JPH0366717A - Vibrationproof and soundproof polymer material - Google Patents

Vibrationproof and soundproof polymer material

Info

Publication number
JPH0366717A
JPH0366717A JP20363389A JP20363389A JPH0366717A JP H0366717 A JPH0366717 A JP H0366717A JP 20363389 A JP20363389 A JP 20363389A JP 20363389 A JP20363389 A JP 20363389A JP H0366717 A JPH0366717 A JP H0366717A
Authority
JP
Japan
Prior art keywords
polymer
styrene
polymerization
vibration
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20363389A
Other languages
Japanese (ja)
Inventor
Toshiharu Yagi
八木 俊治
Takeshi Noguchi
剛 野口
Yoshito Tanaka
義人 田中
Nobuhiko Tsuda
暢彦 津田
Mitsusaku Sakaguchi
坂口 光作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP20363389A priority Critical patent/JPH0366717A/en
Publication of JPH0366717A publication Critical patent/JPH0366717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the subject material excellent in vibrationproof and soundproof properties and shape stability over a wide temperature range from low to high temperatures by bringing an acrylic polymer into contact with a styrene- based monomer and then subjecting the resultant mixture to polymerization. CONSTITUTION:The objective material composed of a polymer substance obtained by bringing an acrylic polymer into contact with a styrene-based monomer (e.g. styrene or alpha-methylstyrene) and then subjecting the resultant mixture to polymerization or further converting the formed polymer into an interpenetrating polymer network(IPN).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は防振防音用高分子材料に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a polymer material for vibration and sound insulation.

(従来の技術) 従来から、車輌、船舶、自動車部品、機器、各種機械、
建築材料、音響材料等の構造部材の裏面における振動及
びこれに伴う騒音を防止するために、部材自身を厚くし
たり、![自体に改良を加えたりして防止するほかに、
割振性材料を用いて防止することが行われている。そし
てそれらに使用する材料として種々のものが提案されで
きた。
(Conventional technology) Traditionally, vehicles, ships, automobile parts, equipment, various machines,
In order to prevent vibrations and accompanying noise on the back side of structural members such as building materials and acoustic materials, the members themselves may be made thicker or! [In addition to preventing it by making improvements to itself,
The prevention of this problem is being done by using a dissonant material. Various materials have been proposed for use in these materials.

例えばゴム、樹脂あるいはアスファルト等にグラファイ
ト、カーボンブラック、マイカ、アスベスト、炭酸カル
シウム、タルク、金属粉末等の如き無機充填剤を混合し
たものがよく知られている。
For example, rubber, resin, asphalt, etc. mixed with inorganic fillers such as graphite, carbon black, mica, asbestos, calcium carbonate, talc, metal powder, etc. are well known.

これらの場合、主にアスベストを配合した制振材料は振
動による騒音を防止する効果、即ち制振性があっても比
重が小さいため音響放射を防止する効果、即ち遮音性に
欠けていたり、他方主に金属粉末を配合した遮音材料は
遮音性があっても割振性に欠けていたりして不満足なも
のであった6更に防音材料を振動及び騒音を発生する上
記の機械設備等に直接取り付ける場合は、それが80〜
120℃にも昇温するので、上記材料は高温下で割振性
が低下したり、材料そのものが軟化し形能保持性が悪化
したりして用途が非常に限定されるものであった。
In these cases, vibration damping materials that mainly contain asbestos may have the effect of preventing noise caused by vibrations, that is, damping properties, but because of their small specific gravity, they may lack the effect of preventing sound radiation, that is, sound insulation properties; Sound insulation materials that mainly contain metal powder have been unsatisfactory because they lack vibration distribution even if they have sound insulation properties6.Furthermore, when installing sound insulation materials directly to the above-mentioned mechanical equipment that generates vibration and noise, Yes, that's 80~
Since the temperature rises to as high as 120°C, the use of the above materials is extremely limited because their vibration properties deteriorate at high temperatures, or the material itself softens and its shape retention deteriorates.

(発明が解決しようとする課題) 本発明の目的は低温から高温までの広い温度範囲にわた
って防振性、防音性、形態安定性に優れた高分子材料を
提供することにある6 又、本発明の目的は加工性、透明性、耐熱性、耐候性、
耐薬品性、耐油性、耐溶剤性、耐水性、攬水祝油性、耐
摩耗性、不燃性などに優れると共に、防振防音性能にお
いても優れる防振防音用高分子材料を提供することにあ
る。
(Problems to be Solved by the Invention) An object of the present invention is to provide a polymeric material that has excellent vibration-proofing properties, sound-proofing properties, and morphological stability over a wide temperature range from low to high temperatures6. The purpose of is processability, transparency, heat resistance, weather resistance,
Our objective is to provide a polymeric material for vibration and sound insulation that has excellent chemical resistance, oil resistance, solvent resistance, water resistance, water and oil resistance, abrasion resistance, nonflammability, etc., as well as excellent vibration and sound insulation performance. .

(課題を解決するための手段) 本発明はアクリル系ポリマーをスチレン系モノマーに接
触せしめ、次いでこれを重合に付し、又は更にIPN化
して得られる高分子物質よりなることを特徴とする防振
防音用高分子材料に係る。
(Means for Solving the Problems) The present invention provides an anti-vibration material comprising a polymer material obtained by bringing an acrylic polymer into contact with a styrene monomer and then subjecting it to polymerization or further converting it into IPN. Relating to polymer materials for soundproofing.

本発明においてアクリル系ポリマーとしては通常公知の
ものを用いることができ、例えば下記アクリルモノマー
の単独又は共重合体を用いることができる。
In the present invention, commonly known acrylic polymers can be used, such as single or copolymers of the following acrylic monomers.

アクリルモ/マーとしては種類は制限されないが、単ま
たは多官能性のものが含まれ、好ましくは、例えばメタ
クリル酸メチル(MMA)、メタクリル酸エチル(E 
M A )、メタクリル酸ブチル(BMA)、2−ヒド
ロキシエチルメタクリレート(HEMA)、3−()リ
メトキシシリル)プロピルメタクリレート(MSPM>
、2−(フェニルホスホリル)エチルメタクリレート(
phenyl −P )、2−ヒドロキシ−3−(β−
す7トキシ)プロピルメタクリレート(HNPM)、N
−フェニル−N−(2−ヒドロキシ−3−メタクリロキ
シ)プロピルグリシン(N P C−G M A )、
エチレングリフールジメタクリレート(EDMAl又は
IG)、ジエチレングリコールジメタクリレート(Di
EDMA)、トリエチレングリコールノメタクリレート
(T riEDMA)、1.4−ブタンジオールノ/タ
クリレー) (1,4−B uD M A )、1,3
−ブタ、ンジオールノメタクリレート(1,3−B u
D M A )、2,2−ビス〔4−(2−ヒドロキシ
−3−メタクリロキシプロポキン)フェニル〕プロパン
(Bis−GMA)、2,2−ビス(4−メタクリロキ
シフェニル)プロパン(BPDMA)、2,2−ビス(
4−メタクリロキシエトキシフェニル)プロパン(Bi
s  MEPP)、2,2−ビス(4−メタクリロキシ
ポリエトキシフェニル)プロパン(Bis−MPEPP
)、ノ(メタクリロキシエチル)トリメチルへキサメチ
レンジウレタン(UDMA)、トリメチロールプロパン
トリメタクリ レー )(TMPT)、 CH2=C(CHff)COOCH2CF、  (3F
MA)、Cl2=C(Cll、)COOCH2CF2C
F3  (5FMA)、CH2=C(CL)COOCL
(CFzLCFi  (7FMA)、CIl、=C(C
H,)COOCH,(CF2)、CFJ  (8FMA
)、これらの対応する各アクリレート、各a−フルオロ
アクリレートを例示することができる。
The type of acrylic mo/mer is not limited, but mono- or polyfunctional ones are included, and preferably, for example, methyl methacrylate (MMA), ethyl methacrylate (E
M A ), butyl methacrylate (BMA), 2-hydroxyethyl methacrylate (HEMA), 3-()rimethoxysilyl)propyl methacrylate (MSPM>
, 2-(phenylphosphoryl)ethyl methacrylate (
phenyl-P), 2-hydroxy-3-(β-
(s7toxy)propyl methacrylate (HNPM), N
-phenyl-N-(2-hydroxy-3-methacryloxy)propylglycine (NPC-GMA),
Ethylene glycol dimethacrylate (EDMAI or IG), diethylene glycol dimethacrylate (Di
EDMA), triethylene glycol no methacrylate (TriEDMA), 1,4-butanediol/tacrylate) (1,4-BuDMA), 1,3
-butanodiolnomethacrylate (1,3-Bu
DMA), 2,2-bis[4-(2-hydroxy-3-methacryloxypropoquine)phenyl]propane (Bis-GMA), 2,2-bis(4-methacryloxyphenyl)propane (BPDMA) , 2,2-bis(
4-Methacryloxyethoxyphenyl)propane (Bi
s MEPP), 2,2-bis(4-methacryloxypolyethoxyphenyl)propane (Bis-MPEPP)
), (methacryloxyethyl)trimethylhexamethylene diurethane (UDMA), trimethylolpropane (TMPT), CH2=C(CHff)COOCH2CF, (3F
MA), Cl2=C(Cll,)COOCH2CF2C
F3 (5FMA), CH2=C(CL)COOCL
(CFzLCFi (7FMA), CIl, =C(C
H,) COOCH, (CF2), CFJ (8FMA
), their corresponding acrylates, and a-fluoroacrylates.

又、スチレン系モノマーとしては通常公知のものは全て
用いることができ、具体例としてはスチレン、α−メチ
ルスチレン、メチルスチレン、ジクロロスチレン等の単
独或いはこれらと7クリロニトリル、フタジエン、エチ
レングリコールジメタクリレート(I G)、1.4−
ブタンジオールジメタクリレート(1,4−B uD 
M A )、ジエチレングリコールジメタクリレート(
DiEDMA)、トリエチレングリコールジメタクリレ
ー)(TriEDMA〉、1.3−ブタンジオールジメ
タクリレート(1,3BuDMA)、2,2−ビス(4
−(2−ヒドロキシ−3−メタクリロキシプロポキン)
フェニル〕プロパン(Bis−GMA)、トリメチロー
ルプロパントリメタクリレー)(TMPT)等との混合
物などが挙げられる。
In addition, all commonly known styrene monomers can be used, and specific examples include styrene, α-methylstyrene, methylstyrene, dichlorostyrene, etc. alone or in combination with 7-crylonitrile, phthadiene, ethylene glycol dimethacrylate, etc. (IG), 1.4-
Butanediol dimethacrylate (1,4-BuD
M A ), diethylene glycol dimethacrylate (
DiEDMA), triethylene glycol dimethacrylate (TriEDMA), 1,3-butanediol dimethacrylate (1,3BuDMA), 2,2-bis(4
-(2-hydroxy-3-methacryloxypropoquine)
Examples include mixtures with phenyl]propane (Bis-GMA), trimethylolpropane trimethacrylate (TMPT), and the like.

本発明においては上記アクリル系ポリマーをスチレン系
モノマーに接触せしめ、次いでこれを重合に付すること
により高分子物質を得るが、その際アクリル系ポリマー
にスチレン系モノマーを接触させると、通常前者が後者
中で溶解又は膨潤し、もしくは後者が前者中に含浸する
などの態様を呈する。又、重合方法としては、スチレン
系モノマーの公知の重合方法が採用できるが、光重合、
熱重合が好ましい。
In the present invention, a polymer substance is obtained by bringing the acrylic polymer into contact with a styrene monomer and then subjecting it to polymerization. At this time, when the acrylic polymer is brought into contact with a styrene monomer, the former usually The latter dissolves or swells in the former, or the latter impregnates the former. In addition, as the polymerization method, a known polymerization method for styrene monomers can be adopted, but photopolymerization,
Thermal polymerization is preferred.

本発明において重合反応を加熱重合によるときは例えば
約40〜100℃の温度で、約lθ〜150分程度加熱
することにより、又、光重合によるときは例えば可視光
線、紫外線を照射して数分〜数十分重合するのが好まし
い。
In the present invention, when the polymerization reaction is carried out by heat polymerization, for example, by heating at a temperature of about 40 to 100°C for about 150 minutes, or when carried out by photopolymerization, for example, by irradiating with visible light or ultraviolet light for several minutes. It is preferable to polymerize for several tens of minutes.

本発明の防振防音用高分子材料としては上記の高分子物
質をr P N (I nter −penetrat
ingP olymer  N etwork)化した
ものも包含する。■PN化は本来2’11の鎖状のポリ
マーを液体状態(溶液でち可〉で混合し、両方又はいず
れか一方を架橋させ、互いに分子鎖を絡み合わせた形で
形成されるポリマーである。本方法を本発明に利用する
場合、幾つかの変則的方法が用いられる。即ち、例えば
第一の方法は、予め高分子物質をフィルム化しておき、
これにゲスト高分子を形成するモノマーを気相状態で注
入するか、前記モノマーを含む溶液に前記フィルムを浸
漬し、注入し、しかる後、加熱又は光照射等の操作によ
り重合又は架橋させるものである。第二の方法は、通常
のIPN形戊形成じく、高分子物質を適当な溶媒に溶解
させておき、これにダスト成分を混合反応させ、その溶
液をキャストしてフィルム化し、必要に応じて加熱処理
等を行う方法である。その他の方法も使用することがで
さる。
As the polymer material for vibration and sound insulation of the present invention, the above-mentioned polymer material is
ing Polymer Network) is also included. ■PN is a polymer that is originally formed by mixing 2'11 chain polymers in a liquid state (a solution is possible), crosslinking both or one of them, and intertwining the molecular chains with each other. When this method is used in the present invention, several irregular methods are used.For example, the first method is to form a polymer material into a film in advance,
The monomer that forms the guest polymer is injected into this in a gas phase, or the film is immersed in a solution containing the monomer, injected, and then polymerized or crosslinked by heating or light irradiation. be. The second method is to dissolve the polymer material in a suitable solvent, mix and react with the dust component, and cast the solution to form a film. This method involves heat treatment, etc. Other methods may also be used.

IPN化を進めるためには架橋を行う必要があるが、そ
の方法としては例えばスチレン系ポリマーを予め常法に
より架橋したものを使用する、前記アクリル系モ7マー
として2官能以上のものを用いて、重合によって架橋化
ポリマーを得る、或いは得られた未架橋重合体を有機パ
ーオキサイド、放射線、イオン性化合物などのラジカル
源、イオン源などによって、その重合体に適した方法で
後架橋する方法等が挙げられる。尚、本発明のスチレン
系モノマーを重合させて得られるポリマーとアクリル系
ポリマーのポリマーブレンドを本発明の防振防音用高分
子材料として用いることもできる。
In order to proceed with IPN formation, it is necessary to carry out crosslinking, and this can be done, for example, by using a styrene polymer that has been crosslinked in advance by a conventional method, or by using a difunctional or higher functional acrylic monomer. , a method of obtaining a crosslinked polymer by polymerization, or post-crosslinking the obtained uncrosslinked polymer using a method suitable for the polymer using a radical source such as an organic peroxide, radiation, an ionic compound, an ion source, etc. can be mentioned. In addition, a polymer blend of a polymer obtained by polymerizing the styrene monomer of the present invention and an acrylic polymer can also be used as the vibration/soundproof polymer material of the present invention.

本発明で使用される高分子物質は、加工性、透明性、耐
熱性、耐候性、耐薬品性、耐油性、耐溶剤性、耐水性、
携水況油性、耐摩耗性、不燃性に優れると共に、防振防
音性に優れる。
The polymeric substance used in the present invention has processability, transparency, heat resistance, weather resistance, chemical resistance, oil resistance, solvent resistance, water resistance,
It has excellent water resistance, abrasion resistance, and nonflammability, as well as excellent vibration and soundproofing properties.

本発明の高分子材料は、上記で得られた高分子物質を例
えば押出成形、射出成形、圧綿成形等で所望の形に成形
又は適当な溶媒に溶解又は分散させることにより塗料化
することによって所望の形態にした後、後述の用途に使
用される。その際に更に必要に応じて充填剤、補強剤、
軟化剤、可塑剤、相溶化剤、結晶核剤、老化防止剤、酸
化防止剤、オゾン劣化防止剤、紫外線吸収剤、顔料、染
料、粘着付与樹脂等のゴム、プラスチック配合剤を配合
してもよい。
The polymer material of the present invention can be produced by molding the polymer substance obtained above into a desired shape by extrusion molding, injection molding, compressing molding, etc., or by dissolving or dispersing it in an appropriate solvent and making it into a paint. After forming into the desired form, it is used for the purposes described below. At that time, fillers, reinforcing agents,
Even if rubber and plastic compounding agents such as softeners, plasticizers, compatibilizers, crystal nucleating agents, anti-aging agents, antioxidants, anti-ozonants, ultraviolet absorbers, pigments, dyes, and tackifying resins are added. good.

本発明の防振防音用高分子材料は、例えば自動車、電車
、航空機、船舶など各S乗物の天井、床、側壁、ボンネ
ットなどの防振防音材として、またその他建築用機械、
農業用機械、土木用機械など各種産業機械、さらに金属
加工機械、ダクト、ホッパー、シュートなど工場におけ
る各種騒音源に対し、さらにまた住居、オフィスにおけ
る屋根(特に鉄板屋根)、天井、床、壁などの騒音源に
対し、更に又電算機、プリンターなどの各種事務機など
に対し、更にクーラー、洗濯機、掃除機などの各種家電
機器に、及Vステレオ、レコードプレーヤーなどの音響
システムやピアノ、オルガンなどに対し幅広く利用され
るものである。
The vibration/sound insulating polymer material of the present invention can be used as a vibration/sound insulating material for ceilings, floors, side walls, bonnets, etc. of various S vehicles such as automobiles, trains, airplanes, and ships, as well as other construction machines,
For various noise sources in industrial machinery such as agricultural machinery and civil engineering machinery, as well as in factories such as metal processing machines, ducts, hoppers, and chutes, as well as roofs (especially iron roofs), ceilings, floors, and walls in residences and offices. noise sources, as well as various office machines such as computers and printers, various home appliances such as air conditioners, washing machines, and vacuum cleaners, and sound systems such as V-stereos and record players, pianos, and organs. It is widely used for such things as

(実 施 例) 以下に実施例を挙げて説明する。(Example) Examples will be described below.

実施例1 スチレンモノマー(St)4gに対して、それぞれ0,
5wt%のカン7アーキ7ン(CQ )及びジメチルア
ミノエチルメタクリレート(DMAEMA)を溶解し、
更にこれにポリメタクリル酸エチル(PEMA)4gを
溶解し均一化した後、可視光を照射して光重合した。
Example 1 For 4 g of styrene monomer (St), 0,
Dissolve 5 wt% of can7archine (CQ) and dimethylaminoethyl methacrylate (DMAEMA),
Furthermore, 4 g of polyethyl methacrylate (PEMA) was dissolved and homogenized in this, and then visible light was irradiated for photopolymerization.

得られた高分子物質のビッカース硬度は17.6HV(
25℃)であった。又、20℃で密度勾配法により測定
した密度は1.10g/ 0m3であった。又、島津製
作所のThermal Analyzer DT−30
を用いて窒素がス中、lO℃/分の昇温速度で測定した
熱分解ガス発生開始温度(TD)は280℃であった。
The Vickers hardness of the obtained polymer material was 17.6HV (
25°C). Further, the density measured by the density gradient method at 20°C was 1.10 g/0 m3. Also, Shimadzu Thermal Analyzer DT-30
The pyrolysis gas generation onset temperature (TD) was measured at a temperature increase rate of 10°C/min in a nitrogen atmosphere using a pyrolysis gas of 280°C.

尚、139℃で約3〜4%程度の重量減少があった。P
EMAのTDは219℃で、149℃で約3〜4%程度
の重量減少があった。
Incidentally, there was a weight decrease of about 3 to 4% at 139°C. P
The TD of the EMA was 219°C, and there was a weight loss of about 3 to 4% at 149°C.

尚、防音防振性機能を発現するには材料が振動エネルギ
ーを熱エネルギーに有効に変換して散逸する特性を必要
とする。その振動エネルギーがら熱エネルギーへの変換
率の目安として動的引張り弾性率の測定より得られるt
anδが挙げられる。
Note that in order to exhibit the sound and vibration damping function, the material needs to have the property of effectively converting vibrational energy into thermal energy and dissipating it. As a guideline for the conversion rate of vibrational energy to thermal energy, t can be obtained by measuring the dynamic tensile modulus.
An example is anδ.

janδ値が大きい程変換率が高いことになる。従って
防音防振性をtanδの値により評価した。
The larger the jan δ value, the higher the conversion rate. Therefore, the soundproofing and vibration-proofing properties were evaluated by the value of tan δ.

janδ及び動的引張り弾性率(E゛)はオリエンチッ
ク社製、バイプロンにより昇温速度2℃/分、周波数3
.5Hzの条件で測定した。結果を第1表に示す。
jan δ and dynamic tensile modulus (E゛) were measured using a bipron manufactured by Orientic Co., Ltd., at a heating rate of 2°C/min and a frequency of 3.
.. Measurement was performed under the condition of 5 Hz. The results are shown in Table 1.

第 表 実施例2 Si2,5g及び1.4−ブタンジオールジメタクリレ
ート(1,4−B uD M A )o、sgノ混合物
に対して、それぞれ0.5蛎t%のCQ及びDMAEM
Aを溶解し、更にこれにPEMA  5gを溶解し均一
化した後、可視光を10分間照射して光重合した。
Table 2 Example 2 0.5 t% of CQ and DMAEM, respectively, for a mixture of Si2,5 g and 1,4-butanediol dimethacrylate (1,4-BuDMA) o, sg.
After dissolving A and further dissolving 5 g of PEMA therein and homogenizing the solution, visible light was irradiated for 10 minutes to photopolymerize.

得られた高分子材料のtanδ及(/E’を実施例1と
同様に測定し、結果を第2表に示す。
The tan δ and (/E') of the obtained polymeric material were measured in the same manner as in Example 1, and the results are shown in Table 2.

(以 上) ダイキン工業株式会社(that's all) Daikin Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)アクリル系ポリマーをスチレン系モノマーに接触
せしめ、次いでこれを重合に付し、又は更にIPN化し
て得られる高分子物質よりなることを特徴とする防振防
音用高分子材料。
(1) A polymeric material for vibration and soundproofing characterized by comprising a polymeric substance obtained by bringing an acrylic polymer into contact with a styrene monomer and then subjecting it to polymerization or further converting it into IPN.
JP20363389A 1989-08-04 1989-08-04 Vibrationproof and soundproof polymer material Pending JPH0366717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20363389A JPH0366717A (en) 1989-08-04 1989-08-04 Vibrationproof and soundproof polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20363389A JPH0366717A (en) 1989-08-04 1989-08-04 Vibrationproof and soundproof polymer material

Publications (1)

Publication Number Publication Date
JPH0366717A true JPH0366717A (en) 1991-03-22

Family

ID=16477280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20363389A Pending JPH0366717A (en) 1989-08-04 1989-08-04 Vibrationproof and soundproof polymer material

Country Status (1)

Country Link
JP (1) JPH0366717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714099A (en) * 1993-06-28 1995-01-17 Nec Corp Vehicle approach warning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714099A (en) * 1993-06-28 1995-01-17 Nec Corp Vehicle approach warning device

Similar Documents

Publication Publication Date Title
ES2286869T3 (en) ETHENICALLY INSATURED COMPOSITIONS CURABLE WITH ENERGY.
US5169902A (en) Vibration-proof damping polymer material
KR930001716B1 (en) Polymer material having shape memory characteristics
Ratnam et al. Evidence of irradiation‐induced crosslinking in miscible blends of poly (vinyl chloride)/epoxidized natural rubber in presence of trimethylolpropane triacrylate
Higaki et al. Molecular aggregation states and physical properties of syndiotactic polystyrene/hydrogenated polyisoprene multiblock copolymers with crystalline hard domain
Johnson et al. Natural rubber/epoxidised natural rubber-25 blends: morphology, transport phenomena and mechanical properties
JPH0366717A (en) Vibrationproof and soundproof polymer material
JP4342684B2 (en) Water-reactive photocurable urethane resin composition, resin composition for FRP lining, primer resin composition, and curing method thereof
US3950238A (en) Radiation cured acrylonitrile-butadiene elastomers
JPH0366716A (en) Vibrationproof and soundproof polymer material
JPH01103666A (en) Modification of surface property of polymeric material
JPH0368611A (en) Shape memory polymer material
TW200403286A (en) Sound-deadening acrylic sheet
Zhou et al. High oil‐absorptive composites based on 4‐tert‐butylstyrene‐EPDM‐divinylbenzene graft polymer
Colin Humid and thermal oxidative ageing of radiation cured polymers—A brief overview
JPH037748A (en) High polymer material for vibration-insulating and vibration-damping use
Osaka et al. Miscibility, hierarchical structures, and enhanced mechanical properties of acrylic rubber by the formation of a chemically and physically crosslinked partially miscible interpenetrating polymer network with poly (vinylidene fluoride)
JP3765346B2 (en) Thermosetting resin composition, molding material containing the same, and artificial marble
JPH0368610A (en) Shape memory polymer material
JPH03223312A (en) Shape memory polymeric material
CN106674436A (en) Preparation method of flame-retardant sound insulation type ultraviolet light cured polyurethane foamed plastic
Banuelos Hygrothermal Aging of Benzoxazine and Benzoxazine Epoxy Systems
Weidisch et al. Correlation between phase behavior, mechanical properties, and deformation mechanisms in weakly segregated block copolymers
JPH0730195B2 (en) Crosslinking and foaming composition
JPH10176078A (en) Expandable resin particle and its production