JPH0367101A - Precision grating plate - Google Patents

Precision grating plate

Info

Publication number
JPH0367101A
JPH0367101A JP2343590A JP2343590A JPH0367101A JP H0367101 A JPH0367101 A JP H0367101A JP 2343590 A JP2343590 A JP 2343590A JP 2343590 A JP2343590 A JP 2343590A JP H0367101 A JPH0367101 A JP H0367101A
Authority
JP
Japan
Prior art keywords
grating
grooves
substrate
ion beam
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2343590A
Other languages
Japanese (ja)
Other versions
JP2920990B2 (en
Inventor
Masaru Koeda
小枝 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPH0367101A publication Critical patent/JPH0367101A/en
Application granted granted Critical
Publication of JP2920990B2 publication Critical patent/JP2920990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge

Abstract

PURPOSE:To obtain the grating optimum as a standard prototype by using the resist patterns formed by a holographic exposing method as a mask and forming grating grooves by reactive ion beam etching on a substrate. CONSTITUTION:A glass plate 1 is used as the substrate and a novolak photoresist is coated by spin coating as the photoresist 2 to be baked with interference patterns. After the interference patterns are baked, a photoresist layer 2 is made to remain in the form of a half-wave sinusoidal shape by devel opment. The exposed part of the glass plate 1 is etched by the reactive ion beam etching using CHF3 for a reaction gas with the above-mentioned photoresist pattern as a mask, by which the grooves 3 are formed. The grooves are then formed by the ion beam etching and thereafter, the resist pattern is ashed and removed by a barrel type plasma etching device using O2 plasma to obtain the grating. The high-density grating of several hundred to several thousand pieces/mm grating grooves is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は走査型電子顕微鏡や走査型トンネル顕微鏡の倍
率の検定とか、それらによる像における長さの単位の決
定或は水平方向と深さ方向の寸法の同時正確な測定を行
う場合の較正等に用いる基準格子板のような精密格子板
に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is useful for verifying the magnification of scanning electron microscopes and scanning tunneling microscopes, for determining the units of length in images produced by these, and for determining the units of length in horizontal and depth directions. This invention relates to a precision grid plate such as a reference grid plate used for calibration, etc. when simultaneously and accurately measuring dimensions.

(従来の技術) 走査型電子顕微鏡(SEM)とか走立型トンネル顕m鏡
(STEM)或は触針式表面粗さ計においては、同一の
物を測定しても、その時の測定条件、測定方法等により
測定値がばらつき、長時間使っていると真の値からずれ
て来る。このため基準原器を決めて随時或は測定毎に倍
率とか像における寸法単位等の検定較正を行う必要があ
る。従来上述した検定較正に用いる基準原器としてガラ
ス基板上に蒸着した金属を化学的にエツチングして段差
を付けたものとか回折格子等を用いていた。
(Prior art) In a scanning electron microscope (SEM), vertical tunneling microscope (STEM), or stylus type surface roughness meter, even if the same object is measured, the measurement conditions and measurements at that time are different. Measured values vary depending on the method, etc., and will deviate from the true value if used for a long time. For this reason, it is necessary to determine a reference standard and calibrate the magnification, dimensional units, etc. of the image as needed or for each measurement. Conventionally, as a reference standard used for the above-mentioned calibration, a metal deposited on a glass substrate with steps formed by chemically etching, a diffraction grating, etc. have been used.

〈発明が解決しようとする課題〉 基準原器として回折格子は精度が高いものであるが、そ
れでも格子溝を機械切りしたものではどうしても格子ピ
ッチの周期的誤差が避けられない。
<Problems to be Solved by the Invention> Diffraction gratings have high precision as reference standards, but even so, periodic errors in the grating pitch cannot be avoided when the grating grooves are mechanically cut.

またSEMとかSTEMとかで像のX方向とy方向の倍
率の差或は像の歪を測定する場合、従来の平行溝格子で
は一方向の長さしか測れないため、測定の場合、較正原
器を90”回転させて2回に分けて測定する必要がある
。この問題は格子を直交格子にすれば解決できるが、機
械切りの格子では格子交点の形が崩れて良好な格子が得
難い。
Furthermore, when measuring the difference in magnification in the X and Y directions of an image or the distortion of an image using SEM or STEM, conventional parallel groove gratings can only measure the length in one direction. It is necessary to rotate the grid by 90" and measure it twice. This problem can be solved by using an orthogonal grid, but with a machine-cut grid, the shapes of the grid intersections are distorted, making it difficult to obtain a good grid.

ホログラフィック露光法を用いた回折格子では機械的な
精度から来る格子ピッチ誤差がなく、平行格子でも直交
格子でも形部れすることなく作ることができ、また実際
上格子ピッチの誤差は零と゛みなせるが、溝断面形状が
正弦波状であるため、格子線のどこを測定点とするかを
明確に決めることが困難で、実際の測定操作において誤
差が人って来る。また格子溝に水平面がないため、深さ
方向の測定基準とするのが困難である。ホログラフィッ
ク露光法とイオンビームエツチングにより格子パターン
を形成したブレーズ回折格子は格子溝の断面が鋸歯状で
あるから、水平方向の測定基準としては上述したような
問題はないが、格子溝に水平面がないため、深さ方向の
測定基準とはなし難いものである。
Diffraction gratings using the holographic exposure method have no grating pitch errors due to mechanical precision, and both parallel gratings and orthogonal gratings can be made without shape distortion, and in practice, the grating pitch error can be considered zero. However, since the cross-sectional shape of the groove is sinusoidal, it is difficult to clearly determine where on the grid lines the measurement points should be, which leads to errors in actual measurement operations. Furthermore, since the lattice grooves do not have horizontal surfaces, it is difficult to use them as a measurement standard in the depth direction. Blazed diffraction gratings, whose grating patterns are formed by holographic exposure and ion beam etching, have grating grooves with sawtooth cross sections, so they do not have the above-mentioned problem as a measurement standard in the horizontal direction. Therefore, it is difficult to use it as a measurement standard in the depth direction.

本発明はSEMとかSTEMの倍率検定、像歪の測定、
それらによる寸法測定における較正用の基準原器として
使い易く水平方向にも深さ方向にも超精密な基準となる
格子板を提供しようとするものである。  (課題を解
決するための手段)三光束干渉による等間隔干渉パター
ンを基板上のレジスト層に焼付け、このレジストパター
ンをエツチングマスクとして反応性イオンビームエツチ
ング(REBE)により基板に凸部上面と基底面とが共
に平面で両者間;;一定高さの段差を持たせた格子溝を
形成した。
The present invention is applicable to SEM or STEM magnification verification, image distortion measurement,
The purpose of this invention is to provide a grid plate that is easy to use as a reference standard for calibration in dimension measurements using these methods, and serves as an ultra-precise reference both in the horizontal direction and in the depth direction. (Means for solving the problem) A uniformly spaced interference pattern based on three-beam interference is printed on a resist layer on a substrate, and using this resist pattern as an etching mask, reactive ion beam etching (REBE) is applied to the top and bottom surfaces of the convex portions of the substrate. Both were flat, and a lattice groove with a step of a constant height was formed between the two.

(作用) 互いにコヒーレントな二つの平行光束を一つの基板面に
二つの方向から照射すると平行等間隔の干渉パターンが
形成される。この干渉パターンの格子間隔は使用する光
の波長と三光束の基板面への入射角によって決まり、機
械的な誤差なく、完全に等間隔となる。従ってホログラ
フィック露光法により得られる格子は機械切り格子のよ
うな格子のピッチ誤差が全くない。
(Operation) When two mutually coherent parallel light beams are irradiated onto the surface of one substrate from two directions, a parallel and equally spaced interference pattern is formed. The lattice spacing of this interference pattern is determined by the wavelength of the light used and the angle of incidence of the three beams of light onto the substrate surface, and is completely equidistant without mechanical errors. Therefore, the grating obtained by the holographic exposure method does not have any pitch error of the grating unlike the mechanically cut grating.

また、ホログラフィック露光の際、平行縞の干渉パター
ンを基板を90’回転させて三日露光を行うことにより
直交格子パターンも容易に作成することができる。
Further, during holographic exposure, an orthogonal lattice pattern can be easily created by rotating the substrate 90' and performing three-day exposure to create an interference pattern of parallel stripes.

本発明はホログラフィック露光法により形成されたレジ
ストパターンをマスクとして基板のエツチングを行って
いるのでピッチ誤差のない格子が得られると共に、反応
性イオンビームエツチングにより格子溝を作るので、化
学エツチングと異なり、マスクパターンから露出してい
る部分のみ選択的にエツチングされ、かつエツチングが
イオンビームの照射方向にのみ進行し、エツチング深さ
がIOA単位で制御できるから、所定深さの断面凹字状
つまり水平な凸部上面および溝底を有し、両岸が明確に
角立った格子溝が得られる。従って従来の断面正弦波状
のホログラフィック回折格子を基準原器に用いる場合の
問題点がなくなり、水平方向と深さ方向の同時測定用基
準原器として最適な格子が得られるのである。
In the present invention, the substrate is etched using a resist pattern formed by holographic exposure as a mask, so a grating with no pitch error can be obtained, and the grating grooves are created by reactive ion beam etching, which is different from chemical etching. , only the parts exposed from the mask pattern are selectively etched, and the etching progresses only in the irradiation direction of the ion beam, and the etching depth can be controlled in units of IOA. A lattice groove having a convex top surface and a groove bottom with clearly angular sides on both sides can be obtained. Therefore, the problems associated with using a conventional holographic diffraction grating with a sinusoidal cross-section as a standard standard are eliminated, and an optimal grating can be obtained as a standard standard for simultaneous measurements in the horizontal and depth directions.

(実施例〉 第1図は本発明による格子の一実施例拡大図である。こ
の実施例は平行溝格子板についての実施例である。本発
明による格子の特徴は図に示されるように溝堤上面およ
び溝底面が共に平面で湾岸形状が明確に角立っている点
にある。
(Example) Fig. 1 is an enlarged view of one embodiment of the grating according to the present invention.This embodiment is an example of a parallel groove grating plate.The characteristics of the grating according to the present invention are as shown in the figure. Both the top surface of the embankment and the bottom surface of the ditch are flat, and the shape of the bay is clearly angular.

第2図は格子パターンを焼付けるホログラフィック光学
系を示す。10はレーザでHe−Cdレーザを用い、波
長は4416Aである。このレーザから得られる光束は
半透明鏡11で2分割され、夫々の光束は鏡12を経て
、スベイシャルフィルター13により球面波光束に変換
された後、軸外し放物面鏡14により断面を拡大された
平行光束に再変換され、平面鏡15で折返されて基板1
6上に二つの方向から入射せしめられ、基板面に干渉パ
ターンを形成する。干渉パターンのピッチdは各光束の
基板面への入射角をθとすると 2 dsinθ=λ であたえられる。
FIG. 2 shows a holographic optical system for printing a grating pattern. 10 is a laser using a He-Cd laser, and the wavelength is 4416A. The luminous flux obtained from this laser is split into two by a semi-transparent mirror 11, and each luminous flux passes through a mirror 12, is converted into a spherical wave luminous flux by a subbasial filter 13, and then its cross section is divided by an off-axis parabolic mirror 14. It is reconverted into an enlarged parallel light beam, is reflected by a plane mirror 15, and is then reflected onto the substrate 1.
6 from two directions to form an interference pattern on the substrate surface. The pitch d of the interference pattern is given by 2 dsinθ=λ, where θ is the angle of incidence of each light beam onto the substrate surface.

第3図は溝加工の工程を示す。FIG. 3 shows the groove machining process.

基板16としてガラス板1を用い、干渉パターンを焼付
けるフォトレジスト2としてノポラック系フォトレジス
トをスピンコードにより2500人の厚さにコートした
(第3図A)。干渉パターン焼付後現像により、第3図
Bに示すように半波正弦波状にフォトレジスト層2を残
す。フォトレジストの感光濃度は正弦波状であるが、露
光量或は現像時間を適当にすると、フォトレジスト除去
部分の幅が次第に拡大され;露光時間或は現像時間をか
えることによってフォトレジスト(こよるマスク部分と
非マスク部分の幅の比率を変えることができる。この図
の例ではこの幅の比を1:1とした。第3図Bのフォト
レジスタパターンをマスクとして、反応ガスにCHFa
を用い反応性イオンビームエツチング(RIBE)でエ
ツチングを行い第3図Cに示すようにガラス基板の露出
部をエツチングして#3を形成する。このときエツチン
グはガラス基板の露出部のみ選択的にイオン照射方向に
のみ進行する。溝の深さは時間による制御される。この
実施例では溝深さを1000Aとした。イオンビームエ
ツチングによる溝形成後、レジストパターンをバレルタ
イププラズマエツチング装置により02プラズマで灰化
除去し、最後に洗滌を行って第3図りの格子を得る。こ
の方法によl)格子溝数百〜数千本/ m mの高密度
格子が得られる。
A glass plate 1 was used as the substrate 16, and a nopolac photoresist was coated with a spin cord to a thickness of 2500 mm as the photoresist 2 on which the interference pattern was printed (FIG. 3A). After the interference pattern is printed and developed, the photoresist layer 2 is left in a half-sine wave shape as shown in FIG. 3B. The photoresist's photosensitive density is sinusoidal, but if the exposure amount or development time is set appropriately, the width of the photoresist removed area is gradually expanded; The width ratio of the masked portion and the unmasked portion can be changed. In the example shown in this figure, this width ratio was set to 1:1. Using the photoresistor pattern in Figure 3B as a mask, CHFa
Using reactive ion beam etching (RIBE), the exposed portion of the glass substrate is etched to form #3 as shown in FIG. 3C. At this time, etching selectively proceeds only in the exposed portion of the glass substrate in the ion irradiation direction. The depth of the groove is controlled by time. In this example, the groove depth was 1000A. After forming grooves by ion beam etching, the resist pattern is ashed and removed using 02 plasma using a barrel type plasma etching device, and finally, cleaning is performed to obtain the grating shown in the third diagram. By this method, l) a high-density grating with several hundred to several thousand grating grooves/mm can be obtained;

第4図は本発明の他の実施例を示す。この実施例は直交
格子で直交する二組の格子*G1.G2に囲まれた方形
の凸部Pの土面は平面であり、この凸部の基底面である
両溝Gl、G2の底が共通の一平面となっていて、凸部
Pの上面と基底面との間には一定の段差が形成されてい
る。
FIG. 4 shows another embodiment of the invention. This embodiment consists of two sets of orthogonal grids *G1. The soil surface of the rectangular convex part P surrounded by G2 is a flat surface, and both grooves Gl, which are the base surfaces of this convex part, and the bottoms of G2 form a common plane, and the top surface of the convex part P and the base A certain level difference is formed between the surface and the surface.

この格子は前記実施例と全く同様の方法で製作される。This grid is manufactured in exactly the same way as in the previous example.

格子パターンの露光には第2図の装置を用い、一方向の
平行縞干渉パターンの露光を行った後、基板16を90
”回転させて再度同じ干渉パターンを露光する。このよ
うにして直交格子パターンを焼付けた後、現像すること
により、第5図に示すように方形の島状に7オトレジス
トRが残ったマスクが基板1上に形成される。このよう
にして方形島状のパターンの二次元配列よりなるマスク
を形成した後、前述実施例と同じ反応11イオンビーム
エッチングにより島状部分以外の部分をエツチングして
直交格子溝の基底面を形成し、フォトレジストの島の部
分を凸部Pとして残し、直交格子を得る。
The apparatus shown in FIG. 2 is used to expose the grating pattern, and after exposing the parallel stripe interference pattern in one direction, the substrate 16 is
” Rotate and expose the same interference pattern again. After printing the orthogonal lattice pattern in this way, by developing it, a mask with 7 photoresists R remaining in the shape of rectangular islands is formed on the substrate as shown in Figure 5. 1. After forming a mask consisting of a two-dimensional array of rectangular island patterns in this way, parts other than the island parts are etched by the same reaction 11 ion beam etching as in the previous example to form orthogonal patterns. The base surfaces of the grating grooves are formed, and the island portions of the photoresist are left as convex portions P to obtain an orthogonal grating.

(発明の効果) 本発明によれば、格子パターンがホログラフィック露光
法によって形成された干渉パターンを密着転写したもの
であるから、機械的原因による格子ビッヂの誤差がなく
、溝断面が凹字状に形成されて凸部上面も溝底も共に平
面であり、溝深さが10A程度の精度で蝕刻され、湾岸
が切立った形に形成されるので、きわめて高精度でかつ
水平方向および垂直方向の測定に対して同時に基準とな
し得る格子板が得られる。
(Effects of the Invention) According to the present invention, since the grating pattern is a closely-transferred interference pattern formed by a holographic exposure method, there is no error in the grating bitches due to mechanical causes, and the groove cross section has a concave shape. Both the top surface of the convex part and the bottom of the groove are flat, and the groove depth is etched with an accuracy of about 10A, and the bay is formed in a steep shape. At the same time, a grid plate is obtained that can be used as a reference for measurements of .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られる格子板の一実施例の拡大
斜視図、第2図は本発明の一実施例で用いられるホログ
ラフィック光学系の平面図、第3図は上記実施例の格子
製造課程を示す図、第4図は本発明の他の実施例格子の
格子面の斜視図、第5図はこの実施例における基板上に
形成されたレジストパターンの11視図である。 1・・・ガラス基板、2・・・フォトレジスト、3・・
・溝、10・・・レーザー、13・・・スペシャルフィ
ルタ、14・・・放物面鏡、16・・・基板。
FIG. 1 is an enlarged perspective view of an embodiment of a grating plate obtained by the present invention, FIG. 2 is a plan view of a holographic optical system used in an embodiment of the present invention, and FIG. 3 is a grating of the above embodiment. 4 is a perspective view of a grating surface of a grating according to another embodiment of the present invention, and FIG. 5 is a perspective view of a resist pattern formed on a substrate in this embodiment. 1...Glass substrate, 2...Photoresist, 3...
・Groove, 10... Laser, 13... Special filter, 14... Parabolic mirror, 16... Substrate.

Claims (1)

【特許請求の範囲】[Claims] ホログラフィック露光法により干渉パターンを基板上の
レジスト層に焼付け、レジスト層を現像後、上記干渉パ
ターンに応じて形成される格子状レジストパターンをマ
スクとして基板を反応性イオンビームエッチングによっ
て、凸部上面と基底面が夫々平面であるようにエッチン
グすることを特徴とする精密格子板。
An interference pattern is printed onto a resist layer on a substrate using a holographic exposure method, and after the resist layer is developed, the upper surface of the convex portion is etched by reactive ion beam etching of the substrate using the lattice resist pattern formed according to the interference pattern as a mask. A precision lattice plate characterized by etching so that the and base surfaces are both flat.
JP2023435A 1989-04-19 1990-01-31 Reference grating plate for measuring magnification or image size in the depth direction and lateral direction of scanning electron microscope, tunnel scanning microscope, etc. Expired - Fee Related JP2920990B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-101207 1989-04-19
JP10120789 1989-04-19

Publications (2)

Publication Number Publication Date
JPH0367101A true JPH0367101A (en) 1991-03-22
JP2920990B2 JP2920990B2 (en) 1999-07-19

Family

ID=14294478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023435A Expired - Fee Related JP2920990B2 (en) 1989-04-19 1990-01-31 Reference grating plate for measuring magnification or image size in the depth direction and lateral direction of scanning electron microscope, tunnel scanning microscope, etc.

Country Status (1)

Country Link
JP (1) JP2920990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014850A (en) * 2006-07-07 2008-01-24 Hitachi High-Technologies Corp Charged particle beam microscopic method, and charged particle beam device
JP2008076254A (en) * 2006-09-21 2008-04-03 Hoya Corp Reference plate for calibrating flatness measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150984A (en) * 1986-12-15 1988-06-23 Sharp Corp Forming method for diffraction grating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150984A (en) * 1986-12-15 1988-06-23 Sharp Corp Forming method for diffraction grating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014850A (en) * 2006-07-07 2008-01-24 Hitachi High-Technologies Corp Charged particle beam microscopic method, and charged particle beam device
JP2008076254A (en) * 2006-09-21 2008-04-03 Hoya Corp Reference plate for calibrating flatness measuring device

Also Published As

Publication number Publication date
JP2920990B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP6697560B2 (en) Metrology method and apparatus
TWI620004B (en) Method and system for pattern correction and related computer program product
TW556297B (en) Line-on-line structure, line-in-line structure, and method for multi-orientation of orthogonal pairs
US7368208B1 (en) Measuring phase errors on phase shift masks
US7595482B2 (en) Standard component for length measurement, method for producing the same, and electron beam metrology system using the same
KR100276849B1 (en) Optically measurable serpentine edge tone reversed targets
US6225011B1 (en) Method for manufacturing semiconductor devices utilizing plurality of exposure systems
JP2002311564A (en) Method and apparatus for determining mask rule using scatterometry
KR19990024000A (en) Parameter control process in lithographic process
JPH0766178B2 (en) Optimization method for photolithography process
JP2018507438A (en) Metrology method and apparatus, computer program, and lithography system
KR100572940B1 (en) Monitoring method, exposure method, method of manufacturing semoconductor device, etching method and exposure processing apparatus
KR20050008687A (en) Scatterometric measurement of undercut multi-layer diffracting structures
JP2500423B2 (en) Phase shift mask inspection method
JPH11501145A (en) Fabrication and use of submicron dimensional standard
KR20060119866A (en) Psm allignment method and device
US20020127881A1 (en) Step mask
US5808731A (en) System and method for visually determining the performance of a photolithography system
JPS6275442A (en) Deciding method for exposure amount of photosensitive lacquer layer
JPH0367101A (en) Precision grating plate
US6562248B1 (en) Active control of phase shift mask etching process
JP3025269B1 (en) Pattern line width simulation method and pattern line width simulator
JP3100960B1 (en) Method for adjusting the scale bar of an electron microscope using periodic waveforms on the vertical sidewalls of a photoresist layer
JPH0534513A (en) Production of grating plate
JP2003107671A (en) Method for determining defect specification in phase shift mask

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees