JPH0366663A - Method for recovering methionine and alkali metal carbonate - Google Patents

Method for recovering methionine and alkali metal carbonate

Info

Publication number
JPH0366663A
JPH0366663A JP1201558A JP20155889A JPH0366663A JP H0366663 A JPH0366663 A JP H0366663A JP 1201558 A JP1201558 A JP 1201558A JP 20155889 A JP20155889 A JP 20155889A JP H0366663 A JPH0366663 A JP H0366663A
Authority
JP
Japan
Prior art keywords
alkali metal
methionine
metal carbonate
aqueous solution
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1201558A
Other languages
Japanese (ja)
Inventor
Tadashi Mizuno
正 水野
Fumihiko Nichiki
日岐 文彦
Nobuaki Tabei
伸昭 田部井
Haruki Okamura
春樹 岡村
Motomasa Osu
大須 基正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1201558A priority Critical patent/JPH0366663A/en
Publication of JPH0366663A publication Critical patent/JPH0366663A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

PURPOSE:To readily recover methionine and an alkali metal carbonate with low impurity contents by electrodialyzing an aqueous solution of methionine containing the impurities, the alkali metal carbonate and/or alkali metal bicarbonate. CONSTITUTION:An aqueous solution of methionine at pH8-11, formed in a step for formation thereof and containing impurities, an alkali metal carbonate and/or alkali metal bicarbonate and aqueous solution of the alkali metal carbonate and/or alkali metal bicarbonate are passed through compartments at an interval or one compartment placed side by side in an electrolytic cell constructed by alternately assembling cation exchange and anion exchange resin membranes to carry out electrodialysis and afford the objective substance. The recovered solution of the methionine, alkali metal carbonate and/or alkali metal bicarbonate without containing the impurities is then recycled to the step for forming the methionine.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、メチオニンの回収方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for recovering methionine.

さらに詳しくは電気透析による不純物の少ないメチオニ
ンおよびアルカリ金属炭酸塩の回収方法に関する。
More specifically, the present invention relates to a method for recovering methionine and alkali metal carbonate with few impurities by electrodialysis.

〈従来の技術〉 メチオニンは5−(β−メチルメルカプトエチル)−ヒ
ダントインをアルカリの存在下に加水分解し、溶液を酸
で中和し、結晶を析出、分離させて得られる。この場合
アルカリとしてアルカリ金属炭酸塩とアルカリ金属水酸
化物の混合物、酸として二酸化炭素を〈特公昭43.−
19530号公報)、またアルカリとしてアルカリ金属
炭酸塩および/またはアルカリ金属重炭酸塩、酸として
二酸化炭素を(特公昭54−9174号公報)使用して
行われる。
<Prior Art> Methionine is obtained by hydrolyzing 5-(β-methylmercaptoethyl)-hydantoin in the presence of an alkali, neutralizing the solution with an acid, and precipitating and separating crystals. In this case, a mixture of alkali metal carbonate and alkali metal hydroxide is used as the alkali, and carbon dioxide is used as the acid. −
19530), and using an alkali metal carbonate and/or alkali metal bicarbonate as the alkali and carbon dioxide as the acid (Japanese Patent Publication No. 54-9174).

メチオニンを晶析分離後の濾液にはメチオニンの一部が
溶存し、これを回収するために濾液を濃縮し、さらに晶
析分離したり、濾液のリサイクル使用(特公昭54−9
174号公報)が行われる。
A part of methionine is dissolved in the filtrate after methionine is crystallized and separated, and in order to recover it, the filtrate is concentrated and further crystallized, or the filtrate is recycled (Japanese Patent Publication No. 54-9
No. 174) will be carried out.

またヒダントイン類の加水分解後、溶液からアミノ酸を
得る方法として、陽イオン交換樹脂と溶液を接触させて
イオン交換する方法、溶液を電気分解してアミノ酸と苛
性アルカリにする方法、電気透析によって分離する方法
(特開昭62−30742号公報)が知られている。
After hydrolysis of hydantoins, amino acids can be obtained from the solution by ion exchange by contacting the solution with a cation exchange resin, by electrolyzing the solution to produce amino acids and caustic alkali, and by electrodialysis. A method (Japanese Unexamined Patent Publication No. 62-30742) is known.

〈発明が解決しようとする課題〉 しかしながら、メチオニンを晶析、濾過分離後の濾液を
濃縮してさらに晶析分離する方法によってもメチオニン
の回収は100%にならないし、濾液のリサイクル使用
を行う場合でもホモセリンのような不純物や着色成分等
の蓄積が生じるために、ある一定比率でもって濾液を廃
棄しなければならない。廃棄する濾液にアセトン等の有
機溶剤を添加してメチオニン等を晶析分離してさらに回
収することも可能であるが非常に複雑なプロセスとなる
<Problems to be Solved by the Invention> However, even with the method of crystallizing methionine, concentrating the filtrate after filtration separation, and further crystallizing and separating it, the recovery of methionine is not 100%, and when the filtrate is recycled and used. However, due to the accumulation of impurities such as homoserine and coloring components, a certain proportion of the filtrate must be discarded. Although it is possible to add an organic solvent such as acetone to the filtrate to be discarded and crystallize and separate methionine and the like for further recovery, this is a very complicated process.

陽イオン交換樹脂を用いる方法は多量の酸、アルカリを
必要とするとともに、バッチシステムでの操作を行わな
ければならないので工業上問題点が多い。
The method using a cation exchange resin requires a large amount of acid or alkali, and requires operation in a batch system, which poses many industrial problems.

電解法は電気透析法に比べ高電圧を必要とし、装置が大
規模となり、かつ電力を多く使用する等大きな欠点があ
る。
The electrolytic method requires a higher voltage than the electrodialysis method, requires a larger scale apparatus, and has major drawbacks such as requiring a large amount of electricity.

電気透析法も電解法と同様にスケールメリットを期待で
きず、加水分解液を全て透析にかけるとコストがかかり
過ぎる欠点がある。そして従来の電気透析法はメチオニ
ンと無機塩との分離を目的とするもので、この方法を晶
析分離濾液に適用してもホモセリンのような不純物や着
色成分とメチオニンを分離することはできない。
Like the electrolytic method, the electrodialysis method cannot be expected to achieve economies of scale, and has the drawback that it is too costly to subject all the hydrolyzed solution to dialysis. Conventional electrodialysis methods are aimed at separating methionine and inorganic salts, and even if this method is applied to the crystallization separation filtrate, it is not possible to separate methionine from impurities such as homoserine or coloring components.

かかる事情に鑑み、メチオニン、アルカリ金属炭酸塩お
よび/またはアルカリ金属重炭酸塩および不純物を含む
水溶液から不純物の含まないメチオニン、アルカリ金属
炭酸塩および/またはアルカリ金属重炭酸塩を回収する
方法について鋭意検討した結果、本発明を完成するに至
った。
In view of these circumstances, we are conducting intensive studies on methods for recovering methionine, alkali metal carbonates, and/or alkali metal bicarbonates, and impurity-free methionine, alkali metal carbonates, and/or alkali metal bicarbonates from aqueous solutions containing impurities. As a result, the present invention was completed.

〈課題を解決するための手段〉 すなわち、本発明は陽イオン交換膜と陰イオン交換膜が
交互に組み込まれて構成される電気透析槽の並列する室
の一室おきに、不純物、アルカリ金属炭酸塩および/ま
たはアルカリ金属重炭酸塩を含むメチオニンのアルカリ
塩水溶液とアルカリ金属炭酸塩および/またはアルカリ
金属重炭酸塩水溶液を流して、電気透析することを特徴
とするメチオニンおよびアルカリ金属炭酸塩および/ま
たはアルカリ金属重炭酸塩の回収方法である。
<Means for Solving the Problems> In other words, the present invention is capable of removing impurities, alkali metal carbonate, Methionine and alkali metal carbonate and/or electrodialyzed by flowing an aqueous solution of alkali salt of methionine containing salt and/or alkali metal bicarbonate and an aqueous solution of alkali metal carbonate and/or alkali metal bicarbonate. Alternatively, it is a method for recovering alkali metal bicarbonate.

本発明の不純物、アルカリ金属炭酸塩および/またはア
ルカリ金属重炭酸塩を含むメチオニンのアルカリ塩水溶
液の例として、5−(β−メチルメルカブトエチル)−
ヒダントインをアルカリの存在下に加水分解し、溶液を
酸で中和してメチオニンを晶析分離した後の濾液、およ
びこの濾液を濃縮した水溶液が挙げられる。
As an example of an aqueous solution of an alkali salt of methionine containing an impurity, an alkali metal carbonate and/or an alkali metal bicarbonate, 5-(β-methylmercabutethyl)-
Examples include a filtrate obtained by hydrolyzing hydantoin in the presence of an alkali, neutralizing the solution with an acid, and crystallizing and separating methionine, and an aqueous solution obtained by concentrating this filtrate.

本発明を図面にもとに説明する。第1図は本発明の一例
を示す図である。
The present invention will be explained based on the drawings. FIG. 1 is a diagram showing an example of the present invention.

電気透析槽1の両端には陽極2および陰極3が設けられ
、その間は陽イオン交換膜4および陰イオン交換膜5で
交互に仕切られ、並列する複数の室が構成されている。
An anode 2 and a cathode 3 are provided at both ends of the electrodialysis cell 1, and the space between them is alternately partitioned by cation exchange membranes 4 and anion exchange membranes 5 to form a plurality of parallel chambers.

陽極2および陰極3のある室は陽極室6および陰極室7
であり、これらの間は中間室8および中間室9が交互に
配置されている。
The chambers containing the anode 2 and cathode 3 are anode chamber 6 and cathode chamber 7.
Between these, intermediate chambers 8 and 9 are arranged alternately.

陽極2としては白金、白金メツキチタン等が、陰極3と
しては鉄、ニッケル、ニッケルメッキ鉄、白金、白金メ
ツキチタン等が用いられる。
As the anode 2, platinum, platinum-plated titanium, etc. are used, and as the cathode 3, iron, nickel, nickel-plated iron, platinum, platinum-plated titanium, etc. are used.

陽イオン交換膜4としてはその構造中にそれぞれスルフ
ォン酸基、カルボン酸基等を、陰イオン交換膜5として
はその構造中に四級アンモニウム基等を有する高分子フ
ィルムが用いられ、いずれも市販されている。
As the cation exchange membrane 4, a polymer film having a sulfonic acid group, a carboxylic acid group, etc. in its structure is used, and as the anion exchange membrane 5, a polymer film having a quaternary ammonium group, etc. in its structure is used, and both are commercially available. has been done.

陽極室6および陰極室7にはに2CO3、K2SO3、
N a z CO3、NazSO,等の電解質水溶液1
2を供給し、中間室8にはKicOs、N a 2 C
O2、KHCO,、NaHCOi等のアルカリ金属炭酸
塩またはアルカリ金属重炭酸塩水溶液11を供給する。
The anode chamber 6 and the cathode chamber 7 contain 2CO3, K2SO3,
Electrolyte aqueous solution 1 such as Naz CO3, NazSO, etc.
2 is supplied, and the intermediate chamber 8 is supplied with KicOs, Na 2 C
An aqueous alkali metal carbonate or alkali metal bicarbonate solution 11 such as O2, KHCO, NaHCOi, etc. is supplied.

中間室9には本発明の対象とする不純物、アルカリ金属
炭酸塩および/またはアルカリ金属重炭酸塩を含むメチ
オニンのアルカリ塩水溶液を供給する。この水溶液のp
Hはメチオニンの等電点より充分に高くしておく。
An aqueous alkaline salt solution of methionine containing an impurity targeted by the present invention, an alkali metal carbonate and/or an alkali metal bicarbonate, is supplied to the intermediate chamber 9 . p of this aqueous solution
H is set sufficiently higher than the isoelectric point of methionine.

陽極室6、陰極室7、中間室8および中間室9に供給す
る水溶液は通常、循環して通液される。
The aqueous solution supplied to the anode chamber 6, cathode chamber 7, intermediate chamber 8, and intermediate chamber 9 is normally circulated.

次に陽極2と陰極3の間に電圧をかけると、中間室9の
アルカリ金属イオンは陽イオン交換膜4を透過して中間
室8に移行し、メチオニン、炭酸イオン、重炭酸イオン
は陰イオン交換膜5を透過して中間室8へ移行する。し
たがってメチオニン、アルカリ金属炭酸塩および/また
はアルカリ金属重炭酸塩は中間室8より回収される。
Next, when a voltage is applied between the anode 2 and the cathode 3, the alkali metal ions in the intermediate chamber 9 pass through the cation exchange membrane 4 and move to the intermediate chamber 8, and methionine, carbonate ions, and bicarbonate ions are converted into anions. It passes through the exchange membrane 5 and moves to the intermediate chamber 8. Methionine, alkali metal carbonate and/or alkali metal bicarbonate are therefore recovered from intermediate chamber 8.

中間室9の水溶液中に含まれる着色成分の如き不純物は
、その解離度がメチオニンに比べて低いためにイオン交
換膜を透過し難い。したがってメチオニン等は着色成分
の如き不純物の含有量の少い水溶液の形で回収出来る。
Impurities such as colored components contained in the aqueous solution in the intermediate chamber 9 have a lower degree of dissociation than methionine, and therefore are difficult to permeate through the ion exchange membrane. Therefore, methionine and the like can be recovered in the form of an aqueous solution with a low content of impurities such as coloring components.

イオン交換膜を透過せずに残った不純物は最終廃液とし
て系外へ排出される。
Impurities that remain without passing through the ion exchange membrane are discharged out of the system as final waste liquid.

中間室9に供給する水溶液のpHは8〜11が適当であ
る。pH8未満では等電点がpH6付近にあるメチオニ
ンの解離度が低いため、イオン交換膜を透過し難く、し
たがってメチオニンは充分回収されない。pH=11を
越えると着色成分の如き不純物の解離度も高くなり、回
収液中に不純物の量が増大する。メチオニン等の回収率
または不純物の許容量を勘案してpHは設定される。
The pH of the aqueous solution supplied to the intermediate chamber 9 is suitably 8 to 11. If the pH is less than 8, the degree of dissociation of methionine whose isoelectric point is around pH 6 is low, so it is difficult to permeate through the ion exchange membrane, and therefore methionine is not sufficiently recovered. When pH exceeds 11, the degree of dissociation of impurities such as coloring components also increases, and the amount of impurities in the recovered liquid increases. The pH is set in consideration of the recovery rate of methionine and the like or the allowable amount of impurities.

中間室9に供給する水溶液のアルカリ金属炭酸塩および
/またはアルカリ金属重炭酸塩の濃度はアルカリ金属濃
度として3〜20wt%が適当である。3wt%未満で
は処理能力が低くなり、20wt%を越えると結晶の析
出等の問題が生じるので好ましくない。
The concentration of the alkali metal carbonate and/or alkali metal bicarbonate in the aqueous solution supplied to the intermediate chamber 9 is suitably 3 to 20 wt% in terms of alkali metal concentration. If it is less than 3 wt%, the processing capacity will be low, and if it exceeds 20 wt%, problems such as crystal precipitation will occur, which is not preferable.

一方、中間室8に供給されるに、CO2、NazCO4
、N a HCOs等のアルカリ金属炭酸塩またはアル
カリ金属重炭酸塩水溶液の濃度は2〜lQwt%の範囲
が用いられる。2wt%未満では電導度が低く、l 9
wt%を越すと電流効率の低下を招き好ましくない。
On the other hand, CO2, NazCO4 are supplied to the intermediate chamber 8.
The concentration of the aqueous alkali metal carbonate or alkali metal bicarbonate solution, such as NaHCOs, is in the range of 2 to 1Qwt%. If it is less than 2 wt%, the conductivity is low, l 9
If it exceeds wt%, the current efficiency will decrease, which is not preferable.

また陽極室6および陰極室7に供給されるに2CO3、
K2SO4、N a 2 CO2、N a 2 SO2
等の電解質水溶液の濃度は、中間室8への供給液の場合
と同じ理由で2〜l 9wt%が適当である。
In addition, 2CO3 is supplied to the anode chamber 6 and the cathode chamber 7,
K2SO4, Na2CO2, Na2SO2
The appropriate concentration of the electrolyte aqueous solution is 2 to 9 wt % for the same reason as the case of the solution supplied to the intermediate chamber 8.

中間室8より回収される不純物を含まないメチオニン、
アルカリ金属炭酸塩および/またはアルカリ金屑重炭酸
塩の溶液はヒダントインの加水分解工程に循環使用され
る。
impurity-free methionine recovered from the intermediate chamber 8;
The alkali metal carbonate and/or alkali metal scrap bicarbonate solution is recycled to the hydantoin hydrolysis step.

〈発明の効果〉 本発明の方法により、不純物、アルカリ金属炭酸塩およ
び/またはアルカリ金属重炭酸塩を含むメチオニンのア
ルカリ塩水溶液から容易に不純物を含まないメチオニン
等を回収することができる。
<Effects of the Invention> According to the method of the present invention, methionine and the like free of impurities can be easily recovered from an aqueous aqueous salt of methionine containing impurities, alkali metal carbonates, and/or alkali metal bicarbonates.

〈実施例〉 以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
<Examples> Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 第1図に示すような中間室9を4室および中間室8を4
室備えた電気透析槽を用いた。
Example 1 Four intermediate chambers 9 and four intermediate chambers 8 as shown in FIG.
An electrodialysis tank equipped with a chamber was used.

陽極2、陰極3として大きさが6.8 crlの白金メ
ツキチタンを用いた。
Platinum-plated titanium with a size of 6.8 crl was used as the anode 2 and the cathode 3.

陽イオン交換膜として強酸性イオン交換膜で、あるネオ
セプタCM−1、陰イオン交換膜として強塩基性イオン
交換膜であるネオセプタAM−1(いずれも徳山曹達■
製で大きさは6.8crl)を使用した。
Neocepta CM-1 is a strongly acidic ion exchange membrane as a cation exchange membrane, and Neocepta AM-1 is a strongly basic ion exchange membrane as an anion exchange membrane (both manufactured by Tokuyama Soda).
A size 6.8 crl) was used.

中間室9にはp H8,5、カリウム濃度3wt%、メ
チオニン濃度3.5 w t%、重炭酸イオン濃度I 
9wt%のメチオニンのカリウム塩水溶液100mgを
、陽極室6、陰極室7および中間室8それぞれに3wt
%に2C○コ水溶液を各100−を循環させた。
The intermediate chamber 9 has a pH of 8.5, a potassium concentration of 3 wt%, a methionine concentration of 3.5 wt%, and a bicarbonate ion concentration of I.
100 mg of a 9 wt% potassium salt aqueous solution of methionine was added to each of the anode chamber 6, cathode chamber 7, and intermediate chamber 8 in an amount of 3 wt.
% of each 100% of the 2C◯ aqueous solution was circulated.

次いで初期の電流密度を5A/dm2に設定して直流電
流を流し、その後電圧がほぼ7,5Vになるように電流
密度を調整し、電流密度が1A/dm”迄下った時点で
電気透析を終了させた。
Next, the initial current density was set to 5 A/dm2 and a direct current was applied, and then the current density was adjusted so that the voltage was approximately 7.5 V, and when the current density dropped to 1 A/dm, electrodialysis was performed. Finished it.

4゜ 電気透析中、液の温度は40℃に保った。4゜ During electrodialysis, the temperature of the solution was maintained at 40°C.

電気透析終了後分析を行った結果、カリウムの回収率は
98%、メチオニンの回収率は55%、重炭酸イオンの
回収率は96%であった。
As a result of analysis after the electrodialysis, the recovery rate of potassium was 98%, the recovery rate of methionine was 55%, and the recovery rate of bicarbonate ion was 96%.

これに対して不純物である着色成分の回収率は5%、す
なわち除去率は95%であった。
On the other hand, the recovery rate of the colored component, which is an impurity, was 5%, that is, the removal rate was 95%.

着色は黄褐色であり、着色成分の回収率は波長434 
nmにおける吸光度を測定して求めた。
The coloring is yellowish brown, and the recovery rate of the colored component is at wavelength 434.
It was determined by measuring the absorbance at nm.

実施例2 p H10,4、カリウム濃度18wt%、メチオニン
濃度3wt%、重炭酸イオン濃度22wt%であるメチ
オニンのカリウム塩水溶液を用いた他は、実施例1と同
様に電気透析を行った。
Example 2 Electrodialysis was carried out in the same manner as in Example 1, except that an aqueous potassium salt solution of methionine having a pH of 10.4, a potassium concentration of 18 wt%, a methionine concentration of 3 wt%, and a bicarbonate ion concentration of 22 wt% was used.

電気透析終了後分析を行った結果、カリウムの回収率は
99%、メチオニンの回収率は88%、重炭酸イオンの
回収率は97%であった。
As a result of analysis after completion of electrodialysis, the recovery rate of potassium was 99%, the recovery rate of methionine was 88%, and the recovery rate of bicarbonate ion was 97%.

これに対して不純物である着色成分の回収率は11%、
すなわち除去率が89%であった。
In contrast, the recovery rate of coloring components, which are impurities, was 11%.
That is, the removal rate was 89%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる電気透析を行う装置の一例を示
す図である。 1・・・電気透析槽、2・・・陽極、3・・・陰極4・
・・陽イオン交換膜、5・・・陰イオン交換膜6・・・
陽極室、7・・・陰極室、8.9・・・中間室10・・
・メチオニンのアルカリ塩水溶液貯槽11・・・アルカ
リ金属炭酸塩または金属重炭酸塩水溶液貯槽 12・・・電解質水溶液貯槽 \\ \ \ \ \ \ \ \ \ \
FIG. 1 is a diagram showing an example of an apparatus for performing electrodialysis according to the present invention. 1... Electrodialysis tank, 2... Anode, 3... Cathode 4.
...Cation exchange membrane, 5...Anion exchange membrane 6...
Anode chamber, 7... Cathode chamber, 8.9... Intermediate chamber 10...
・Methionine alkaline salt aqueous solution storage tank 11... Alkali metal carbonate or metal bicarbonate aqueous solution storage tank 12... Electrolyte aqueous solution storage tank \\ \ \ \ \ \ \ \ \ \ \ \ \

Claims (1)

【特許請求の範囲】[Claims] 1、陽イオン交換膜と陰イオン交換膜が交互に組み込ま
れて構成される電気透析槽の並列する室の一室おきに、
pHが8〜11である不純物、アルカリ金属炭酸塩およ
び/またはアルカリ金属重炭酸塩を含むメチオニンのア
ルカリ塩水溶液とアルカリ金属炭酸塩および/またはア
ルカリ金属重炭酸塩水溶液を流して、電気透析すること
を特徴とするメチオニンおよびアルカリ金属炭酸塩およ
び/またはアルカリ金属重炭酸塩の回収方法。
1. In every other parallel chamber of the electrodialysis tank, which is composed of alternating cation exchange membranes and anion exchange membranes,
Electrodialysis by flowing an aqueous methionine aqueous salt solution containing impurities, alkali metal carbonate and/or alkali metal bicarbonate and an alkali metal carbonate and/or alkali metal bicarbonate aqueous solution having a pH of 8 to 11. A method for recovering methionine and alkali metal carbonate and/or alkali metal bicarbonate, characterized by:
JP1201558A 1989-08-02 1989-08-02 Method for recovering methionine and alkali metal carbonate Pending JPH0366663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201558A JPH0366663A (en) 1989-08-02 1989-08-02 Method for recovering methionine and alkali metal carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201558A JPH0366663A (en) 1989-08-02 1989-08-02 Method for recovering methionine and alkali metal carbonate

Publications (1)

Publication Number Publication Date
JPH0366663A true JPH0366663A (en) 1991-03-22

Family

ID=16443045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201558A Pending JPH0366663A (en) 1989-08-02 1989-08-02 Method for recovering methionine and alkali metal carbonate

Country Status (1)

Country Link
JP (1) JPH0366663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464717A (en) * 1993-06-04 1995-11-07 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor with subbing layer and charge generating layer
US5789127A (en) * 1995-02-14 1998-08-04 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
CN103922980A (en) * 2014-04-22 2014-07-16 中国科学技术大学 Method for separating methionine from mixed solution of methionine salt and carbonate by using bipolar membrane electrodialysis
JP2020520897A (en) * 2017-05-24 2020-07-16 エボニック オペレーションズ ゲーエムベーハー Method for producing methionine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464717A (en) * 1993-06-04 1995-11-07 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor with subbing layer and charge generating layer
US5789127A (en) * 1995-02-14 1998-08-04 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
CN103922980A (en) * 2014-04-22 2014-07-16 中国科学技术大学 Method for separating methionine from mixed solution of methionine salt and carbonate by using bipolar membrane electrodialysis
CN103922980B (en) * 2014-04-22 2016-08-24 中国科学技术大学 A kind of method utilizing bipolar membrane electrodialysis to isolate methionine from the mixed solution of methionine salt and carbonate
JP2020520897A (en) * 2017-05-24 2020-07-16 エボニック オペレーションズ ゲーエムベーハー Method for producing methionine

Similar Documents

Publication Publication Date Title
EP1320410B1 (en) Bipolar membrane electrodialysis of multivalent metal salts
JP2944157B2 (en) Improved carboxylic acid purification and crystallization method
US4636295A (en) Method for the recovery of lithium from solutions by electrodialysis
CN104003830B (en) Amino acid separation and the method for iminodicarboxylic acid from the aqueous solution of amino acid whose alkali metal salt
WO2019228577A2 (en) Process for preparing lithium chemical compounds by electrodialysis method and apparatus for performing this process
US5268079A (en) Process for the isolation and purification of free acids, starting from their salts, by electrodialysis
CN111393330A (en) Process for preparing guanidinoacetic acid
EP2061744B1 (en) Process for recovering terephthalic acid
WO1999061647A9 (en) Electrodialysis methods for purification and recovery of gluconic acid derivatives
JPH09216848A (en) Production of pure glycolic acid
US5135626A (en) Method for purification of bases from materials comprising base and salt
JPH0366663A (en) Method for recovering methionine and alkali metal carbonate
CA1272982A (en) Method for the recovery of lithium from solutions by electrodialysis
US6800185B2 (en) Method for producing basic amino acid solution
CN1155544A (en) Manufacture of ascorbic acid
EP0438369B1 (en) Process for the isolation and purification of free iminodiacetic acid, starting from it&#39;s salt, by elektrodialysis
JP2775992B2 (en) Method for producing hydroxylamine
BR0315769B1 (en) A method of separating multivalent ions and lactate ions from a fermentation broth comprising a multivalent ion lactate salt by the use of an electrodialysis or electrolysis apparatus.
JPH0336566B2 (en)
JPH1149735A (en) Treatment of crystallization mother liquor of alanine
JPH0710821B2 (en) Method for producing aminoethyl sulfonic acid
EP0572389A1 (en) Separation/recovery of ammonium salts via electrodialytic water splitting.
KR100347670B1 (en) A method for producing alpha-L-aspartyl-phenylalanine methylester
JP4166864B2 (en) Method for producing amino acid or salt thereof
JPH09509095A (en) Guanidine salt recovery method