JPH0366448A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPH0366448A
JPH0366448A JP20078189A JP20078189A JPH0366448A JP H0366448 A JPH0366448 A JP H0366448A JP 20078189 A JP20078189 A JP 20078189A JP 20078189 A JP20078189 A JP 20078189A JP H0366448 A JPH0366448 A JP H0366448A
Authority
JP
Japan
Prior art keywords
mold
downstream
slab
continuous casting
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20078189A
Other languages
Japanese (ja)
Inventor
Takaharu Nakajima
敬治 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20078189A priority Critical patent/JPH0366448A/en
Publication of JPH0366448A publication Critical patent/JPH0366448A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize forced cool to a cast slab by forming as dividing one side or both sides of two pairs of mold walls into two or more steps and arranging cooling water passage in most upstream side of the mold at inner face side from backup frame fitting bolt hole. CONSTITUTION:Cross sectional face of the assemble mold for continuous casting is made to rectangle and formed as separating into two steps of upstream side mold 11 and downstream side mold 12. The mold 11 is formed with two pairs of the mold walls. To copper plate 1 constituting the mold wall, plural through-holes are arranged as the cooling water passage 4 and setting position of the through-holes for cooling water passage 4 must be set at the inner wall side of mold from tip part of the bolt hole 3 for fitting backup frame. The downstream side mold wall 12 is constituted as dividing with plural cooling water guide plates 13, and the cooling guide plate 13 is made to shift as attachable/detachable to the cast slab. By this method, the uniform development of solidified sell can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続鋳造用鋳型に係り、詳しくは該鋳型を2段
以上に分割形成すると共に、さらにブレーク・アウトの
発生を極力防止できるようにした鋳型構造に関するもの
である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a mold for continuous casting, and more specifically, the mold is divided into two or more stages, and furthermore, the mold is formed in two or more stages to prevent breakouts as much as possible. This is related to the mold structure.

(従来の技術) 連続鋳造用鋳型は通常600〜1200mmの長さを有
するもので鋳型内壁は高い熱伝導率を有する材料、すな
わち銅または銅合金等により構成されている。
(Prior Art) A continuous casting mold usually has a length of 600 to 1200 mm, and the inner wall of the mold is made of a material having high thermal conductivity, such as copper or a copper alloy.

このような鋳型を用いて鋳造を行う場合、溶鋼は鋳型壁
内部に供給される冷却媒体(例えば水)により間接的に
冷却作用を受け、鋳型壁に接する部分から漸次凝固が進
行し、凝固シェルの厚さが内部溶鋼の流体静力学的圧力
に耐え得る程度まで成長するに伴い凝固シェルは収縮し
、鋳型壁と凝固シェルの間に空隙を生じる事になる。
When casting is performed using such a mold, the molten steel is indirectly cooled by a cooling medium (e.g. water) supplied inside the mold wall, and solidification progresses gradually from the part in contact with the mold wall, forming a solidified shell. As the thickness of the solidified shell grows to the extent that it can withstand the hydrostatic pressure of the internal molten steel, the solidified shell contracts, creating a void between the mold wall and the solidified shell.

特に矩形断面を有する鋳型においては、鋳型の広面壁中
央部と接する鋳片凝固シェルは内部の溶鋼圧力により外
側に膨出し易く鋳型壁面と比較的よく接触し易いが、鋳
型広面側端部および挟面側の下部においては空隙が顕著
に現れ易い傾向がある。
Particularly in a mold with a rectangular cross section, the solidified slab shell in contact with the center of the wide wall of the mold tends to bulge outward due to the internal molten steel pressure and comes into relatively good contact with the mold wall. There is a tendency for voids to appear conspicuously in the lower part of the surface side.

この空隙発生は鋳片から鋳型壁への熱伝導効率を著しく
低下させ、鋳片の凝固シェル成長を大きく阻害し、凝固
シェル厚さの不均一による表面縦割れ等品質欠陥の誘因
となり、さらには凝固シェル破損によるブレーク・アウ
トの大きな要因となる場合が多い。これは現状連続鋳造
設備の大きな基本的問題点となっており、特に高速鋳造
化指向への最大の障害になっている。
This generation of voids significantly reduces the efficiency of heat transfer from the slab to the mold wall, greatly inhibits the growth of the solidified shell of the slab, and causes quality defects such as surface vertical cracks due to uneven thickness of the solidified shell. This is often a major cause of breakouts due to damage to the solidified shell. This is a major fundamental problem with the current continuous casting equipment, and is the biggest obstacle to achieving high-speed casting.

この鋳型壁と凝固シェルの空隙発生を防止する鋳型(装
置)および方法として、■鋳型内における鋳片の平均凝
固収縮率に相当する量だけ鋳型内壁面(平面)を経験的
に内側に傾斜させて固定的に堅持する鋳型および方法、
■鋳型内壁に、鋳造方向に連続する少なくとも2つのテ
ーパー段を付与する、いわゆるマルチテーパー鋳型およ
び方法(特開昭53−125932号公報)等が提案さ
れている。しかしこのような鋳型壁の直線的1段または
2段以上、かつ固定的に堅持された傾斜(テーパー)付
与のみでは鋳造速度、温度、鋼種等様々の要因により変
動する複雑な凝固収縮量に順応して凝固シェルと鋳型内
壁面とを適当な接触面圧を保ちなから当接させることは
極めて困難で、鋳型壁面下部で空隙を生じたり、逆に凝
固シェルとの断続的接触による鋳型壁の甚だしい摩耗を
生起しやすく、メツキ層の剥離の問題も多い。また、■
相対する2対の鋳型壁のうちの何れか一方もしくは両方
の鋳型壁を上下方向に2段以上分割形成するとともに、
最上段壁を除く下段壁をそれぞれ移動装置に連結し、鋳
型内方を指向して移動1在に設けた鋳型(特開昭56−
95451号公報)も提案されている。この鋳型は鋳片
との間に適当な面圧を有する下部内面板が鋳片の収縮量
に順応して前後方向に摺動する事によって鋳片との間の
空隙発生を減少し、さらに鋳片との異常接触による下部
内壁板表面の異常摩耗を防止するように工夫したもので
ある。しかし通常どおり鋳型内溶調表面に潤滑剤として
モールドパウダー(Cab−5in。
As a mold (equipment) and method for preventing the generation of voids between the mold wall and the solidified shell, we have empirically shown that the inner wall surface (plane) of the mold is inclined inward by an amount corresponding to the average solidification shrinkage rate of the slab in the mold. a mold and method for holding it firmly;
(2) A so-called multi-taper mold and method (Japanese Unexamined Patent Publication No. 125932/1983) have been proposed in which the inner wall of the mold is provided with at least two tapered steps that are continuous in the casting direction. However, with only one or more straight steps of the mold wall and a fixed slope (taper), it is difficult to adapt to the complicated amount of solidification shrinkage that varies depending on various factors such as casting speed, temperature, steel type, etc. It is extremely difficult to bring the solidified shell into contact with the inner wall of the mold while maintaining an appropriate contact surface pressure. It tends to cause severe wear and there are many problems with peeling of the plating layer. Also,■
Either or both of the two pairs of opposing mold walls are divided into two or more stages in the vertical direction, and
A mold in which the lower walls except the uppermost wall are respectively connected to a moving device, and the movable member is provided facing inward of the mold (Japanese Patent Application Laid-open No. 1983-
95451) has also been proposed. In this mold, the lower inner plate, which has an appropriate surface pressure between the slab and the slab, slides back and forth in accordance with the amount of contraction of the slab, thereby reducing the generation of gaps between the slab and the slab. This is designed to prevent abnormal wear on the surface of the lower inner wall plate due to abnormal contact with the pieces. However, as usual, mold powder (Cab-5in) was used as a lubricant on the melted surface in the mold.

−CaFz−NazOを主成分とする基材粉と炭素粉の
混合物)を添加する場合、下段鋳型壁と鋳片との隙間に
自然にうまく流入されないため、下段鋳型の冷却効果の
向上また同時に潤滑効果の向上も小さい。
- When adding a mixture of base material powder and carbon powder mainly composed of -CaFz-NazO, it does not naturally flow into the gap between the lower mold wall and the slab, so it is difficult to improve the cooling effect of the lower mold and lubricate it at the same time. The improvement in effectiveness is also small.

したがって下部鋳型壁の摩耗もあまり改善されない。Therefore, the wear of the lower mold wall is not significantly improved.

一方、この鋳型壁と凝固シェルの空隙に伝熱媒体を充填
し、空隙部分の冷却を強化する方法として、■伝熱媒体
として黒鉛、塩化カリウム、塩化カルシウム、塩化ナト
リウム、はう酸等をパウダー状あるいはそれらに菜種油
などを加えてベースト状にして空隙に供給する方法(特
開昭55−92256号公報)、さらに前記黒鉛微粒子
の混合液を粘度、熱伝導度の観点から改良を加えた、■
植物油(菜種油など)に1000メツシユ以下の黒鉛微
粒子を15〜25体積%添加した混合液を空隙に供給す
る方法(特開昭57−154351号公報)も別途提案
されている。しかし、これらの伝熱媒体供給法は、流動
性が悪いため刻々形状が変化する空隙の細部まで行きわ
たらず、十分な伝熱媒体効果が上がらないという問題が
ある。
On the other hand, as a method of filling the void between the mold wall and the solidified shell with a heat transfer medium to strengthen the cooling of the void, the method is as follows: ■ Powder of graphite, potassium chloride, calcium chloride, sodium chloride, ferrous acid, etc. or by adding rapeseed oil or the like to the mixture and supplying it to the voids (Japanese Unexamined Patent Publication No. 55-92256), and further improving the mixture of graphite particles from the viewpoint of viscosity and thermal conductivity. ■
A method (Japanese Unexamined Patent Publication No. 154351/1982) has also been proposed in which a mixture of vegetable oil (rapeseed oil, etc.) to which 15 to 25% by volume of graphite particles of 1000 mesh or less is added is supplied to the voids. However, these methods of supplying a heat transfer medium have a problem in that, due to poor fluidity, the heat transfer medium cannot reach the fine details of the gaps whose shape changes every moment, and therefore a sufficient heat transfer medium effect cannot be achieved.

そこで本出願人は前述の諸点に鑑みて鋳型広面側端部お
よび挟面側下部に形成される空隙による鋳型冷却能の低
下を防止し、凝固シェル形成を増進、均一化し、または
潤滑の改善により鋳型壁の甚だしい摩耗防止を目的とし
、この目的を達成するために、矩形断面を有する連続鋳
造組立鋳型において、相対する2対の鋳型壁のうちの何
れか一方もしくは両方の鋳型壁を鋳片鋳込方向に2段以
上に分割形成すると共に、最上流側鋳型壁を除く下流側
鋳型壁を複数の冷却水ガイド板で鋳片幅方向に分割構成
し、対を成す下流側鋳型壁を構成する前記夫々の冷却ガ
イド板を互いに接離移動可能に構成したことを特徴とす
る連続鋳造用鋳型を平底1年特許願第36643号明細
書において提案した。
Therefore, in view of the above-mentioned points, the present applicant has attempted to prevent the mold cooling ability from decreasing due to the voids formed at the end of the wide side of the mold and the lower part of the narrow side of the mold, to promote and make the solidification shell formation uniform, or to improve lubrication. The purpose is to prevent severe wear on the mold walls, and in order to achieve this purpose, one or both of the two pairs of opposing mold walls in a continuous casting assembly mold with a rectangular cross section are cast into slabs. In addition, the downstream mold wall excluding the most upstream mold wall is divided in the slab width direction by a plurality of cooling water guide plates to form a pair of downstream mold walls. A continuous casting mold characterized in that the respective cooling guide plates are configured to be movable toward and away from each other was proposed in flat-bottomed Patent Application No. 36643.

(発明が解決しようとする課題) 本出願人が先に提案した連続鋳造用鋳型は先に述べた目
的を達成できる優れた発明であるが、その後の研究によ
り最上流側鋳型の潤滑に係わる下記の問題が内在してい
ることが判明した。
(Problems to be Solved by the Invention) The continuous casting mold previously proposed by the present applicant is an excellent invention that can achieve the above-mentioned purpose, but subsequent research has revealed the following problems regarding lubrication of the most upstream mold. It turned out that there was an underlying problem.

すなわち、鋳型潤滑剤として単に通常のモールド・パウ
ダーを使用した場合、その残滓が最上流側鋳型と下流側
鋳型との空間あるいは下流側鋳型間の空間に堆積するか
、または下流側鋳型の内壁に焼付くという問題が生ずる
。また鋳型潤滑剤としてオイルを使用した場合、更に別
の問題が生ずる。すなわち通常のオイル潤滑はオイル(
菜種油等)を鋳型上端から鋳型内壁に沿ってメニスカス
部に供給する方法であり、この場合メニスカス部でオイ
ルが燃焼し、燃焼時に生成される炭素が固体潤滑剤とし
て鋳型−鋳片間の潤滑作用を促す。
That is, if ordinary mold powder is simply used as a mold lubricant, its residue will accumulate in the space between the most upstream mold and the downstream mold, or in the space between the downstream molds, or on the inner wall of the downstream mold. The problem of burning occurs. Further problems arise when oil is used as a mold lubricant. In other words, normal oil lubrication is oil (
This is a method in which oil (rapeseed oil, etc.) is supplied from the upper end of the mold to the meniscus along the inner wall of the mold. In this case, the oil is burned in the meniscus, and the carbon produced during combustion acts as a solid lubricant and acts as a lubricant between the mold and the slab. encourage.

しかし広幅鋳片を高速鋳造する場合には、上記の通常の
オイル潤滑方法では鋳片幅方向の均一なオイル供給、す
なわち均一な潤滑が不可能となる。
However, when casting a wide slab at high speed, it is impossible to uniformly supply oil in the width direction of the slab, that is, to provide uniform lubrication using the above-mentioned normal oil lubrication method.

以上いずれの方法によっても問題が発生し、ブレーク・
アウト等の操業トラブルが発生し易くなるという欠点が
生じてくる。
Any of the above methods will cause problems and
The disadvantage is that operational troubles such as outs are more likely to occur.

本発明は以上の諸点に鑑みてなされたもので、本出願人
が先に提案した多段方式鋳型を採用し、まず第一に、最
上流側鋳型における薄肉凝固シェルの不均一化発生によ
る縦割れ等の鋳片品質悪化、それによるブレーク・アウ
ト等の操業トラブルの防止、第二に、最上流側鋳型にお
いて使用した潤滑剤の残滓発生とその鋳型各部への堆積
・焼付きによる下流側鋳型の強制直接冷却機能の低下、
さらにそれによるブレーク・アウト等の操業トラブルの
防止、第三に、下流側鋳型における強制直接冷却の際の
最上流鋳型方向への水流の吹上げによるブレーク・アウ
ト等の操業トラブルの防止を目的として提案されたもの
である。
The present invention has been made in view of the above points, and adopts the multi-stage mold proposed earlier by the applicant. Second, prevention of deterioration of the quality of cast slabs and resulting operational troubles such as breakouts.Secondly, prevention of the occurrence of residual lubricant used in the most upstream mold and its accumulation and seizing on various parts of the mold, resulting in damage to the downstream mold. Deterioration of forced direct cooling function,
Furthermore, the purpose is to prevent operational troubles such as breakouts caused by this, and thirdly, to prevent operational troubles such as breakouts caused by water flow blown up in the direction of the most upstream mold during forced direct cooling in downstream molds. It was proposed.

(課題を解決するための手段) 上記目的を達成するために、本発明に係る第1の連続鋳
造用鋳型は、矩形断面を有する連続鋳造組立鋳型におい
て、相対する2対の鋳型壁のうちの何れか一方もしくは
両方の鋳型壁を鋳片鋳込方向に2段以上に分割形成する
と共に、最上流側鋳型の冷却水路をバックアップフレー
ム取付ボルト穴より内面側に設けたこととしているので
ある。
(Means for Solving the Problems) In order to achieve the above object, a first continuous casting mold according to the present invention has a continuous casting mold having a rectangular cross section. One or both of the mold walls is divided into two or more stages in the slab casting direction, and the cooling water channel of the most upstream mold is provided on the inner side of the backup frame mounting bolt hole.

また、本発明に係る第2の連続鋳造用鋳型は、前記第1
の連続鋳造用鋳型の最上流側鋳型を除く下流側鋳型壁を
複数の冷却水ガイド板で鋳片幅方向に分割構成し、対を
成す下流側鋳型壁を構成する前記夫々の冷却ガイド板を
鋳片に対して接離移動可能および傾斜可能に構成してい
るのである。
In addition, the second continuous casting mold according to the present invention includes the first continuous casting mold.
The downstream mold wall of the continuous casting mold except for the most upstream mold is divided in the slab width direction by a plurality of cooling water guide plates, and each of the cooling guide plates forming a pair of downstream mold walls is divided into two parts. It is configured to be movable toward and away from the slab and tiltable.

また、本発明に係る第3の連続鋳造用鋳型は、前記第2
の連続鋳造用鋳型のうち最上段の下流側鋳型の上部内面
または、最上流鋳型の下部内面に、鋳片表面へのエアー
ジェット吹き出し孔を設けることとしているのである。
Further, the third continuous casting mold according to the present invention includes the second continuous casting mold.
Among the continuous casting molds, air jet blowing holes to the slab surface are provided on the upper inner surface of the uppermost downstream mold or on the lower inner surface of the most upstream mold.

また、本発明に係る第4の連続鋳造用鋳型は、前記第2
の連続鋳造用鋳型のうち最上段の下流側鋳型の上部内面
または、最上流鋳型の下部内面に、鋳片と接触するロー
ルを回転自在に枢着することとしているのである。
In addition, the fourth continuous casting mold according to the present invention includes the second continuous casting mold.
A roll that comes into contact with the slab is rotatably mounted on the upper inner surface of the uppermost downstream mold or the lower inner surface of the most upstream mold among the continuous casting molds.

更に、本発明に係る第5の連続鋳造用鋳型は、前記第2
の連続鋳造用鋳型の下流側鋳型のうち最上段の下流側鋳
型の上部内面または、最上流鋳型の下部内面に、第3の
発明のエアージェット吹き出し孔と第4の本発明のロー
ルを配設しているのである。
Furthermore, the fifth continuous casting mold according to the present invention has the second continuous casting mold.
The air jet outlet of the third invention and the roll of the fourth invention are arranged on the upper inner surface of the uppermost downstream mold or the lower inner surface of the most upstream mold among the downstream molds of the continuous casting mold. That's what I'm doing.

(作  用) 本発明において、最上流側鋳型(間接冷却方式)、下流
側鋳型(直接冷却方式)に関し、種々の工夫を付加した
のは、下記の理由による。
(Function) In the present invention, various improvements have been made to the most upstream mold (indirect cooling method) and the downstream mold (direct cooling method) for the following reasons.

(1)最上流側鋳型の間接冷却方式として、冷却水路を
バックアップフレームへの銅板取付はボルト穴の先端位
置よりも鋳型内壁側に配設することとしたのは、下記の
理由による。すなわち通常の間接冷却方式の連続鋳造用
鋳型は、前述のとおり、鋳型内壁板は高い熱伝導率を有
する材料すなわち銅または銅合金等によりI威され、そ
の外側にある鋼製のバックアップフレームにボルトによ
り取付けられ、支持固定される構造となっている。この
ため、冷却水路の配役に関しては第5図(イ)に示すよ
うに銅板1または銅合金板に冷却水路用スリット2と取
付はボルト穴3が交互に配設される構造となっている。
(1) As an indirect cooling method for the most upstream mold, we decided to install the cooling water channel on the copper plate to the backup frame closer to the inner wall of the mold than the tip of the bolt hole for the following reasons. In other words, in a conventional indirect cooling continuous casting mold, the inner wall plate of the mold is made of a material with high thermal conductivity, such as copper or copper alloy, and bolts are attached to a steel backup frame on the outside. The structure is such that it is attached, supported and fixed. For this reason, regarding the arrangement of cooling water channels, as shown in FIG. 5(a), the structure is such that cooling water channel slits 2 and mounting bolt holes 3 are alternately arranged in a copper plate 1 or a copper alloy plate.

しかしこの通常の冷却水路配設方式の鋳型を実操業に供
した場合、第5図(ロ)のような銅板1または銅合金板
の温度分布となった。すなわち取付はボルト穴3部相当
位置の銅板1または銅合金板鋳型壁表面部が他の部分に
比較して高温となり、鋳片幅方向に対して鋳型抜熱速度
の不均一が発生した。また銅板1または銅合金板の熱膨
張差から取付はボルト穴3部に膨れ現象が見られ、前記
鋳型抜熱速度の不均一をさらに助長する。結果的に、鋳
片幅方向の薄肉凝固シェル不均一を引き起こすため、ブ
レーク・アウトの原因となった。このことは特に鋳造速
度が2m/+++in以上の場合に著しい。
However, when the mold with this normal cooling channel arrangement method was put into actual operation, the temperature distribution of the copper plate 1 or the copper alloy plate was as shown in FIG. 5(b). That is, during installation, the copper plate 1 or the copper alloy plate mold wall surface at the position corresponding to the third bolt hole became hotter than other parts, and the mold heat extraction rate became uneven in the width direction of the slab. Further, due to the difference in thermal expansion of the copper plate 1 or the copper alloy plate, a bulging phenomenon is observed in the bolt holes 3 during installation, which further promotes the non-uniformity of the heat removal rate from the mold. As a result, the thin solidified shell became non-uniform in the width direction of the slab, which caused breakout. This is particularly noticeable when the casting speed is 2 m/+++in or more.

そこで本発明ではこの鋳片幅方向の鋳型抜熱速度の不均
一を解消するため、第1図(イ)に示すように冷却水路
4をバックアップフレーム取付はボルト穴3に対し、鋳
型内壁側に配設した。こうすることにより、第1図(ロ
)に示すような鋳片幅方向に対する鋳型抜熱速度の均一
化発揮とそれによる鋳片表面縦割れの防止、ブレーク・
アウトの防止を狙ったのである。
Therefore, in the present invention, in order to eliminate this non-uniformity in the rate of heat removal from the mold in the width direction of the slab, the cooling water passage 4 is installed on the mold inner wall side with respect to the bolt hole 3, as shown in Fig. 1 (a). Arranged. By doing this, as shown in Figure 1 (b), the mold heat removal rate in the width direction of the slab is made uniform, thereby preventing vertical cracks on the slab surface, and preventing breakage.
The aim was to prevent outs.

なお、第1図(イ)に示した冷却水路4は、従来の通り
鋳造方向に設けても、また鋳造方向に直角の方向に設け
ても良い。また冷却水路4の形状は円筒状、角柱状(四
角−六角)等どのような形状でも良い。
The cooling water channels 4 shown in FIG. 1(A) may be provided in the casting direction as in the conventional art, or may be provided in a direction perpendicular to the casting direction. Further, the shape of the cooling water channel 4 may be any shape such as cylindrical or prismatic (square-hexagonal).

(2)下流側鋳型に関して、複数の冷却水ガイド板を用
いて下流側鋳型を鋳片幅方向に分割構成したのは、■凝
固シェルが広幅面中央のみ膨らんでいるため、分割構成
することによって中央部と端部の隙間を独立に制御する
ため、■広幅の冷却水ガイド板を使用した場合、熱変形
による歪が大きく、隙間寸法の制御が不可能なため、で
ある。
(2) Regarding the downstream mold, the reason why the downstream mold is divided in the slab width direction using multiple cooling water guide plates is because the solidified shell bulges only in the center of the wide side. This is because the gap between the center and end portions can be controlled independently. (1) If a wide cooling water guide plate is used, the distortion due to thermal deformation will be large, making it impossible to control the gap size.

さらに、本発明においては、下流側鋳型に関し、第2〜
第5の本発明を提案した。これらはいずれも下流側鋳型
で採用した直接冷却方式の高速水膜流の最上流鋳型方向
への吹上げ防止を狙ったものである。この水流吹上げ防
止によりブレーク・アウト等の操業トラブルを極端に減
少することが可能となる。
Furthermore, in the present invention, regarding the downstream mold, the second to
A fifth invention has been proposed. All of these are aimed at preventing the high-speed water film flow of the direct cooling method used in the downstream mold from blowing up toward the most upstream mold. By preventing this water flow from blowing up, it becomes possible to drastically reduce operational troubles such as breakouts.

まず、冷却水ガイド板を垂直に対して傾斜可能としたの
は、冷却水ガイド板と鋳片間の隙間について、下端隙間
を上端隙間より大きくすることにより、下流側に行くに
つれて流水量が多くなることによる冷却水ガイド板上端
からの吹上げを防止するためである。 +1斜角度は垂
直に対し内側(鋳片側)、外側どちらでも可能とする。
First, the cooling water guide plate can be tilted vertically by making the lower end gap larger than the upper end gap between the cooling water guide plate and the slab, which increases the amount of water flowing toward the downstream side. This is to prevent the cooling water from blowing up from the upper end of the guide plate. +1 oblique angle can be made either on the inside (casting side) or on the outside of the vertical.

これは鋼種、鋳造速度に応じて鋳片の凝固収縮量が異な
るため、凝固収縮量が大きい場合は内側に傾斜、はとん
ど凝固収縮がない場合は外側に傾斜させるためである。
This is because the amount of solidification shrinkage of the slab differs depending on the steel type and casting speed, so when the amount of solidification shrinkage is large, the slab is tilted inward, and when there is almost no solidification shrinkage, the slab is tilted outward.

また、高速水膜流の吹上げ防止方法として、最上流鋳型
下端部からまたは冷却水ガイド板上端部からエアージェ
ットを上記隙間の下流方向に吹きつけ、水流を遮断する
方法、さらに冷却水ガイド板の上端部にロールを配設し
、機械的に水流を遮断する方法が比較的装置も簡単で実
用的であると考えた。
In addition, as a method to prevent the high-speed water film flow from blowing up, there is a method in which the water flow is blocked by blowing an air jet from the lower end of the most upstream mold or from the upper end of the cooling water guide plate in the downstream direction of the above-mentioned gap. We thought that a method of mechanically blocking the water flow by arranging a roll at the upper end of the tank would be relatively simple and practical.

上記の構成の本発明によれば、最上流側鋳型において均
一抜熱を可能にしたため、最上流側鋳型における均一凝
固シエル生成能力を飛躍的に増すとともに、下流側鋳型
の高速水膜による鋳片の強制直接冷却機能を一様に発揮
させるはか(冷却水ガイド板上端から下端まで高速水膜
流の速度を一様に保つことが可能なため)、さらに水膜
流の吹上げに防止等によるブレーク・アウト等の操業ト
ラブルを極端に減少することが可能となる。
According to the present invention having the above configuration, uniform heat removal is made possible in the most upstream mold, which dramatically increases the ability to generate a uniform solidified shell in the most upstream mold. How to uniformly exert the forced direct cooling function of the cooling water guide plate (because it is possible to keep the speed of the high-speed water film flow uniform from the top to the bottom end of the cooling water guide plate), and also prevent the water film flow from blowing up. This makes it possible to significantly reduce operational troubles such as breakouts due to

(実 施 例) 以下本発明を添付図面に基づいて更に具体的に説明する
(Example) The present invention will be described in more detail below based on the accompanying drawings.

第2図は本発明の一実施例を示したものであり、連続鋳
造用鋳型を上流側鋳型11と下流側鋳型12の二分割に
した場合の組込み構造を示す。
FIG. 2 shows an embodiment of the present invention, and shows an assembly structure in which a continuous casting mold is divided into two parts, an upstream mold 11 and a downstream mold 12.

このうち、上流側鋳型11は、通常テーパーを付与され
た鋳型壁、または相対する2対の平行鋳型壁を有してお
り、当該鋳型壁を構成する銅板lまたは銅合金板に、冷
却水路4として第1図に示すように貫通孔を複数個設け
、必ず当該冷却水路4用貫通孔の配役位置はバックアッ
プフレーム取付は用ボルト穴3の先端よりも鋳型内壁側
に配設してなる特に均一抜熱に機能する鋳型である。と
ころで前記冷却水路4であるところの貫通孔のサイズ、
形状(円筒状、角柱状他)並びに配設ピッチ等は特に限
定されるものではないが、鋳片幅方向に関して均一な抜
熱速度を確保して、均一な凝固シェル生成を行わせるた
めには、コーナー近傍の貫通孔配設ピッチは、幅中央部
における貫通孔配設ピッチよりも粗にすることにより、
より確実に均一な抜熱が可能となる。なお前記冷却水路
4としての貫通孔配役の方向は鋳込方向でも鋳込方向に
対し直角方向でも何ら差しつかえはない。
Of these, the upstream mold 11 usually has a tapered mold wall or two pairs of opposing parallel mold walls. As shown in Fig. 1, a plurality of through-holes are provided, and the position of the through-hole for the cooling water channel 4 must be particularly uniform by arranging it closer to the inner wall of the mold than the tip of the bolt hole 3 for attaching the backup frame. It is a mold that functions to remove heat. By the way, the size of the through hole which is the cooling water channel 4,
Although the shape (cylindrical, prismatic, etc.) and arrangement pitch are not particularly limited, in order to ensure a uniform heat removal rate in the width direction of the slab and to generate a uniform solidified shell. By making the through-hole arrangement pitch near the corners coarser than the through-hole arrangement pitch at the center of the width,
More reliable and uniform heat removal is possible. Note that there is no problem with the direction in which the through holes as the cooling water channels 4 are arranged, either in the casting direction or in a direction perpendicular to the casting direction.

一方、下流側鋳型12は例えば第3図(イ)に示す短冊
状または同図(ロ)に示す亀甲状に類する形状の複数の
冷却水ガイド板13より構成され、それぞれは例えば中
央のシリンダー14にリンク18を介して連結され、対
を成す鋳型壁面が接離移動できるように戒され、さらに
冷却水ガイド板13の上端側、下端側に補助シリンダー
19を設け、冷却水ガイド板13が鋳込方向に傾斜でき
るようになされている。
On the other hand, the downstream mold 12 is composed of a plurality of cooling water guide plates 13 each having a rectangular shape as shown in FIG. 3(A) or a tortoiseshell shape as shown in FIG. The cooling water guide plate 13 is connected via a link 18 so that the mold wall surfaces forming a pair can move toward and away from each other, and auxiliary cylinders 19 are provided at the upper and lower ends of the cooling water guide plate 13. It is designed so that it can be tilted in the opposite direction.

第3図は下流側鋳型12壁を構成する冷却水ガイド板1
3の概略を示すものであり、当該冷却水ガイド仮13に
は給水口15列と排水口16列を交互に設は当該給水部
と排水部とに設けられた圧力検知器17により圧力を検
出し、この検出値に応じてシリンダー14により各冷却
水ガイド板13を移動できるようにしている。
Figure 3 shows the cooling water guide plate 1 that constitutes the wall of the downstream mold 12.
3, the provisional cooling water guide 13 is provided with 15 rows of water supply ports and 16 rows of drain ports alternately, and the pressure is detected by pressure detectors 17 provided in the water supply section and the drainage section. However, each cooling water guide plate 13 can be moved by the cylinder 14 according to this detected value.

更に、本発明では上流側鋳型11の方向への下流側鋳型
からの冷却水吹き上げ防止とそれによるブレーク・アウ
ト等の操業トラブルを防止するために、冷却水ガイド板
13の上端部にエアージェット吹き出し孔21又は最上
流鋳型llの下部にエアージェット吹き出し孔21.あ
るいはロール22を配設し、冷却水を遮断できるように
なされている。
Furthermore, in the present invention, an air jet is provided at the upper end of the cooling water guide plate 13 in order to prevent cooling water from blowing up from the downstream mold in the direction of the upstream mold 11 and to prevent operational troubles such as breakouts caused by this. Air jet blowout hole 21. Alternatively, a roll 22 may be provided to shut off the cooling water.

なお、給水口15および排水口16の少なくともどちら
か一方を第3図(イ)に示すようにスリット状長孔とす
ることによって、鋳片20と冷却水ガイド板3間に形成
された水膜内の冷却水の均一な流れを実現できる。
In addition, by making at least one of the water supply port 15 and the drain port 16 into a slit-like long hole as shown in FIG. 3(A), the water film formed between the slab 20 and the cooling water guide plate 3 Achieves uniform flow of cooling water within the tank.

次に本発明の効果を%I U’!するために行った実験
の結果について説明する。
Next, the effect of the present invention is %I U'! We will explain the results of experiments conducted to achieve this goal.

1ヒート50トンの低炭素アルミキルド鋼を4〜10m
/lll1nなる鋳造条件で、第2図に示す2段式連続
鋳造鋳型を備えた連続鋳造機により、厚さ105閤、幅
11050ff1の鋳片を製造した。
4 to 10 m of low carbon aluminum killed steel weighing 50 tons per heat
A slab having a thickness of 105 mm and a width of 11,050 ff1 was produced using a continuous casting machine equipped with a two-stage continuous casting mold shown in FIG.

この際使用した上流側鋳型の長さは350 ms (メ
ニスカスより下側の長さ250mm)であり、下流側鋳
型には第3図(イ)に示す短冊状ガイド板(幅:100
1m、長さ:550mm)を22個取り付けた。
The length of the upstream mold used at this time was 350 ms (length 250 mm below the meniscus), and the downstream mold was equipped with a strip-shaped guide plate (width: 100 ms) as shown in Figure 3 (A).
22 pieces (1 m, length: 550 mm) were attached.

上流側鋳型の冷却水路の詳細を以下に示す。The details of the cooling channel of the upstream mold are shown below.

〔上流側鋳型の冷却水路を構成する貫通孔の詳細〕■ 
貫通孔の設置位置 鋳型表面から貫通孔中心までの距離f2:15m幅方向
配役ピッチP : 19m 貫通孔配設方向:鋳造方向 ■ 貫通孔サイズ 円筒孔、直径d:10mmφ こうして鋳造中、冷却水路貫通孔に流速9m/Sで冷却
水を供給して鋳造した。
[Details of the through holes that make up the cooling channel of the upstream mold] ■
Installation position of the through hole Distance f2 from the mold surface to the center of the through hole: 15 m Width direction casting pitch P: 19 m Through hole installation direction: Casting direction ■ Through hole size Cylindrical hole, diameter d: 10 mm φ In this way, during casting, the cooling channel penetrates Casting was performed by supplying cooling water to the holes at a flow rate of 9 m/s.

(冷却水ガイド板の給水口、排水口の詳細〕■給水ロ:
高さ1.5aaX幅12m ■排水口:高さ2.2m+ax幅12M■給水口および
排水口の相互間隔:それぞれ2Inll■給水口列と排
水口列との間隔:50閣■冷却水ガイド板傾斜角 θ−
0,1度(上端、下端の水平距離1.0 mob)■エ
アージェット吹出しロ:高さ1,0aaX幅90mしか
して鋳造中、水膜の平均水膜厚さδを0.5鴫に維持し
、冷却水の流速を10〜15m/Sの範囲にして鋳造し
た。
(Details of the water supply port and drain port on the cooling water guide plate) ■Water supply port:
Height 1.5aa x Width 12m ■Drain port: Height 2.2m + Ax Width 12M ■Mutual spacing between water inlet and drain port: 2 Inll each ■ Distance between water inlet row and drain port row: 50 cabinets ■ Cooling water guide plate slope Angle θ−
0.1 degree (horizontal distance between upper and lower ends 1.0 mob) Air jet blowout: Height 1.0 aa x Width 90 m During casting, the average water film thickness δ was maintained at 0.5 mm. Then, casting was carried out with the cooling water flow rate in the range of 10 to 15 m/s.

第4図に操業トラブルの一指標としてブレーク・アウト
の発生状況を示す。高速鋳造になる程、本発明方法と従
来方法との差は顕著になり、鋳造速度が4 m/win
以上になると、ブレーク・アウト発生率は従来方法の1
/20以下に減少した。
Figure 4 shows the occurrence of breakouts as an indicator of operational trouble. The difference between the method of the present invention and the conventional method becomes more pronounced as the casting speed increases, and the casting speed is 4 m/win.
In this case, the breakout rate is lower than that of the conventional method.
/20 or less.

(発明の効果) 以上説明したように本発明によれば、上流側鋳型での凝
固シェル生成の均一性の改善、下流側鋳型での鋳片強冷
却安定化が図られ、その結果、これらの相乗効果によっ
て4 m/++in以上の高速鋳造が安定して可能にな
る。
(Effects of the Invention) As explained above, according to the present invention, the uniformity of solidified shell formation in the upstream mold is improved and the slab is strongly cooled and stabilized in the downstream mold, and as a result, these The synergistic effect enables stable high-speed casting of 4 m/++in or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明鋳型を構成する最上流側鋳型要部
の一実施例を示す平面図、(ロ)は鋳造中の銅板の温度
分布を示す図、第2図は本発明鋳型の一実施例を断面し
て示す正面図、第3図は冷却水ガイドの説明図であり、
(イ)は第1実施例を示す短冊状ガイド板の左上を拡大
した正面図、(ロ)は第2実施例の要部を示す正面図、
(ハ)及び(ニ)は断面して示す側面図、第4図は実験
結果図、第5図(イ)(ロ)は従来鋳型の第1図(イ)
(ロ)と同じ図面である。 4は冷却水路、11は上流側鋳型、12は下流側鋳型、
13は冷却水ガイド板、14はシリンダー 18はリン
ク、19は補助シリンダー、21はエアージェット吹き
出し孔、22はロール。 第1図 (イ) 第2:!。 (ね)
Figure 1 (a) is a plan view showing an example of the most upstream mold main part constituting the mold of the present invention, (b) is a diagram showing the temperature distribution of the copper plate during casting, and Figure 2 is the mold of the present invention. FIG. 3 is a cross-sectional front view of one embodiment of the invention, and FIG. 3 is an explanatory diagram of the cooling water guide.
(A) is an enlarged front view of the upper left part of the strip-shaped guide plate showing the first embodiment; (B) is a front view showing the main part of the second embodiment;
(C) and (D) are cross-sectional side views, Figure 4 is a diagram of the experimental results, and Figures 5 (A) and (B) are Figure 1 (A) of the conventional mold.
This is the same drawing as (b). 4 is a cooling channel, 11 is an upstream mold, 12 is a downstream mold,
13 is a cooling water guide plate, 14 is a cylinder, 18 is a link, 19 is an auxiliary cylinder, 21 is an air jet outlet, and 22 is a roll. Figure 1 (a) 2nd:! . (hey)

Claims (5)

【特許請求の範囲】[Claims] (1)矩形断面を有する連続鋳造組立鋳型において、相
対する2対の鋳型壁のうちの何れか一方もしくは両方の
鋳型壁を鋳片鋳込方向に2段以上に分割形成すると共に
、最上流側鋳型の冷却水路をバックアップフレーム取付
ボルト穴より内面側に設けたことを特徴とする連続鋳造
用鋳型。
(1) In a continuous casting assembly mold having a rectangular cross section, one or both of the two opposing mold walls are divided into two or more stages in the slab casting direction, and the most upstream side A mold for continuous casting, characterized in that the mold cooling channel is provided on the inner side of the backup frame mounting bolt hole.
(2)請求項1記載の連続鋳造用鋳型の最上流側鋳型を
除く下流側鋳型壁を複数の冷却水ガイド板で鋳片幅方向
に分割構成し、対を成す下流側鋳型壁を構成する前記夫
々の冷却ガイド板を鋳片に対して接離移動可能および傾
斜可能に構成したことを特徴とする連続鋳造用鋳型。
(2) The downstream side mold wall of the continuous casting mold according to claim 1, except for the most upstream side mold, is divided in the slab width direction by a plurality of cooling water guide plates to form a pair of downstream side mold walls. A mold for continuous casting, characterized in that each of the cooling guide plates is configured to be movable toward and away from the slab and tiltable.
(3)請求項1記載の最上流側鋳型の下部内面または、
請求項2記載の下流側鋳型のうち最上段の下流側鋳型の
上部内面に、鋳片表面へのエアージェット吹き出し孔を
設けたことを特徴とする連続鋳造用鋳型。
(3) the lower inner surface of the most upstream mold according to claim 1, or
3. A continuous casting mold, wherein the uppermost downstream mold of the downstream mold according to claim 2 is provided with an air jet blowing hole to the surface of the slab.
(4)請求項2記載の下流側鋳型のうち最上段の下流側
鋳型の上部内面に、鋳片と接触するロールを回転自在に
枢着したことを特徴とする連続鋳造用鋳型。
(4) A mold for continuous casting, characterized in that a roll that contacts the slab is rotatably mounted on the upper inner surface of the uppermost downstream mold among the downstream molds according to claim 2.
(5)請求項2記載の下流側鋳型のうち最上段の下流側
鋳型の上部内面に、請求項3記載のエアージェット吹き
出し孔と請求項4記載のロールを配設したことを特徴と
する連続鋳造用鋳型。
(5) A continuous mold, characterized in that the air jet outlet according to claim 3 and the roll according to claim 4 are arranged on the upper inner surface of the uppermost downstream mold among the downstream molds according to claim 2. Casting mold.
JP20078189A 1989-08-02 1989-08-02 Mold for continuous casting Pending JPH0366448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20078189A JPH0366448A (en) 1989-08-02 1989-08-02 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20078189A JPH0366448A (en) 1989-08-02 1989-08-02 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH0366448A true JPH0366448A (en) 1991-03-22

Family

ID=16430083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20078189A Pending JPH0366448A (en) 1989-08-02 1989-08-02 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH0366448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770252A (en) * 1991-10-16 1998-06-23 National Sea Products, Inc. Process for preparing a breaded food

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770252A (en) * 1991-10-16 1998-06-23 National Sea Products, Inc. Process for preparing a breaded food

Similar Documents

Publication Publication Date Title
RU2240892C2 (en) Liquid-cooled mold
RU2310543C2 (en) Method for correlating heat transfer of molds, namely in zone of metal heel
EP1140392B1 (en) High speed continuous casting device and relative method
JPH0366448A (en) Mold for continuous casting
JP2003311377A (en) Tube-type mold for continuous casting
JP3089608B2 (en) Continuous casting method of beam blank
KR100518331B1 (en) Mold for continuous casting slab
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
CN210387493U (en) Matching structure of large face and small face of crystallizer framework
JP2808633B2 (en) Continuous casting mold and control method thereof
JPH03114627A (en) Mold for continuous casting
JPH0335849A (en) Mold for continuous casting and lubricating method thereof
KR200188753Y1 (en) Nozzle of thin slab casting
CN213080005U (en) Combined H-shaped crystallizer
JPH03297541A (en) Mold for continuous casting equipment
KR20040056267A (en) A structure for fixing the nozzle cutting blade in twin roll type strip caster
US20230415223A1 (en) Crystallizer for the continuous casting of a metal product, and corresponding casting method
JPH0724920B2 (en) Mold for continuous casting
JPH03291148A (en) Dummy bar for drawing billet and continuous casting method
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
CN111774540A (en) Combined H-shaped crystallizer
JPH08206786A (en) Mold for continuous casting
JPH0464775B2 (en)
JPH04187344A (en) Mold for continuous casting
UA126487C2 (en) Crystallizer for continuous or semi-continuous casting