JPH0366357A - Biosignal processor - Google Patents

Biosignal processor

Info

Publication number
JPH0366357A
JPH0366357A JP20193289A JP20193289A JPH0366357A JP H0366357 A JPH0366357 A JP H0366357A JP 20193289 A JP20193289 A JP 20193289A JP 20193289 A JP20193289 A JP 20193289A JP H0366357 A JPH0366357 A JP H0366357A
Authority
JP
Japan
Prior art keywords
pulse wave
signal
waveform
accelerated pulse
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20193289A
Other languages
Japanese (ja)
Inventor
Kazunari Nishii
一成 西井
Takuo Shimada
拓生 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20193289A priority Critical patent/JPH0366357A/en
Publication of JPH0366357A publication Critical patent/JPH0366357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PURPOSE:To decrease identification errors by providing a neural computation means which reads out a memory means and identifies the waveform of a biosignal and a logical computing means. CONSTITUTION:The pulse wave signal of the blood circulation of the peripheral part can be obtd. if a finger tip 1 is irradiated with light from a photoirradiation section 3 and the quantity of the transmitted light is measured in a photodetecting part 4 by the light absorptivity of the hemoglobin in blood. This signal is passed through a filter section 5 and amplifier section 6 and is differentiated twice in a two-times differentiating section 7, by which the accelerated pulse wave signal is obtd. The accelerated pulse wave signal subjected to the differentiation twice is sampled by a sampling means 8 and the signal digitized by an AD converting means 9 is stored in a memory means 10. The logical computing means 11 reproduces the signal from the memory means 10 and inputs the reproduced accelerated pulse wave to the neural computation means 12 in which 7 patterns A to G are previously learned. Which pattern is the measured accelerated pulse wave is identified by this means. Since the waveform of the accelerated pulse wave signal is identified, the errors in the pattern identification are decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、生体、人間の体の一部より生体信号を検出し
、健康状態を識別する健康機器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a health device that detects biological signals from a living body or a part of a human body and identifies health conditions.

従来の技術 従来、この種の生体信号処理装置は、第3図(a)、(
ロ)に示すようになっていた。第3図(a)は、生体検
出手段2よりフィルター手段5に入力し、信号増幅手段
6を介して、サンプリング手段8でA、D変換手段9に
入力し、ディジタル値に変換された信号を記憶手段lO
に入力し、論理演算手段11で生体信号波形を再生し、
波形の振幅、変極点等を測定し生体信号を識別する構成
である。第3図(b)は、第3図(a)と同様なl威で
あるが、検出した生体信号をFFTアナライザー13に
人力し、生体信号のパワースペクトルを測定し、論理演
算手段11で生体信号を識別する構成である。
BACKGROUND OF THE INVENTION Conventionally, this type of biological signal processing device is as shown in Fig. 3(a), (
(b). FIG. 3(a) shows a signal inputted from the living body detection means 2 to the filter means 5, passed through the signal amplification means 6, inputted to the A, D conversion means 9 by the sampling means 8, and converted into a digital value. Storage means lO
, the biological signal waveform is reproduced by the logical operation means 11,
It is configured to measure waveform amplitude, inflection points, etc. and identify biological signals. FIG. 3(b) shows the same power as in FIG. 3(a), but the detected biological signal is manually input to the FFT analyzer 13, the power spectrum of the biological signal is measured, and the logical calculation means 11 is used to measure the power spectrum of the biological signal. This is a configuration for identifying signals.

発明が解決しようとする課題 しかしながら上記のような構成では、生体信号の波形の
一部分の特徴、つまり変極点の振幅なり、周波数成分を
測定し、生体状態を識別する構成なので、検出した生体
信号に含まれている全情報で識別するというような構成
にはなっていないという課題を有していた。
Problems to be Solved by the Invention However, in the above configuration, the characteristics of a part of the waveform of the biological signal, that is, the amplitude of the inflection point, the frequency component, and the biological condition are identified. The problem was that the structure was not such that identification could be made using all the information included.

本発明はかかる従来の課題を解消するもので検出した生
体信号がもつ全情報量になるべく近い情報量でもって生
体状態を識別することを目的とする。
The present invention solves such conventional problems and aims to identify a biological condition with an amount of information as close as possible to the total amount of information contained in detected biological signals.

課題を解決するための手段 上記課題を解決するために本発明の生体信号処理装置は
、生体系より生体信号を検出する手段と、生体信号をサ
ンプリングするサンプリング手段と、サンプリングより
得られた生体信号をアナログ値からディジタル値に変換
するAD変換手段と、AD変換手段から得られたディジ
タル信号を記憶する記憶手段と、記憶手段を読み出し生
体信号の波形を識別、認識するためのニューラルコンピ
ュテーション手段とを備えたものである。
Means for Solving the Problems In order to solve the above problems, the biological signal processing device of the present invention includes means for detecting biological signals from biological systems, sampling means for sampling biological signals, and biological signals obtained by sampling. AD conversion means for converting from an analog value to a digital value; storage means for storing the digital signal obtained from the AD conversion means; and neural computation means for reading out the storage means and identifying and recognizing the waveform of the biological signal. It is equipped with the following.

作用 本発明は上記したFIFEによって、検出した生体信号
をAD変換し、ディジタル化された生体信号から生体信
号の波形を再生し、その波形があらかじめ決められた複
数の一定パターンと比較し、どのパターン波形に近いか
をニューラルコンピュテーション手段を用いて識別し、
振幅、周波数情報がすべて含まれた生体信号の原波形を
パターン識別することになるので、比較的誤差の少ない
生体状態がチエツクできるようになる。
Operation The present invention uses the above-mentioned FIFE to perform AD conversion on the detected biological signal, reproduces the waveform of the biological signal from the digitized biological signal, compares the waveform with a plurality of predetermined constant patterns, and determines which pattern Using neural computation means, we identify whether the waveform is close to the
Since the original waveform of the biological signal containing all amplitude and frequency information is pattern-identified, the biological condition can be checked with relatively few errors.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
。第1図において、lは指尖、2は生体信号検出手段で
あり、その内3は光照財部、4は受光部であり、生体信
号検出手段2の出力はフィルタ一部5を介して増幅部6
に入力される。増幅部6の出力は、2回微分回路部7に
入力されその出力はサンプリング手段8によりサンプリ
ングされAD[1手段9に入力される。10は記憶手段
であり、AD変換手段9の出力を記憶する。11は論理
演算手段であり、記憶手段10と、12のニエーラルコ
ンビュテーシッン手段と結合している。
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. In FIG. 1, l is a fingertip, 2 is a biological signal detection means, 3 is a light illumination part, 4 is a light receiving part, and the output of the biological signal detection means 2 is passed through a filter part 5 to an amplification part. 6
is input. The output of the amplifying section 6 is input to the twice differentiating circuit section 7, and the output thereof is sampled by the sampling means 8 and input to the AD[1 means 9. A storage means 10 stores the output of the AD conversion means 9. Reference numeral 11 denotes a logic operation means, which is coupled to the storage means 10 and the neural computing means 12.

上記構成において、指尖1に光照射部3より光を照射す
れば、血液中のヘモグロビンの光吸収性により、その透
過光量を受光部4で測定すれば、第2図(a)に示すよ
うな末梢部の血液循環脈波信号を得ることができる。こ
の信号をフィルタ一部5、増幅部6を介して2回微分回
路部7で2回微分することにより、第2図(ロ)に示す
よ・うな加速度脈波信号が得られる。この波形は、生体
状態により7つのパターンに区分できることが一般に知
られている。第2図(C)のAは通常元気な若い人に見
られる波形で血液循環の良い状態、第2図(C)のBは
血液循環が不十分になっていく経過の中で見られるが、
まだ良い状態。第2図(C)のCは血液循環が不十分に
なってきた状態を示す。第2図(C)のD、已、F、G
は血液循環のかなり悪い状態を示す。一般に加速度脈波
には4つの変曲点1−1、I−2、I−3、I−4があ
り、I−1の高さに対するI−2、I−3、I−4のそ
れぞれの高さの比率を求めこの比率により、前述したA
−Gの7つのパターンに分類できることが知られている
。しかし本発明では比率の計算はしないで、2回微分し
た加速度脈波信号をサンプリング手段8でサンプリング
しAD変換手段9によりディジタル化された信号を記憶
手段10に格納する。論理演算手段11は、記憶手段1
0より再生し、再生した加速度脈波信号を前記A−Gの
7つのパターンを前もって学習したニューラルコンピュ
テーション手段12に入力し、測定した加速度脈波信号
がどのパターンかを識別する。この構成にすれば、従来
の波形の振幅のみから比率を求めどのパターンかを識別
するのに比べ、加速度脈波信号の波形そのものをニュー
ラルマツチングにより識別するのでパターン識別ミスが
かなり低減されるという効果がある。本実施例では加速
度脈波信号を一例として述べたが、生体系の他の測定信
号の識別にも適用できることは言うまでもない。
In the above configuration, when the fingertip 1 is irradiated with light from the light irradiation section 3, the amount of transmitted light is measured by the light receiving section 4 due to the light absorption property of hemoglobin in the blood, as shown in FIG. 2(a). It is possible to obtain peripheral blood circulation pulse wave signals. By differentiating this signal twice through the filter section 5 and the amplifying section 6 in the twice differentiating circuit section 7, an accelerated pulse wave signal as shown in FIG. 2 (b) is obtained. It is generally known that this waveform can be divided into seven patterns depending on the biological condition. A in Figure 2 (C) is a waveform that is normally seen in energetic young people when blood circulation is good, and B in Figure 2 (C) is a waveform that is seen in the course of a process where blood circulation becomes insufficient. ,
Still in good condition. C in FIG. 2(C) shows a state where blood circulation has become insufficient. D, 已, F, G in Figure 2 (C)
indicates a fairly poor state of blood circulation. Generally, there are four inflection points 1-1, I-2, I-3, and I-4 in an accelerated pulse wave, and each of I-2, I-3, and I-4 is different from the height of I-1. Find the height ratio and use this ratio to
-G is known to be classified into seven patterns. However, in the present invention, the ratio is not calculated, but the twice differentiated accelerated pulse wave signal is sampled by the sampling means 8, and the signal digitized by the AD conversion means 9 is stored in the storage means 10. The logical operation means 11 is the storage means 1
0 and inputs the reproduced accelerated pulse wave signal to the neural computation means 12 which has previously learned the seven patterns A to G, and identifies which pattern the measured accelerated pulse wave signal corresponds to. With this configuration, pattern identification errors are significantly reduced because the waveform of the accelerated pulse wave signal itself is identified by neural matching, compared to the conventional method of determining the ratio and identifying which pattern is based only on the amplitude of the waveform. effective. Although the present embodiment has been described using an accelerated pulse wave signal as an example, it goes without saying that the present invention can also be applied to the identification of other measurement signals of biological systems.

発明の効果 以上のように本発明の生体信号処理装置によれば次の効
果が得られる。
Effects of the Invention As described above, the biological signal processing device of the present invention provides the following effects.

(1)生体測定信号そのものの原波形を、あらかしめ学
習させたニューラルコンピュテーション手段によりパタ
ーン識別するので、振幅又は周波数成分等のみにより識
別する構成よりも、識別誤差がかなり低減されるという
効果がある。
(1) Since the original waveform of the biometric signal itself is pattern-identified using pre-trained neural computation means, identification errors are significantly reduced compared to a configuration that identifies only amplitude or frequency components. be.

(2)ニューラルコンピュテーション手段により識別誤
差がかなり低減されるので、識別すべきパターンの数を
増すことができる。
(2) Since the identification error is considerably reduced by the neural computation means, the number of patterns to be identified can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の生体信号処理装置の回路ブ
ロック図、第2図は同装置の各部信号波形図、第3図、
第4図は従来の生体信号処理回路のブロック図である。 2・・・・・・生体信号検出手段、8・・・・・・サン
プリング手段、9・・・・・・AD変換手段、IO・・
・・・・記憶手段、11・・・・・・論理演算手段、1
2・・・・・・ニューラルコンビュテーシッン手段。
FIG. 1 is a circuit block diagram of a biological signal processing device according to an embodiment of the present invention, FIG. 2 is a signal waveform diagram of each part of the device, and FIG.
FIG. 4 is a block diagram of a conventional biological signal processing circuit. 2...Biological signal detection means, 8...Sampling means, 9...AD conversion means, IO...
... Storage means, 11 ... Logical operation means, 1
2...Neural communication means.

Claims (1)

【特許請求の範囲】[Claims] 生体系より生体信号を検出する手段と、前記生体信号を
サンプリングするサンプリング手段と、前記サンプリン
グ手段より得られた生体信号をアナログ値からディジタ
ル値に変換するAD変換手段と、前記AD変換手段から
得られたディジタル信号を記憶する記憶手段と、前記記
憶手段を読み出し生体信号の波形を識別するためのニュ
ーラルコンピュテーション手段と、前記ニューラルコン
ピュテーション手段を制御する論理演算手段とからなる
生体信号処理装置。
a means for detecting a biological signal from a biological system; a sampling means for sampling the biological signal; an AD conversion means for converting the biological signal obtained from the sampling means from an analog value to a digital value; A biological signal processing device comprising a storage means for storing a digital signal obtained by the calculation, a neural computation means for reading out the storage means and identifying a waveform of the biological signal, and a logic operation means for controlling the neural computation means.
JP20193289A 1989-08-02 1989-08-02 Biosignal processor Pending JPH0366357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20193289A JPH0366357A (en) 1989-08-02 1989-08-02 Biosignal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20193289A JPH0366357A (en) 1989-08-02 1989-08-02 Biosignal processor

Publications (1)

Publication Number Publication Date
JPH0366357A true JPH0366357A (en) 1991-03-22

Family

ID=16449180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20193289A Pending JPH0366357A (en) 1989-08-02 1989-08-02 Biosignal processor

Country Status (1)

Country Link
JP (1) JPH0366357A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207985A (en) * 1991-11-29 1993-08-20 Nec Corp Electrocardiogram waveform recognizing system
JPH08206085A (en) * 1995-02-03 1996-08-13 Nec Corp Autonomic activity-classifying device
US6261235B1 (en) 1993-01-07 2001-07-17 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
JP2004351184A (en) * 2003-05-28 2004-12-16 Yasuo Fujii Ubiquitous health management support system
JP2007531602A (en) * 2004-04-05 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Cardiac diagnostic system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106642A (en) * 1980-01-31 1981-08-25 Nippon Electron Optics Lab Electrocardiograph
JPS6253634A (en) * 1985-08-30 1987-03-09 ヴイリ− スチユ−ダ− ア−ゲ− Determination of start and final points in closed loop signal pattern
JPH01114899A (en) * 1987-10-28 1989-05-08 Nec Corp Dynamic neural network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106642A (en) * 1980-01-31 1981-08-25 Nippon Electron Optics Lab Electrocardiograph
JPS6253634A (en) * 1985-08-30 1987-03-09 ヴイリ− スチユ−ダ− ア−ゲ− Determination of start and final points in closed loop signal pattern
JPH01114899A (en) * 1987-10-28 1989-05-08 Nec Corp Dynamic neural network

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207985A (en) * 1991-11-29 1993-08-20 Nec Corp Electrocardiogram waveform recognizing system
US6261235B1 (en) 1993-01-07 2001-07-17 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US6364842B1 (en) 1993-01-07 2002-04-02 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US6767329B2 (en) 1993-01-07 2004-07-27 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US7192402B2 (en) 1993-01-07 2007-03-20 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US7465274B2 (en) 1993-01-07 2008-12-16 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
JPH08206085A (en) * 1995-02-03 1996-08-13 Nec Corp Autonomic activity-classifying device
JP2004351184A (en) * 2003-05-28 2004-12-16 Yasuo Fujii Ubiquitous health management support system
JP2007531602A (en) * 2004-04-05 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Cardiac diagnostic system and method

Similar Documents

Publication Publication Date Title
US6845263B2 (en) Heart-sound detecting apparatus and pulse-wave-propagation-velocity-relating-information obtaining system using the heart-sound detecting apparatus
Bahill et al. Frequency limitations and optimal step size for the two-point central difference derivative algorithm with applications to human eye movement data
CN100450437C (en) Method of measuring blood oxygen under low filling
US5267151A (en) Method and apparatus for detecting and identifying a condition
JPH07171139A (en) Pulse oximeter
CA1258099A (en) Egg with delta wave recognition by double
CN1985764A (en) Blood oxygen measuring method and device capable of eliminating moving inteference
CN101785667B (en) Waveform characteristic point based method for analyzing volume pulse wave pattern and detection device
CN100589758C (en) Alternative current component detecting method and detecting device
JPH0366357A (en) Biosignal processor
JPH0374099B2 (en)
KR100852195B1 (en) system for determined application of and Method thereof
Sakri et al. A multi-user multi-task model for stress monitoring from wearable sensors
AU2005336269A1 (en) Signal recognition method using a low-cost microcontroller
Wan et al. Design of a photoplethysmographic sensor for biometric identification
CN112842368A (en) System and method for identifying surface electromyographic signals
CN201641996U (en) Dual-channel volume pulse wave detecting device based on analysis of waveform characteristic points
Pilla et al. Detection of movement-related desynchronization of the EEG using neural networks
JPH05212006A (en) Heartbeat interval measuring instrument
JP2020076923A5 (en)
JP2002224061A (en) Electronic sphygmomanometer
Juhola et al. Effect of sampling frequencies on the velocity of slow and fast phases of nystagmus
Byfield et al. Equine Life Stage Classification from Photoplethysmography Data by an Explainable Echo State Network
JPH0357434A (en) Many hour miniature cardiogram analyzing device with body motion sensor
JPH0386152A (en) Oxymeter