン等ゴム質重合体が単量体混合物に溶解しにく
いため、溶媒(例えばトルエン等)を少し増やし
て使用する必要がある。前例の反応缶に、スチレ
ン、アクリロニトリル、無水マレイン酸及びトル
エンをこの順に1.84Kg、0.14Kg、0.02Kg及び1.0Kg
投入してよく撹拌したのち、ポリブタジエン(旭
化成(株)社製ジエンNF35AS)を0.40Kg小片に細断
して投入し溶解した。ポリブタジエンゴムが十分
溶解したならば系をN2置換し、熱媒を循環して、
内温を120℃に昇温する。この場合系がアクリロ
ニトリルのため加圧となるので、アクリロニトリ
ル−無水マレイン酸単量体混合物の追添加は、溶
媒を用いるポンプ圧入方式を採用した。所定時間
重合後、熱安定剤を加え撹拌混合したのち真空脱
揮した。生成物の分析値を表−に記す。 【表】 実施例 1 スチレン−無水マレイン酸共重合樹脂A3を50
部、ABS樹脂B1(日本合成ゴム(株)製DP−606、ゴ
ム含有率42%)を33部及びグラフト共重合樹脂
C3を17部各々秤量し、熱安定剤として住友化学
(株)製のWXR0.2部加えたのちミキサー内で十分混
合した。この混合物は、大阪精機(株)製の40mmφ単
軸押出機で混練ペレツト化した。押出条件はシリ
ンダー温度が最大240℃、スクリユー用モーター
回転数50rpmであつた。 こうして得たペレツトは、日精樹脂工業(株)製射
出成形機で物性評価のための成形試片とした。こ
の射出成形での一般的操作条件は、シリンダー温
度230℃、金型温度80℃、射出圧80〜100Kg/cm2
成形サイクルは射出20秒、保圧15秒、冷却20秒で
ある。 得られた成形試片は乳白色で若干ツヤがあり、
成形ヒズミやヒケは全くない良好な外観を示し
た。このものの物性評価値は表−に示したが、
耐熱・耐衝撃性及び溶融流れ等がバランスされた
実用的に有用な物性を保持していた。 比較例 1 実施例1において、物性改良剤としてのグラフ
ト共重合樹脂C3を用いなかつた外は全く同様の
実験を行なつた。但し、A3とB1の比率は実施例
1の重量分率に合せ60対40に設定した。成形物の
外観は実施例1と特に変るところはなかつたが、
測定された物性値は表−に示す如く低レベルの
値であり明らかにC3成分の添加が不可欠である
ことを示した。 実施例 2、3 実施例1において使用したABS樹脂B1の代り
に、ABS樹脂B2(日本合成ゴム(株)製VSポリマー、
ゴム含有率23.0%)を実施例2において、また、
MBS樹脂B3(ロームアンドハース社製、アクリ
ロイドKM−653、ゴム含有率48.0%)を実施例
3において各々使用して、同様な実験を行ない外
観及び物性を評価した。結果を表−に示す。外
観は実施例1とかわりないうえ、実施例2は、よ
り高い耐熱性を、又実施例3は、より高い耐衝撃
性を示した。 比較例 2 実施例2に於て、物性改良剤としてのグラフト
共重合樹脂C3を使用しない例を示したものであ
る。表−に示す如く、この例によつても改良剤
としてのC3の有効性が明白である。 比較例 3 実施例1のスチレン−無水マレイン酸共重合樹
脂A3とABS樹脂B1及びグラフト共重合樹脂C3
量比を各々15、62及び23重量部として、本発明の
特定範囲外の比率で組成物を調製した例である
が、物性改良剤C3の添加効果を全く発現しなか
つた。 実施例 4、5 実施例1の実験において、スチレン−無水マレ
イン酸共重合樹脂A3とABS樹脂B1及びグラフト
共重合樹脂C3の比率を各々、実施例4では38/
38/24又実施例5では64/27/9と若干変化させ
て物性検討を行なつた。結果を表−に示すが本
発明の特定範囲内で複合組成比を変更すること
は、例えば実施例4が耐衝撃性を最も重視した処
方に、又実施例5は逆にスチレン−無水マレイン
酸共重合樹脂の配合比を多くすることで、耐熱性
をより重視した処方になる如く、むしろ特徴的な
物性の発現に有益であつた。 実施例 6 本例は、スチレン−無水マレイン酸共重合樹脂
(A)の代りに、前記スチレン−アクリロニトリル−
無水マレイン酸三元共重合樹脂(SAM樹脂)を
用いて実施例1と全く同じ配合組成で実験した結
果を表−に示す。SAM樹脂中の無水マレイン
酸含有量が、樹脂A3のそれとほゞ同様であつた
が、第3成分としてのアクリロニトリルの含有
は、複合組成物の耐衝撃性に尚若干の改良をもた
らすことがわかつた。 実施例 7 実施例1に於て、複合物性改良剤として、グラ
フト共重合樹脂C3の代りに前記ゴムグラフトス
チレン−アクリロニトリル−無水マレイン酸三元
共重合樹脂(HI−SAM 樹脂)を、同量用いた
ほかは、全く同様の実験を行なつた。最終生成物
の外観は良好で、その物性も優秀であつた。結果
を表−に示す。 比較例 4、5 実施例1及び2に於て、スチレン−無水マレイ
ン酸共重合樹脂A3の代りに、同じ樹脂A1を用い
た場合の結果を表−に示す。共重合樹脂A中の
無水マレイン酸含量が低すぎる場合、複合組成物
の物性特に耐熱性が不十分なものである。 比較例 6、7 実施例1における複合系物性改良剤として、グ
ラフト率が所定の値の範囲外にあるグラフト共重
合樹脂を使用した場合の結果を示し、比較例6
は、グラフト率が低すぎるもの比較例7はグラフ
ト率が高すぎるものを各々実験した結果である。
結果を表−に示すが物性改良剤添加の効果が殆
んどない。 比較例 8 スチレン−無水マレイン酸共重合樹脂Aとし
て、実験室で別途調製したスチレン−無水マレイ
ン酸交互共重合樹脂(樹脂中の無水マレイン酸単
量体含有率PMAH=48.7重量%)を用い、本樹
脂60部とABS樹脂B140部と、混練実験を行なお
うと試みたが、実験操作中に発泡分解して複合組
成物が得られなかつた。 実施例 8、9 スチレン−無水マレイン酸共重合樹脂A3の代
りに、A2を50部用いたほかは、実施例1、2と
同様の実験を行なつた。結果を表−に示すが、
共重合樹脂A中の無水マレイン酸含量が少し低下
すると最終複合組成物の耐熱性は下るが、耐衝撃
性はほゞ同水準か又はそれ以上になることを示
し、樹脂A中の無水マレイン酸含量は14重量%程
度迄は複合物の物性は実用的に十分であることが
判つた。 実施例 10、11 実施例1、8に於て、グラフト共重合樹脂C3
の代りに、複合系物性改良剤として無水マレイン
酸含量の異なる樹脂C2を同量用いた場合の結果
を表−に示す。この結果も若干耐熱性が、実施
例1、8に比し低いが、耐衝撃性はむしろ向上
し、十分な実用物性を発現した。 比較例 9 実施例1に於て、ABS樹脂B1の代りにダイセ
ル化学(株)のABS樹脂(BDポリマーゴム含有率=
12%)を同量用いたほかは、実施例1と全く同様
に実験した結果を表−に示すが明らかにABS
樹脂中のゴム含有率は高い方が好ましい。 【表】 【表】 【表】 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly impact resistant thermoplastic resin composition having a high heat distortion temperature. Copolymer resins comprising vinyl aromatic monomers and unsaturated dicarboxylic anhydrides (for example, styrene maleic anhydride copolymer resins) are known. This resin is useful because it has excellent processability, high strength and hardness as a resin, and sufficient transparency.In particular, because of its high heat deformation resistance, it is a styrene-acrylonitrile copolymer resin (hereinafter abbreviated as SAN resin). ) is suitable for use in more severe thermal conditions. However, the toughness of this resin, that is, its low impact strength, naturally limits its wide range of applications. On the other hand, by radical polymerization in the presence of polybutadiene or styrene-butadiene copolymer, a vinyl aromatic monomer (e.g. styrene) and an unsaturated nitrile compound (e.g. acrylonitrile) or (meth)acrylic acid ester (e.g. methacrylic acid) are combined. So-called ABS resins or MBS resins obtained by graft copolymerization of mixtures of (methyl) are also known. This is a so-called rubber graft copolymer resin in which grafted or ungrafted rubber is finely dispersed in a matrix resin such as a styrene-acrylonitrile copolymer resin or a styrene-methyl methacrylate copolymer resin. Because it has much higher impact resistance than styrene-maleic anhydride copolymer resin,
It has a wide range of uses such as parts for home appliances and automobiles, but on the other hand, its heat deformation resistance is insufficient, for example, about 80
In an atmosphere with a temperature higher than ℃, the product may deform during use or
As a result of changes in quality, there are limits to its application. A composite composition of styrene-maleic anhydride copolymer resin (A) and so-called ABS resin (B) is
This composition is disclosed in Japanese Patent No. 50775.
It is stated that it is possible to provide a thermoplastic composite resin molding material that has improved impact resistance and heat deformation resistance that cannot be expected from either (A) or (B) alone. Certainly (A) and (B)
By combining the two, it is possible to slightly improve the heat resistance and impact resistance of the resin in a way that complements the shortcomings of both.
Sci., B(3) , 1007 (1965) states that combinations of thermoplastic copolymer resins are usually incompatible, and compatible combinations are rather an exception. As expected from the fact that (A) and (B) are simply combined together, the physical properties of the composite resin composition cannot be said to be practically sufficient, and the composite resin The melt flow behavior, which is an indicator of the moldability of the composition, is also unsatisfactory. The present inventors have developed a vinyl aromatic monomer-unsaturated dicarboxylic anhydride copolymer resin (A) and a rubber-grafted vinyl aromatic monomer-unsaturated nitrile (or (meth)acrylic acid ester) monomer. In the process of studying in detail how to improve the physical properties of the composite resin composition of body copolymer resin (B), we added rubber-grafted vinyl, which has mutual affinity with each of the above-mentioned resins, as a physical property improver to this composite resin composition. Adding an aromatic monomer-unsaturated dicarboxylic anhydride (and, if necessary, an unsaturated nitrile monomer or methacrylic acid ester monomer copolymerizable with these) copolymer resin (C). Due to this, the composite resin composition has practically excellent heat deformation resistance,
The present invention was completed based on the surprising fact that the composite resin composition exhibits impact resistance and has better moldability than the composite component resin (B). That is, the present invention provides (A) a vinyl aromatic monomer of 65 to 95% based on the weight of the polymer;
30 to 35 parts by weight of a copolymer resin consisting of 10 to 35 parts by weight of an unsaturated dicarboxylic anhydride and, if necessary, 0 to 30 parts by weight of a vinyl monomer copolymerizable with these.
70% by weight (B) Vinyl aromatic monomer and unsaturated nitrile in the presence of 15 to 70 parts by weight of a rubbery polymer consisting of polybutadiene and/or styrene-butadiene copolymer, based on the weight of the polymer composition. Monomer or mixture of (meth)acrylic acid ester monomers30
20-70% by weight of a graft copolymer resin obtained by graft copolymerizing ~85 parts by weight and (C) 5-50% by weight of a rubbery polymer consisting of polybutadiene and/or styrene-butadiene copolymer, based on the weight of the polymer composition. 50 to 95 parts by weight of a mixture of a vinyl aromatic monomer, an unsaturated carboxylic acid anhydride, and optionally an unsaturated nitrile monomer or methacrylic acid ester monomer copolymerizable therewith, in the presence of 50 to 95 parts by weight. A heat-resistant/impact-resistant composite resin composition comprising 5 to 40% by weight of a graft copolymer resin obtained by graft copolymerizing the above-mentioned Thus, the object of the present invention is to provide a new resin composition that is easy to mold and has practically high heat resistance and impact resistance. A typical example of the copolymer resin (A) is a styrene-maleic anhydride copolymer. The content of unsaturated dicarboxylic anhydride in this copolymer resin is 10~
The range of 35% by weight is good, and considering the heat resistance and moldability of the composite, it is more preferably 10 to 25% by weight.
It is. It is preferable to copolymerize a third copolymerizable vinyl monomer in order to increase the affinity with the partner resin to be composited. For example, when ABS resin is selected as the graft copolymer resin (B), the convenient third monomer is acrylonitrile, and when MBS resin is selected as the graft copolymer resin (B), the third monomer is Methyl methacrylate is preferred. However, it is desirable that the total amount of the third monomer selected does not exceed 30% by weight in the copolymer. Polymerization of the copolymer resin (A) can be carried out by various methods and conditions, but it can be carried out by any of the known methods such as solution polymerization, precipitation polymerization, batchwise or continuous bulk polymerization. As a specific example, the temperature is 80 to 140
By thermal initiation at °C or by addition of a radical initiator,
A mixture of a vinyl aromatic monomer and an unsaturated dicarboxylic acid anhydride is polymerized by radical polymerization. In this case, when the combination of the monomers is styrene-maleic anhydride, since it has strong alternating copolymerizability, it is necessary to suppress the copolymer resin composition within the above composition range and to adjust the composition as the polymerization rate changes. In order to minimize compositional changes, a delicate monomer addition technique is required; an example of this can be found in the method previously proposed by the present inventors, that is, in JP-A-58-2313. I can do it. Incidentally, the copolymer resin (A) is effective in improving the heat deformation resistance of the resin composition of the present invention, but the content ratio in the composition is preferably 30 to 70% by weight, which is more practical. is the heat resistance of the composite resin composition,
In order to maintain melt fluidity at a high level value, it is desirable that the amount is 40% by weight or more in the composite resin composition, and on the other hand, in order to make the impact resistance of the composition a high value, it is preferably 65% by weight.
It is useful to limit yourself to: Examples of the vinyl aromatic monomer for the copolymer resin (A) include styrene, α-methylstyrene, nuclear-substituted halogenated styrene, and indene. Maleic anhydride is the most common example of unsaturated dicarboxylic anhydride, but chloromaleic anhydride, aconitic anhydride, citraconic anhydride, etc. may also be added as partial substitutes for maleic anhydride. It is possible. Typical graft copolymer resins (B) are
ABS resin or MBS resin. ABS resin or
MBS resins are usually mixtures of ungrafted rubbery polymers, rubber graft copolymers and styrene-acrylonitrile or styrene-methyl methacrylate copolymers as matrix-forming hard resins, the rubber content in the mixture being The total amount of ungrafted rubber is preferably in the range of 15 to 70% by weight, and in particular, in order to maintain the impact resistance of the composite resin composition of the present invention at a high level, the graft copolymer resin (B) contains 15 to 70% by weight. It is desirable to keep it at a level of 60% by weight.
The higher the content of the rubbery polymer, the higher the content of the rubbery polymer in the final composition, and the higher the impact resistance of the final composite composition. If the content is too high, during the kneading or molding process, the properties of the rubbery polymers will change due to mutual crosslinking, resulting in a marked decrease in melt flow or coloring, which will actually deteriorate the physical properties of the final composition. . Examples of the component forming the matrix resin, that is, the vinyl aromatic monomer, include the above-mentioned styrene, α
-Methystyrene, nuclear-substituted styrene, etc., preferably styrene and/or α-methylstyrene. Examples of other monomers forming the matrix resin, i.e., unsaturated nitrile compounds or (meth)acrylic esters, include acrylonitrile, methacrylonitrile, crotononitrile, methyl methacrylate, methyl acrylate, ethyl methacrylate, etc. The monomers can be selected from the following monomer groups, with a more specific example being acrylonitrile or methyl methacrylate. The total amount of the combination of the vinyl aromatic monomer constituting the matrix resin and the monomer copolymerizable with it is preferably 30 to 85% by weight in the graft copolymer resin (B), more preferably 40 to 85% by weight. ~85% by weight. In addition, it is desirable that the ratio of this combination is such that vinyl aromatic monomers such as styrene account for the majority;
Specifically, 50% of vinyl aromatic monomers such as styrene
It is best to keep it at ~95% by weight. The graft copolymer resin (B) is polymerized by a conventional known method, that is, using heat or a radical initiator at a temperature of 50 to
A method in which a rubbery polymer is dissolved in a monomer mixture as a matrix-forming resin component at 140°C and then polymerized in bulk, or a rubbery polymer latex is monomerized in an aqueous system in the presence of an emulsifier. Polymerization can be carried out by any method such as an emulsion polymerization method in which a mixture is added and polymerized, or a so-called bulk suspension polymerization method. However, as mentioned above, in order to maintain a high content of the rubbery polymer in the resin component (B), emulsion polymerization is more preferable. Next, regarding the composite physical property improver, that is, the graft copolymer resin (C), which plays an important role in the present invention, the polymer design described below is required, and for this purpose, the rubber graft vinyl aromatic monomer-unsaturated The polymerization of dicarboxylic anhydride copolymer resin (C) was investigated in detail. The main factors in designing this graft copolymer resin (C) are from the literature Minoura, Mori, Koka,
61, 109 (1958), the most important factors are the type of rubbery polymer, the selection of the type of resin to be grafted onto the rubbery polymer (to form a matrix phase), and the grafting ratio. There is no major problem in selecting from known polybutadiene or styrene-butadiene copolymers. However, in the latter case, when a styrene-butadiene random copolymer or a block copolymer in which styrene accounts for the majority is selected, some difficulty arises in controlling the grafting rate, which will be described later. The selection of the branched polymer of the present resin (C) can be considered as follows. That is, the matrix resin phase (continuous phase) of the final composite composition is formed by a highly polar vinyl aromatic monomer-unsaturated nitrile monomer or a vinyl aromatic monomer-unsaturated dicarboxylic anhydride. Since it is a composite of a copolymer of monomers, it is necessary to maintain a high level of heat resistance of the composite system, so in the end, the combination of vinyl aromatic monomer and unsaturated dicarboxylic acid anhydride monomer is I chose a combination. As is clear from the above-mentioned literature, the grafting ratio of the graft copolymer resin depends on many factors such as graft copolymerization conditions, the concentration of the radical initiator, and the concentration of the monomer to be grafted. Numerous graft copolymerization experiments were carried out to complete the present invention, and as a result of detailed studies, the following facts were found, which were useful in the subsequent structural design of the graft copolymer as an agent for improving the physical properties of composite systems. That is, a polydiene compound or a vinyl aromatic monomer-aliphatic diene compound copolymer is used as the rubbery polymer to be grafted (hereinafter referred to as the "trunk polymer"), and as a graft copolymer resin component (hereinafter referred to as the "branch polymer"). , when using a combination of vinyl aromatic monomer and unsaturated dicarboxylic acid anhydride, (a) In thermally initiated radical graft copolymerization at a polymerization temperature of 100 to 130°C, a grafting rate of about 20 to 80% by weight can be obtained under bulk polymerization conditions. is achieved. (b) When the initial charge amount of unsaturated dicarboxylic anhydride as a branched polymer component is increased, the polymerization rate increases and the grafting rate also increases. In this case, the content of unsaturated dicarboxylic acid anhydride in the branched polymer naturally also increases. If a molecular weight modifier (eg tertiarydecyl mercaptan) is used under high conditions, the grafting rate will decrease. On the other hand, when a radical initiator is added, the grafting rate is improved. The preparation of the graft copolymer resin (C) will be described in detail later as a specific example, but it is generally preferable to carry out as follows. That is, a predetermined amount of polybutadiene and/or styrene-butadiene copolymer as a rubbery polymer is dissolved in a monomer mixture consisting of a vinyl aromatic monomer and an unsaturated dicarboxylic acid anhydride. The amount of the rubbery polymer at this time is determined by taking into consideration the polymerization reaction rate, polymerization time, etc. Furthermore, the initial charging ratio of the monomer mixture is determined depending on the matrix-forming resin composition of the desired graft copolymer resin. The relationship between the initial composition of the copolymer and the composition of the produced copolymer will be explained. In Figure 1, the horizontal axis shows the monomer charge composition ratio, and the vertical axis shows the differential composition ratio of the produced copolymer.As a specific example, styrene-maleic anhydride copolymerization is performed at a polymerization temperature of 90°C. It is a figure which shows the monomer composition ratio at the time of implementation, and the composition ratio of the produced copolymer at that time.
For example, at point a on the horizontal axis, when the monomer composition ratio is styrene/maleic anhydride = 0.9932/0.0068, the resulting copolymer composition ratio is styrene/maleic anhydride = 0.80/0.20 (point b). It is shown that.
Therefore, from this relationship diagram, conversely, the composition ratio of the produced copolymer is
This exemplifies that in order to obtain 0.920/0.080 (point c), the monomer composition ratio needs to be 0.9982/0.0018, which is point d. However, the vertical axis of this figure is
This is the differential composition (instantaneous composition) of the produced copolymer, and the monomer composition ratio constantly changes as the polymerization progresses.
In order to obtain a copolymer with a constant composition ratio, it is necessary to add the missing monomer into the system. After dissolving the rubbery polymer in the monomer mixture, replace the polymerization system with an inert gas and, in the case of thermal polymerization,
Polymerization is initiated at 100-140°C, or at 80-120°C in the case of polymerization using a radical initiator. In the copolymerization of a vinyl aromatic monomer and an unsaturated dicarboxylic anhydride, the unsaturated dicarboxylic anhydride is usually added in order to obtain a copolymer having a certain composition. When a predetermined polymerization rate is reached or a predetermined polymerization time has elapsed, the polymerization mixture is rapidly cooled or a polymerization inhibitor is added to stop the polymerization, and the liquid is transferred to a vacuum dryer and heated under high vacuum (1 to
It devolatilizes at high temperature (160-240℃) under 5Torr). The residue after devolatilization is a milky white lump, and if necessary, it is pulverized into a fine powder using a pulverizer or the like. The obtained powder is separated into a rubbery polymer-containing component and a vinyl aromatic monomer and unsaturated dicarboxylic anhydride copolymer component by a solvent fractionation method, and the original sample is separated from the solvent-soluble component by the fractionation method. The unsaturated dicarboxylic anhydride content (weight %) was determined for the three solvent-insoluble samples, and the grafting rate was calculated using the following formula. Grafting ratio (G) = Weight of matrix resin grafted onto rubbery polymer (g) / Weight of rubbery polymer (g) x 10
0 (%) = c/b-c×100
(%) However, b: Content rate of unsaturated dicarboxylic acid anhydride in the fractionated soluble fraction [-] c: Content rate of unsaturated dicarboxylic acid anhydride in the fractionated insoluble fraction [-] As a composite system physical property improver Graft copolymer resin
The grafting rate of (C) is important for maintaining the physical properties of the final composite composition at a high level. When the grafting rate of this resin is lower than 30%, most of the resin (C) is
It is a styrene-maleic anhydride copolymer resin that is a matrix-forming resin component, and in reality, resin (A)
This is similar to the case where some rubbery polymer and a similar substance of component resin (A) are added to the composite system of resin (B), and it does not act effectively as a composite system modifier. On the other hand, when the grafting ratio exceeds 100%, the matrix resin component (branch polymer) grafted onto the rubbery polymer suppresses the properties of the trunk polymer, and rather the properties of the branch polymer itself are strongly reflected, resulting in a composite. The properties of the composition cannot be maintained at a high level. To explain this in more detail, it is necessary to estimate the effect of the graft copolymer resin (C) on improving the physical properties of the composite resin composition. It is reasonable to think that the greatest weakness of composite resins is their reduced impact resistance, and this weakness is due to the fact that microscopic analysis of the phase structure of composite resins shows that the phase interface becomes the starting point of fracture. Generally accepted. Therefore, in order to improve the physical properties of composite resin,
It goes without saying that it is effective to add a component that reinforces the composite phase interface. According to experiments, resin (A) and resin
The component reinforcing the interface in the composite of (B) is thought to be the graft copolymer component in resin (C), but the grafting rate of this graft copolymer resin is 30 to 100%.
It was found that those outside the range cannot effectively reinforce the composite phase interface. In other words, if the grafting ratio is too small or too large, the present graft copolymer resin (especially pure graft copolymer) will not be localized at the composite phase interface, but rather will be mostly absorbed in the component resin (B) or (A). It is estimated that as a result of this, the effect of its addition will be reduced. Any known method can be used to combine the component resin (A), the graft copolymer resin (B), and the graft copolymer resin (C) as a composite system property improver. For example, the three components are mixed and dissolved in a solvent common to (A), (B) and (C), such as a combination of a halogenated hydrocarbon and an aromatic compound or an aliphatic ketone and an aromatic compound, and then the solvent is evaporated. It is also possible to obtain the desired mixture by However, a more practical mixing method is to blend the powder and/or pellets using a regular tumbler mixer, Henschel mixer, etc.
Alternatively, it is convenient to pelletize using a 40 mmφ kneading extruder. The conditions in the kneading extruder are temperature.
Desirably 200-240°C, screw rotation speed 30-60 rpm, and residence time of several minutes. Component (A) in this composite composition
The ratio of
(A) is 30 to 70% by weight of the total composition, preferably 40% by weight.
It should be selected in the range of ~60% by weight. Similarly, component (B) is limited to 20% by weight or more in order to maintain a high level of impact resistance of the final composite resin composition, and 70% by weight or less in order not to reduce heat resistance or melt flowability. There is a need. More preferably, in the entire composition
It is 20-35% by weight. Incidentally, this necessarily stipulates that the preferred amount of the graft copolymer resin (C), which is a physical property improver, in the total composition is 5 to 40% by weight. In addition, to this composition, not only a heat stabilizer to prevent thermal deterioration of the resin, a lubricant to improve the fluidity and mold release properties of the composition, but also known fillers, pigments, etc. are added. This is not a problem as long as the substance and amount do not significantly reduce the physical properties of the final composite composition.
The mixed and kneaded resin composition may be cut into ordinary pellets or strips, and optionally shaped by a known press molding method, injection molding method, extrusion molding method, or the like. The shaped specimens were subjected to physical property evaluation tests using the method described below. Izod Impact Test ASTM D-138 Heat Deformation Temperature Measurement Test ASTM D-648 Melt Flow Test JIS K-6760 Examples of the present invention are shown below. Unless otherwise specified, numbers indicate parts by weight. Polymerization example of styrene-maleic anhydride copolymer resin (A) 9.93 kg of styrene (ST) and maleic anhydride were placed in 20 stainless steel reaction tubes equipped with stirring blades, reflux condenser, automatic temperature controller, heat medium circulation jacket, etc. Add 0.07Kg of (MAH) and dissolve. After replacing with N2 , the internal temperature of the reactor was raised to 120°C while stirring.
The polymerization reaction was started when the internal temperature rose to 110°C, and the polymerization was then continued at an internal temperature of 120°C for 4 hours. During this polymerization period, MAH is successively added in the form of a melt in order to keep the monomer composition ratio of the copolymer to be constant. The addition schedule is the polymerization rate,
It is calculated from the copolymer composition and the monomer reactivity ratio in styrene-maleic anhydride copolymerization. After completion of polymerization for a predetermined time, the polymerization mixture was transferred to a vacuum dryer while being cooled, and heated to 160° C. at 2 Torr to devolatilize unreacted monomers. The obtained block-shaped transparent copolymer resin A1 was pulverized into a fine powder using a pulverizer. The yield was 3.7 kg, and according to alkaline titration of the resulting resin, the maleic anhydride units in the copolymer resin were 6.7% by weight. c=0.5g/dl) was 1.01. Resins A 2 and A 3 were prepared using the same method as above, but differed only in the initial monomer charge and additional addition schedule. As the amount of maleic anhydride in the monomer mixture increases, the polymerization rate increases slightly, so the final polymerization rate is
The values increased in the order of A 1 < A 2 < A 3 . The analytical values of A 1 to A 3 are shown in Table -. [Table] Polymerization example of rubber craft styrene-maleic anhydride copolymer resin (C) A predetermined amount of styrene ( After adding ST), maleic anhydride (MAH) and a solvent and stirring to dissolve,
Cut the required amount of rubbery polymer into small pieces, add and dissolve. When the dissolution is completed, a molecular weight regulator is added as necessary, the system is replaced with N2 , and a heating medium is circulated to raise the internal temperature of the reactor to 130°C. When the internal temperature of the stirring tank reached 120°C, polymerization was started, and after that, while maintaining the internal temperature of the polymerization solution at 130°C, additional MAH was added to control the polymer composition in the same manner as in the polymerization of resin (A) above. Do this. After 5 hours of polymerization, the contents were transferred to a vacuum dryer while cooling the reactor, and heated to 1 Torr, 180
The temperature was raised to ℃ and devolatilized. The block-shaped milky white resin was pulverized little by little using a pulverizer. Table 1 shows the analysis results of the four graft copolymer resins C 1 to C 4 thus obtained. [Table] Polymerization example of styrene-acrylonitrile-maleic anhydride ternary copolymer resin (abbreviated as SAM resin) In a stainless steel reactor equipped with stirring blades, reflux condenser, automatic temperature controller, heat medium circulation jacket, etc. , styrene 2.7Kg, acrylonitrile 0.27Kg,
0.03 kg of maleic anhydride (equivalent to a weight ratio of 90:9:1) and each monomer are weighed and mixed. After replacing the inside of the system with N 2 , the temperature of the heat medium circulation tank is raised to raise the internal temperature to 90°C. When the internal temperature reaches 85° C. during the course of the polymerization, the acrylonitrile-maleic anhydride monomer mixture to be consumed during the polymerization is added at 10 minute intervals to initiate polymerization. During this time, the internal temperature of the polymerization solution was 90.
Maintain at °C. Additional addition was stopped after 2.5 hours of polymerization time, and after 160 minutes, the system was rapidly cooled to stop polymerization, and 0.5 parts by weight of Irganox 1010 manufactured by Ciba Geigy was added as a heat stabilizer and vacuum devolatilization treatment was performed. The analytical values of the obtained product are shown in Table 1. Polymerization example of rubber graft styrene-acrylonitrile-maleic anhydride copolymer resin (abbreviated as HI-SAM resin) This is almost the same as the polymerization of rubber graft copolymer resin (C), but when acrylonitrile is added, rubbery polymers such as polybutadiene Since the combination is difficult to dissolve in the monomer mixture, it is necessary to use a slightly increased amount of solvent (for example, toluene, etc.). Add 1.84Kg, 0.14Kg, 0.02Kg, and 1.0Kg of styrene, acrylonitrile, maleic anhydride, and toluene to the reaction vessel from the previous example in this order.
After charging and stirring thoroughly, polybutadiene (Diene NF35AS manufactured by Asahi Kasei Corporation) was chopped into small pieces of 0.40 kg and charged and dissolved. Once the polybutadiene rubber is sufficiently dissolved, the system is replaced with N2 , the heating medium is circulated,
Raise the internal temperature to 120℃. In this case, since the system was pressurized due to acrylonitrile, a pump injection method using a solvent was used for the additional addition of the acrylonitrile-maleic anhydride monomer mixture. After polymerization for a predetermined period of time, a heat stabilizer was added and mixed with stirring, followed by vacuum devolatilization. The analytical values of the product are shown in the table. [Table] Example 1 50% of styrene-maleic anhydride copolymer resin A3
1 part, 33 parts of ABS resin B 1 (DP-606 manufactured by Nippon Gosei Rubber Co., Ltd., rubber content 42%) and graft copolymer resin
Weighed 17 parts of C3 each and added Sumitomo Chemical as a heat stabilizer.
After adding 0.2 part of WXR manufactured by Co., Ltd., the mixture was thoroughly mixed in a mixer. This mixture was kneaded into pellets using a 40 mmφ single screw extruder manufactured by Osaka Seiki Co., Ltd. The extrusion conditions were a maximum cylinder temperature of 240°C and a screw motor rotation speed of 50 rpm. The pellets thus obtained were molded into specimens for physical property evaluation using an injection molding machine manufactured by Nissei Jushi Kogyo Co., Ltd. The general operating conditions for this injection molding are cylinder temperature 230℃, mold temperature 80℃, injection pressure 80-100Kg/ cm2 ,
The molding cycle was 20 seconds for injection, 15 seconds for holding pressure, and 20 seconds for cooling. The molded specimen obtained was milky white and slightly glossy.
It exhibited a good appearance with no molding distortion or sink marks. The physical property evaluation values of this product are shown in the table.
It maintained practically useful physical properties with well-balanced heat resistance, impact resistance, melt flow, etc. Comparative Example 1 The same experiment as in Example 1 was conducted except that the graft copolymer resin C 3 as a physical property improver was not used. However, the ratio of A 3 and B 1 was set to 60:40 in accordance with the weight fraction of Example 1. Although the appearance of the molded product was not particularly different from Example 1,
The measured physical property values were at a low level as shown in the table, clearly indicating that the addition of the C3 component was essential. Examples 2 and 3 Instead of ABS resin B 1 used in Example 1, ABS resin B 2 (VS polymer manufactured by Japan Synthetic Rubber Co., Ltd.,
Rubber content 23.0%) in Example 2, and
Similar experiments were conducted using MBS resin B 3 (manufactured by Rohm and Haas, Acryloid KM-653, rubber content 48.0%) in Example 3 to evaluate the appearance and physical properties. The results are shown in the table. The appearance was the same as that of Example 1, and Example 2 exhibited higher heat resistance, and Example 3 exhibited higher impact resistance. Comparative Example 2 This example shows an example in which the graft copolymer resin C 3 as a physical property improver was not used in Example 2. As shown in the table, the effectiveness of C3 as a modifier is evident in this example as well. Comparative Example 3 The quantitative ratios of styrene-maleic anhydride copolymer resin A 3 of Example 1, ABS resin B 1 and graft copolymer resin C 3 were set to 15, 62 and 23 parts by weight, respectively, and Although this is an example in which a composition was prepared according to the ratio, the effect of adding the physical property improver C3 was not exhibited at all. Examples 4 and 5 In the experiment of Example 1, the ratio of styrene-maleic anhydride copolymer resin A 3 to ABS resin B 1 and graft copolymer resin C 3 was 38/3 in Example 4.
38/24 and in Example 5, the physical properties were examined with a slight change to 64/27/9. The results are shown in Table 1. By changing the composite composition ratio within the specific range of the present invention, for example, in Example 4, the formulation prioritized impact resistance the most, and in Example 5, on the contrary, styrene-maleic anhydride was used. Increasing the blending ratio of the copolymer resin resulted in a formulation that placed more emphasis on heat resistance, and was rather beneficial in developing characteristic physical properties. Example 6 In this example, styrene-maleic anhydride copolymer resin
In place of (A), the styrene-acrylonitrile-
Table 1 shows the results of an experiment using maleic anhydride ternary copolymer resin (SAM resin) with the same composition as in Example 1. Although the maleic anhydride content in the SAM resin was almost similar to that of resin A 3 , the inclusion of acrylonitrile as the third component could still bring about some improvement in the impact resistance of the composite composition. I understand. Example 7 In Example 1, the same amount of the rubber grafted styrene-acrylonitrile-maleic anhydride ternary copolymer resin (HI-SAM resin) was used instead of the graft copolymer resin C3 as a composite physical property improver. Exactly the same experiment was conducted except that The final product had a good appearance and excellent physical properties. The results are shown in the table. Comparative Examples 4 and 5 Table 1 shows the results when the same resin A1 was used in place of the styrene-maleic anhydride copolymer resin A3 in Examples 1 and 2. If the maleic anhydride content in the copolymer resin A is too low, the physical properties, particularly the heat resistance, of the composite composition will be insufficient. Comparative Examples 6 and 7 The results of using a graft copolymer resin with a graft ratio outside the predetermined value range as the composite system physical property improver in Example 1 are shown, and Comparative Example 6
These are the results of experiments in which the graft ratio was too low and Comparative Example 7 was where the graft ratio was too high.
The results are shown in Table 1, and there is almost no effect of adding the physical property improver. Comparative Example 8 As the styrene-maleic anhydride copolymer resin A, a styrene-maleic anhydride alternating copolymer resin (maleic anhydride monomer content in the resin PMAH = 48.7% by weight) separately prepared in the laboratory was used. An attempt was made to perform a kneading experiment with 60 parts of this resin and 40 parts of ABS resin B1 , but the foaming decomposed during the experimental operation and a composite composition could not be obtained. Examples 8 and 9 The same experiments as in Examples 1 and 2 were conducted except that 50 parts of A2 was used instead of the styrene-maleic anhydride copolymer resin A3 . The results are shown in the table.
This shows that when the maleic anhydride content in copolymer resin A is slightly reduced, the heat resistance of the final composite composition decreases, but the impact resistance is approximately at the same level or higher. It was found that the physical properties of the composite were practically sufficient up to a content of about 14% by weight. Examples 10 and 11 In Examples 1 and 8, graft copolymer resin C 3
Table 1 shows the results when the same amount of resin C 2 with different maleic anhydride contents was used as a composite physical property improver instead of . As a result, although the heat resistance was slightly lower than that of Examples 1 and 8, the impact resistance was rather improved, and sufficient practical physical properties were exhibited. Comparative Example 9 In Example 1 , ABS resin from Daicel Chemical Co., Ltd. (BD polymer rubber content =
Table 1 shows the results of an experiment conducted in exactly the same manner as in Example 1, except that the same amount of ABS (12%) was used.
The higher the rubber content in the resin, the better. [Table] [Table] [Table] [Table]

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスチレン−無水マレイン酸共重合樹脂
を重合する場合の単量体組成比と生成共重合体組
成比の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the monomer composition ratio and the produced copolymer composition ratio in the case of polymerizing a styrene-maleic anhydride copolymer resin.

Claims (1)

【特許請求の範囲】 1 (A) 重合体重量基準でビニル芳香族単量体65
〜95重量部、不飽和ジカルボン酸無水物10〜35
重量部及び必要に応じてこれらと共重合可能な
ビニル単量体0〜30重量部より成る共重合樹脂
30〜70重量%と、 (B) 重合体組成物重量基準で、ポリブタジエン及
び/又はスチレン−ブタジエン共重合体から成
るゴム質重合体15〜70重量部の存在下に、ビニ
ル芳香族単量体及び不飽和ニトリル単量体又は
(メタ)アクリル酸エステル単量体の混合物30
〜85重量部をグラフト共重合せしめたグラフト
共重合樹脂20〜70重量%及び (C) 重合体組成物重量基準で、ポリブタジエン及
び/又はスチレン−ブタジエン共重合体から成
るゴム質重合体5〜50重量部の存在下に、ビニ
ル芳香族単量体、不飽和ジカルボン酸無水物及
び必要に応じて、これらと共重合可能な不飽和
ニトリル単量体又はメタクリル酸エステル単量
体の混合物50〜95重量部をグラフト共重合せし
めたグラフト共重合樹脂で、かつそのグラフト
率が30〜100重量%の範囲内にあるもの5〜40
重量% より成る耐熱・耐衝撃性複合系樹脂組成物。
[Scope of Claims] 1 (A) Vinyl aromatic monomer 65% based on polymer weight
~95 parts by weight, unsaturated dicarboxylic anhydride 10-35
A copolymer resin consisting of parts by weight and, if necessary, 0 to 30 parts by weight of a vinyl monomer copolymerizable with these.
(B) vinyl aromatic monomer in the presence of 15 to 70 parts by weight of a rubbery polymer consisting of polybutadiene and/or styrene-butadiene copolymer, based on the weight of the polymer composition; and a mixture of unsaturated nitrile monomers or (meth)acrylic acid ester monomers30
20-70% by weight of a graft copolymer resin obtained by graft copolymerizing ~85 parts by weight and (C) 5-50% by weight of a rubbery polymer consisting of polybutadiene and/or styrene-butadiene copolymer, based on the weight of the polymer composition. A mixture of a vinyl aromatic monomer, an unsaturated dicarboxylic acid anhydride, and optionally an unsaturated nitrile monomer or methacrylic acid ester monomer copolymerizable therewith in the presence of 50 to 95 parts by weight. A graft copolymer resin obtained by graft copolymerizing 5 to 40 parts by weight, and the grafting ratio is within the range of 30 to 100% by weight.
A heat-resistant and impact-resistant composite resin composition consisting of % by weight.
JP7529283A 1983-04-28 1983-04-28 Heat-resistant, shock-resistant composite resin composition Granted JPS59199745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7529283A JPS59199745A (en) 1983-04-28 1983-04-28 Heat-resistant, shock-resistant composite resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7529283A JPS59199745A (en) 1983-04-28 1983-04-28 Heat-resistant, shock-resistant composite resin composition

Publications (2)

Publication Number Publication Date
JPS59199745A JPS59199745A (en) 1984-11-12
JPH0367109B2 true JPH0367109B2 (en) 1991-10-21

Family

ID=13572013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7529283A Granted JPS59199745A (en) 1983-04-28 1983-04-28 Heat-resistant, shock-resistant composite resin composition

Country Status (1)

Country Link
JP (1) JPS59199745A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620684A1 (en) * 1986-06-20 1987-12-23 Basf Ag MIXTURE OF THERMOPLASTIC COMPONENTS, METHOD FOR PRODUCING A MATERIAL THERMOPLASTIC MOLDING MATERIAL FROM THIS MIXTURE AND MOLDING PARTS THEREOF
JPH0689203B2 (en) * 1989-11-14 1994-11-09 出光石油化学株式会社 Styrene resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518358A (en) * 1974-06-07 1976-01-23 Gen Electric
JPS5787450A (en) * 1980-11-20 1982-05-31 Daicel Chem Ind Ltd Thermoplastic composition for molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518358A (en) * 1974-06-07 1976-01-23 Gen Electric
JPS5787450A (en) * 1980-11-20 1982-05-31 Daicel Chem Ind Ltd Thermoplastic composition for molding

Also Published As

Publication number Publication date
JPS59199745A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
US4659790A (en) Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
US4605699A (en) Thermoplastic molding compositions containing polycarbonate and an acrylate graft copolymer
EP0077038B2 (en) Process for producing impact resistant resins
JPS6284109A (en) Production of thermoplastic resin composition
JP3118409B2 (en) Rubbery polymer and ABS resin using the same
US4559386A (en) ABS compositions and process for preparing same
JPH0367109B2 (en)
JPH11293085A (en) Styrenic resin composition
EP0284428A2 (en) Graft copolymer and styrene based resin composition
JP2796595B2 (en) Multilayer polymer and resin composition
JP2001323129A (en) Copolymer composition and vinyl chloride resin composition containing the same
JP2000273270A (en) Thermoplastic resin composition
JPH0245547A (en) Transparent impact-resistant resin composition
JPS61233044A (en) Thermoplastic resin composition
JP3015707B2 (en) Method for producing graft copolymer
JP3112849B2 (en) Styrene resin composition
JPH10298375A (en) Rubber-modified heat-resistant styrene-based resin composition
JPH1077384A (en) Thermoplastic resin composition excellent in heat resistance and impact strength
JPH0940838A (en) Low lustrous and heat-resistant resin composition having excellent flow impact balance
JPH0559247A (en) Weather-resistant, high-impact polymer composition excellent in heat resistance
JPS61130365A (en) Thermoplastic resin composition having excellent resistance to heat and impact
JPH1143581A (en) Thermoplastic resin composition and its production
JPS5811541A (en) Impact resistant resin composition
JPS59135245A (en) Thermoplastic resin composition
JPH10330565A (en) Thermoplastic resin composition