JPH0366319B2 - - Google Patents

Info

Publication number
JPH0366319B2
JPH0366319B2 JP12867882A JP12867882A JPH0366319B2 JP H0366319 B2 JPH0366319 B2 JP H0366319B2 JP 12867882 A JP12867882 A JP 12867882A JP 12867882 A JP12867882 A JP 12867882A JP H0366319 B2 JPH0366319 B2 JP H0366319B2
Authority
JP
Japan
Prior art keywords
group
ethyl
amino
leucyl
glycine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12867882A
Other languages
Japanese (ja)
Other versions
JPS5890535A (en
Inventor
Yoshitsugu Sakata
Masaaki Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP12867882A priority Critical patent/JPS5890535A/en
Publication of JPS5890535A publication Critical patent/JPS5890535A/en
Publication of JPH0366319B2 publication Critical patent/JPH0366319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の利用分野] 本発明は、特定酵素活性測定用の色素体基質と
して有用な新規なペプチド誘導体に関する。 [発明の背景] 各種酵素の作用や力価を測定するには、その酵
素により特異的な作用を受ける物質にその酵素を
作用させ、作用前後の状態を比較する方法が通常
行われる。この際に使用される酵素に特異的な作
用を受ける物質、即ち基質として天然に存在する
物質や種々の合成ペプチド誘導体が開発され報告
されている。 カブトガニの血球抽出液(アメボサイト・ライ
セート)が微量の細菌内毒素と反応してゲル化す
る現象をもとにした内毒素の微量検出法が開発さ
れ実用化されている。この原理に基づく検出方法
としては、米国薬局法[U.S・Pharmacopeia
XX.888(1980)]に採用されたゲルの固さを肉眼
的に判定する方法をはじめ、濁度測定法、クロツ
ト蛋白定量法等があるが、いずれもゲル化現象に
基づくため精度が良くない。 又「新規な色素体酵素基質」(特開昭51−83535
号公報)の発明は、R1−A1−A2−Gly−Arg−
NH−R2で示される色素体基質を用い酵素作用を
受けて遊離した発色体を分光光度計で測定するこ
とを特徴としているが、本法では血液試料中の色
素成分による妨害を受けやすい欠点がある。 [発明の目的] 本発明は、上記した如き状況に鑑みなされたも
ので、特定酵素(プロテアーゼ)の活性を簡便に
且つ高感度に測定することができ、しかも血液試
料中の色素成分の影響を受け難い色素体基質を提
供することを目的とする。 [発明の構成] 本発明は、一般式[] (式中、R1はN−末端に保護基を有する、ロ
イシル基、バリル基又はバリル−ロイシル基を表
わす。また、式中のアルギニン残基のグアニジノ
基は保護基を有していても、酸付加塩の状態とな
つていてもよい。) で示されるペプチド誘導体又はその酸付加塩の発
明である。 即ち、本発明者らは、特定酵素(プロテアー
ゼ)の活性を簡便に且つ高感度に測定することが
でき、しかも血液試料中の色素成分による影響を
受け難い性質を有する、色素体基質を求めて鋭意
研究を重ねた結果、アルギニン残基のC−末端側
に、フエノール、ナフトール等と酸化縮合させる
ことにより長波長側に極大吸収(λmax)を有す
る色素を生成する4−アミノ−N−エチル−N−
(β−ヒドロキシエチル)アニリン又は4−アミ
ノ−3−メチル−N−エチル−N−(β−ヒドロ
キシエチル)アニリンが結合している一般式
[]で示されるペプチド誘導体が該目的を達成
し得ることを見出し、本発明を完成するに至つ
た。即ち、一般式[]で示されるペプチド誘導
体を特定酵素(プロテアーゼ)、例えばカブトガ
ニのアメボサイト・ライセートが細菌内毒素と反
応した結果生ずるアミダーゼ様酵素の基質として
用いた場合には、該酵素の活性を簡便で高感度
に、且つ血液試料中の色素成分による影響を殆ど
受けずに測定することができる。 一般式[]のR1に於けるN−末端の保護基
としては、アミノ酸やペプチドのN−末端の保護
基として通常用いられているものであれば特に限
定されることなく挙げられるが、例えばアセチル
基、ベンゾイル基等のアシル基、カルボベンゾキ
シ基、第3アルキルオキシカルボニル基、トシル
基、グルタリル基等が挙げられる。 また、一般式[]のアルギニン残基のグアニ
ジノ基の保護基としては、例えばニトロ基、トシ
ル基、p−メトキシベンゼンスルホニル基、4−
メトキシ−2.6−ジメチルベンンゼンスルホニル
基等のN−グアニジノ保護基として通常用いられ
ているものが挙げられる。 一般式[]で示されるペプチド誘導体は酸付
加塩となつてもよく、そのような酸付加塩として
は例えば塩酸、硫酸、硝酸、リン酸等の無機酸、
例えば酢酸、シユウ酸、酒石酸、コハク酸、クエ
ン酸、トルエンスルホン酸等の有機酵等の酸付加
塩が挙げられる。 本発明のペプチド誘導体は、例えば以下の如く
して合成し得る。 即ち、一般式[] (式中、Rは水素原子、又はアミノ酸のN−末
端保護基を表わす。) で示されるアルギニン誘導体(通常、アミノ酸の
N−末端が適当な保護基により保護されたものが
用いられる。)をペプチド誘導体の合成に於いて
通常用いられている溶媒、例えばジメチルホルム
アミド(DMF)、ジメチルスルホキシド
(DMSO)、テトラハイドロフラン(THF)、水
或はこれらの混合物等に溶解し、これに窒素気流
下、N−末端が適当な保護基により保護されたグ
リシン、ロイシル−グリシン、バリル−グリシ
ン、バリル−ロイシル−グリシン或はこれらの活
性エステル体[例えば、N−ヒドロキシスクシン
イミドエステル、N−ヒドロキシ−5−ノルボル
ネン−2,3−ジカルボキシイミドエステル
(HONB)、1−ヒドロキシベンゾトリアゾール
エステル、p−ニトロフエニルエステル等が前記
した如きアミノ酸又はペプチドのC−末端側に結
合したもの。]と、ジシクロヘキシルカルボジイ
ミド(DCCD)等のペプチド合成に慣用される縮
合剤とを添加した後、室温、要すれば加熱下に適
当な時間反応させればよく、応終了後は、反応液
を濃縮乾固し、次いでこれをペプチド誘導体の精
製方法として通常用いられている方法、例えばシ
リカゲルカラムクロマトグラフイ、イオン交換カ
ラムクロマトグラフイ等により精製し、必要に応
じて脱保護を行えば本発明のペプチド誘導体が容
易に得られる。かくして得られた本発明のペプチ
ド誘導体は、特定酵素(プロテアーゼ)、例えば
カブトガニのアメボサイト・ライセートが細菌内
毒素と反応した結果生ずるアミダーゼ様酵素の基
質として有用なものである。即ち、このようにし
て得られた本発明のペプチド誘導体は、アミダー
ゼ様酵素の作用によりアルギニン残基のC−末端
側のペプチド結合が容易に加水分解される性質を
有しているので、この結果遊離される4−アミノ
−N−エチル−N−(β−ヒドロキシエチルエチ
ル)アニリン又は4−アミノ−3−メチル−N−
エチル−N−(β−ヒドロキシエチル)アニリン
を適当な酸化剤の存在下、フエノール、ナフトー
ル等と酸化縮合させ、生成する青色のインドフエ
ノール型色素に起因する吸光度の変化を測定する
ことにより、アミダーゼ様酵素量、言い換えれば
試料中の細菌内毒素(エンドトキシン)の量を定
量的に検出することが出来る(下記カスケード参
照。)。
[Field of Application of the Invention] The present invention relates to a novel peptide derivative useful as a plastid substrate for measuring specific enzyme activity. [Background of the Invention] In order to measure the action and potency of various enzymes, a method is usually used in which the enzyme is allowed to act on a substance that is specifically affected by the enzyme, and the conditions before and after the action are compared. Substances that act specifically with the enzyme used in this case, ie, naturally occurring substances and various synthetic peptide derivatives as substrates, have been developed and reported. A method for detecting trace amounts of endotoxin has been developed and put into practical use, based on the phenomenon in which horseshoe crab blood cell extract (amebocyte lysate) reacts with trace amounts of bacterial endotoxin and turns into a gel. A detection method based on this principle is based on the US Pharmacopeia Act.
XX.888 (1980)], there are methods for visually determining gel hardness, turbidity measurement, clot protein quantification, etc., but all of them are based on the gelation phenomenon and are highly accurate. do not have. Also, “Novel plastid enzyme substrate” (Japanese Patent Application Laid-Open No. 51-83535
The invention of R 1 −A 1 −A 2 −Gly−Arg−
This method uses a plastid substrate represented by NH-R 2 to measure the chromophore liberated through enzymatic action using a spectrophotometer, but this method has the disadvantage of being easily interfered with by pigment components in the blood sample. There is. [Object of the Invention] The present invention was made in view of the above-mentioned circumstances, and allows the activity of a specific enzyme (protease) to be measured easily and with high sensitivity, while also eliminating the influence of pigment components in blood samples. The aim is to provide a plastid matrix that is refractory. [Structure of the invention] The present invention is based on the general formula [] (In the formula, R 1 represents a leucyl group, a valyl group, or a valyl-leucyl group having a protecting group at the N-terminus.Also, even if the guanidino group of the arginine residue in the formula has a protecting group, (The invention may be in the form of an acid addition salt.) This invention relates to a peptide derivative or an acid addition salt thereof. That is, the present inventors sought a plastid substrate that allows the activity of a specific enzyme (protease) to be measured easily and with high sensitivity, and that is not easily affected by pigment components in blood samples. As a result of extensive research, 4-amino-N-ethyl-, which produces a dye with maximum absorption (λmax) on the long wavelength side, is produced by oxidative condensation with phenol, naphthol, etc. on the C-terminal side of an arginine residue. N-
A peptide derivative represented by the general formula [ ] to which (β-hydroxyethyl)aniline or 4-amino-3-methyl-N-ethyl-N-(β-hydroxyethyl)aniline is bonded can achieve this purpose. This discovery led to the completion of the present invention. That is, when the peptide derivative represented by the general formula [ ] is used as a substrate for a specific enzyme (protease), for example, an amidase-like enzyme produced as a result of the reaction of horseshoe crab amebocyte lysate with bacterial endotoxin, the activity of the enzyme can be inhibited. It can be measured simply and with high sensitivity, and is hardly affected by pigment components in the blood sample. The N-terminal protecting group for R 1 in the general formula [ ] is not particularly limited and may be any group commonly used as an N-terminal protecting group of amino acids or peptides, but examples include: Examples include acyl groups such as acetyl group and benzoyl group, carbobenzoxy group, tertiary alkyloxycarbonyl group, tosyl group, and glutaryl group. In addition, as a protecting group for the guanidino group of the arginine residue of the general formula [], for example, a nitro group, a tosyl group, a p-methoxybenzenesulfonyl group, a 4-
Examples include those commonly used as N-guanidino protecting groups such as methoxy-2,6-dimethylbenzenesulfonyl group. The peptide derivative represented by the general formula [] may be an acid addition salt. Examples of such acid addition salts include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid;
Examples include acid addition salts of organic enzymes such as acetic acid, oxalic acid, tartaric acid, succinic acid, citric acid, and toluenesulfonic acid. The peptide derivative of the present invention can be synthesized, for example, as follows. That is, the general formula [ ] (In the formula, R represents a hydrogen atom or an N-terminal protecting group of an amino acid.) An arginine derivative (usually one in which the N-terminus of an amino acid is protected with an appropriate protecting group) is used. It is dissolved in a solvent commonly used in the synthesis of peptide derivatives, such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), water, or a mixture thereof, and then heated in a nitrogen atmosphere. , glycine, leucyl-glycine, baryl-glycine, baryl-leucyl-glycine, or active esters thereof [e.g., N-hydroxysuccinimide ester, N-hydroxy-5- Norbornene-2,3-dicarboximide ester (HONB), 1-hydroxybenzotriazole ester, p-nitrophenyl ester, etc. are bonded to the C-terminal side of the above-mentioned amino acids or peptides. ] and a condensing agent commonly used for peptide synthesis, such as dicyclohexylcarbodiimide (DCCD), and then react at room temperature, if necessary with heating, for an appropriate time. After the reaction is complete, concentrate the reaction solution. The product of the present invention can be obtained by drying, and then purifying it by a method commonly used for purifying peptide derivatives, such as silica gel column chromatography, ion exchange column chromatography, etc., and deprotecting it if necessary. Peptide derivatives are easily obtained. The peptide derivatives of the present invention thus obtained are useful as substrates for specific enzymes (proteases), such as amidase-like enzymes produced as a result of the reaction of horseshoe crab amebocyte lysate with bacterial endotoxins. That is, the peptide derivative of the present invention thus obtained has the property that the peptide bond on the C-terminal side of the arginine residue is easily hydrolyzed by the action of an amidase-like enzyme; 4-amino-N-ethyl-N-(β-hydroxyethylethyl)aniline or 4-amino-3-methyl-N- released
By oxidative condensation of ethyl-N-(β-hydroxyethyl)aniline with phenol, naphthol, etc. in the presence of an appropriate oxidizing agent, and measuring the change in absorbance caused by the blue indophenol dye produced, amidase In other words, the amount of bacterial endotoxin in a sample can be quantitatively detected (see cascade below).

【表】 本発明のペプチド誘導体の合成原料となる一般
式[]で示されるアルギニン誘導体は、例えば
以下のようにして容易に合成し得るので、それを
用いれば足りる。 即ち、適当な保護基によりアミノ基が保護され
たアルギニン又は適当な保護基によりアミノ基及
びグアニジノ基が保護されたアルギニンをペプチ
ド誘導体の合成に於いて通常用いられている溶
媒、例えばジメチルホルムアミド(DMF)、ジメ
チルスルホキシド(DMSO)、テトラハイドロフ
ラン(THF)、水或はこれらの混合物等に溶解
し、これに室素気流下、4−アミノ−N−エチル
−N−(β−ヒドロキシエチル)アニリン又は4
−アミノ−3−メチル−N−エチル−N−(β−
ヒドロキシエチル)アニリンと、ジシクロヘキシ
ルカルボジイミド(DCCD)等のペプチド合成に
慣用される縮合剤とを添加した後、室温、要すれ
ば加熱下に適当な時間反応させる。反応終了後
は、反応液を濃縮乾固し、次いでこれをペプチド
誘導体の精製法として通常用いられている方法、
例えばシリカゲルカラムクロマトグラフイ、イオ
ン交換カラムクロマトグラフイ等により精製し、
要すれば脱保護の処理を行うことにより、一般式
[]で示されるアルギニン誘導体が容易に得ら
れる。 以下に、実施例により本発明を更に詳細に説明
する。 [実施例] 参考例 1 (a) カルボベンゾキシ−L−ロイシル−グリシン
エチルエステルの合成 カルボベンゾシキ−L−ロイシン26gとグリシ
ンエチルエステル塩酸塩14gをTHF400mlに溶解
させた溶液に、氷浴冷却下トリエチルアミン15
ml、HONB18g及びDCCD22gを添加した。次
いでこれを室温にて20時間攪拌反応させた後、沈
殿物を瀘去し、溶媒を留去した。得られた残渣を
酢酸エチル500mlに溶解し、飽和重炭酸ソーダ水
溶液、1N−塩酸、水の順で洗浄した後、有機層
を無水硫酸ソーダで乾燥した。乾燥剤を瀘去後、
有機層を減圧濃縮乾固し、得られた残渣に石油ベ
ンジンを加え、ゲル状固体を得、これを更に酢酸
エチル/石油ベンジンより再結晶して、カルボキ
シ−L−ロイシル−グリシンエチルエステルを得
た。 収量 30.1g(83%)。 融点 114〜115℃。 比旋光度[α]21 D=−26.1(C=1.05、エタノー
ル)。 元素分析値(C18H26N2O5として) 計算値(%):C61.70、H7.48、N7.99、 実測値(%):C62.07、H7.50、N7.91。 (b) t−ブチルオキシカルボニル−L−バリル−
L−ロイシル−グリシンの合成 (a)で得たカルボベンゾキシ−L−ロイシル−グ
リシンエチルエステル10.5gとp−トルエンスル
ホン酸5.7gをエチルアルコール200mlに溶解し、
これに5%パラジウム黒触媒5gを加えて、水素
ガスを通じながら室温で3時間攪拌反応させた。
反応終了後、反応液から触媒を瀘去し、次いで溶
媒を減圧下に留去した。得られた油状物とt−ブ
チルオキシカルボニル−L−バリン6.5g及び
HONB5.4gをTHF300mlに溶解させ、これに氷
浴冷却下トリエチルアミン4.2ml及びDCCD7.4g
を添加して室温にて20時間攪拌反応させた。反応
終了後、不溶物を瀘去し、溶媒を留去した。得ら
れた残渣を酢酸エチル500mlに溶解し、飽和重炭
酸ソーダ水溶液、10%クエン酸、水の順で洗浄し
た後、有機層を無水硫酸ソーダで乾燥した。乾燥
剤を瀘去後、有機層を減圧濃縮乾固した。残渣に
石油エーテルを加え固化させ、これを更に酢酸エ
チル/石油エーテルより再結晶し、t−ブチルオ
キシカルボニル−L−バリル−L−ロイシル−グ
リシンエチルエステルを得た。 収量 10g(83%)。 融点 113〜114℃。 比旋光度[α]21 D=56.3(C=0.95、エタノール)。 元素分析値(C20H37N3O6として) 計算値(%):C57.81、H8.98、N10.11、 実測値(%):C57.97、H8.91、N 9.92。 次いでこのt−ブチルオキシカルボニル−L−
バリル−L−ロイシル−グリシンエチルエステル
4.1gをメチルアルコール30mlに溶解させ、氷浴
冷却下1N−水酸化ナトリウム水溶液20mlを加え
て2時間攪拌反応させた。反応終了後、反応液に
1N−塩酸18mlを加えて中和し、減圧濃縮した後、
更に1N−塩酸2mlを加え、これを酢酸エチル300
mlで抽出した。抽出液を無水硫酸ソーダで乾燥
し、乾燥剤を瀘去後、有機層を減圧濃縮乾固し
た。残渣に石油エーテルを加えた固化させた後、
これを酢酸エチル/石油エーテルより再結晶し、
t−ブチルオキシカルボニル−L−バリル−L−
ロイシル−グリシンを得た。 収量 3.6g(93)%。 融点 104〜108℃。 比旋光度[α]21 D=−54.6(C=0.99、エタノー
ル)。 (c) t−ブチルオキシカルボニル−L−バリル−
L−ロイシル−グリシン−N−ヒドロキシ−5
−ノルボルネン−2,3−ジカルボキシイミド
エステルの合成 (b)で得たt−ブチルオキシカルボニル−L−バ
リル−L−ロイシル−グリシン1.5gをTHF50ml
に溶解し、これに氷浴冷却下HONB0.84g及び
DCCD1.0gを添加して室温にて20時間攪拌反応
させた。反応終了後、沈殿物を瀘去し、溶媒を留
去してt−ブチルオキシカルボニル−L−バリル
−L−ロイシル−グリシン−N−ヒドロキシ−5
−ノルボルネン−2,3−ジカルボキシイミドエ
ステルを得た。 収量 1.9g(90%)。 参考例2 4−[N〓−カルボベンゾキシ−L−ア
ルギニン)アミノ]−N−エチル−N−(β−ヒ
ドロキシエチル)アニリンの合成 N〓−カルボベンゾキシ−L−アルギニン3.0g
をDMF80mlに熱時溶解し、これに窒素気流中、
氷浴冷却下、4−アミノ−N−エチル−N−(β
−ヒドロキシエチル)アニリン2.75gとDCCD4.0
gを加えて室温にて20時間攪拌反応させた。反応
終了後、不溶物を瀘去し、溶媒を留去して、得ら
れた残渣をシリカゲルカラムクロマトグラフイ
(カラム:15×5cm、溶出液:酢酸エチル:ピリ
ジン:水:酢酸=の60:20:10:5。)により精
製し、主溶出分の濃縮乾固物を水に溶解したもの
を凍結乾燥して、4−[(N〓−カルボベンゾキシ
−L−アルギニル)アミノ]−N−エチル−N−
(β−ヒドロキシエチル)アニリン・2酢酸塩を
得た。 収量 1.45g(25%)。 比旋光度[α]21 D=−17.2(C=0.95、メタノー
ル)。 元素分析値(C24H35N6O4・2CH3COOHとして) 計算値(%):C56.83、H7.33、N14.20、 実測値(%):C57.02、H7.05、N14.14。 参考例3 4−[(N〓−カルボベンゾキシ−L−
アルギニル)アミノ]−3−メチル−N−エチ
ル−N−(β−ヒドロキシエチル)アニリンの
合成 N〓−カルボベンゾキシ−L−アルギニン2.0g
をDMF20mlに熱時溶解し、これに窒素気流中、
氷浴冷却下4−アミノ−3−メチル−N−エチル
ーNー(β−ヒドロキシエチル)アニリン1.8g
とDCCD1.4gを加えて室温にて20時間攪拌反応
させた。反応終了後、沈殿物を瀘去し、溶媒を留
去して、得られた残渣をシリカゲルカラムクロマ
トグラフイ(カラム:40×2cm、溶出液:酢酸エ
チル:ピリジン:水:酢酸=120:20:10:5。)
により精製し、主溶出分の濃縮乾固物を水に溶解
したものを凍結乾燥して、4−[N〓−カルボベン
ゾキシ−L−アルギニル)アミノ]−3−メチル
−N−エチル−N−(β−ヒドロキシエチル)ア
ニリン・2酢酸塩を得た。 収量 0.86g(22%)。 比旋光度[α]21 D=−10.1(C=0.88、メタノー
ル)。 元素分析値(C25H37N6O4・2CH3COOHとして) 計算値(%):C57.51、H7.49、N13.87、 実測値(%):C57.22、H7.18、N13.65。 実施例1 4−[(t−ブチルオキシカルボニル−
L−バリル−L−ロイシル−グリシル−L−ア
ルギニル)アミノ]−N−エチル−N−(β−ヒ
ドロキシエチル)アニリンの合成 参考例2で得られた4−[(N〓−カルボベンゾ
キシ−L−アルギニル)アミノ]−N−エチル−
N−(β−ヒドロキシエチル)アニリン.2酢酸
塩1.45gの接触還元物4−[(L−アルギニル)ア
ミノ]−N−エチル−N−(β−ヒドロキシエチ
ル)アニリンのTHF溶液30mlに参考例1(c)で得
たt−ブチルオキシカルボニル−L−バリル−L
−ロイシル−グリシン−N−ヒドロキシ−5−ノ
ルボルネン−2,3−ジカルボキシイミドエステ
ル0.95gのDMF溶液30mlを加え、室温で72時間
攪拌反応させた。反応終了後、反応液を濃縮乾固
し、得られた残渣を水120mlに溶解し、アンバー
ライトIRA−410(酢酸型)を通して、イオン交換
カラムクロマトグラフイ(CMセルロース、0.2M
酢酸アンモニウム)にて精製し、その主溶出分を
凍結乾燥して4−[t−ブチルオキシカルボニル
−L−バリル−L−ロイシル−グリシン−L−ア
ルギニル)アミノ]−N−エチル−N−(β−ヒド
ロキシエチル)アニリン・2酢酸塩・1/2水和
物を得た。 収量 110mg(11%)。 融点 115〜122℃。 比旋光度[α]21 D=−37.1(C=0.42、メタノー
ル)。 元素分析値 (C34H59N9O7・2CH3COOH・1/2H2Oとし
て) 計算値(%):C54.66、H8.21、N15.09、 実測値(%):C54.54、H8.02、N15.54。 実施例2 4−[(N−カルボベンゾキシ−L−ロ
イシル−グリシン−L−アルギニル)アミノ]
−N−エチル−N−(β−ヒドロキシエチル)
アニリンの合成 参考例1(a)で得られたN−カルボベンゾキシ−
L−ロイシル−グリシンエチルエステル4.1gを
メチルアルコール30mlに溶解し、これに氷浴冷却
下1N−水酸化ナトリウム水溶液20mlを加えて2
時間攪拌反応させた。反応終了後、反応液に1N
−塩酸18mlを加えて中和し、減圧濃縮した後、更
に1N−塩酸2mlを加え、これを酢酸エチル300ml
で抽出した。抽出液を無水硫酸ソーダで乾燥し、
乾燥剤を瀘去後、有機層を減圧濃縮乾固した。残
渣に石油エーテルを加え固化させた後、これを更
に酢酸エチル/石油エーテルより再結晶し、N−
カルボベンゾキシ−L−ロイシル−グリシンを得
た。 このN−カルボベンゾキシ−L−ロイシル−グ
リシンを原料とし、参考例1(c)と同様の反応及び
操作を行つてN−カルボベンゾキシ−L−ロイシ
ル−グリシン−N−ヒドロキシ−5−ノルボルネ
ン−2,3−ジカルボキシイミドエステル0.85g
を得た。このDMF30ml溶液に、参考例2と同様
の方法により得られた4−[(N〓−カルボベンゾ
キシ−L−アルギニル)アミノ]−N−エチル−
N−(β−ヒドロキシエチル)アニリン・2酢酸
塩1.5gの接触還元物4−[(L−アルギニル)ア
ミノ]−N−エチル−N−(β−ヒドロキシエチ
ル)アニリンのTHF溶液30mlを加え、室温で72
時間攪拌反応させた。反応終了後、反応液を濃縮
乾固し、得られた残渣を水120mlに溶解し、アン
バーライトIRA−410(酢酸型)を通して、イオン
交換カラムクロマトグラフイ(CMセルロース、
0.2M酢酸アンモニウム)にて精製し、その主溶
出分を凍結乾燥して4−[(N−カルボベンゾキシ
−L−ロイシル−グリシン−L−アルギニル)ア
ミノ]−N−エチル−N−(β−ヒドロキシエチ
ル)アニリン・2酢酸塩を得た。 収量 311mg(15%)。 融点 119℃。 比旋光度[α]21 D=−12.2(C=0.41、エタノー
ル)。 元素分析値(C32H48N8O6・2CH3COOHとして) 計算値(%):C56.82、H7.42、N14.70、 実測値(%):C56.50、H7.11、N14.50。 実施例3 4−[(t−ブチルオキシカルボニル−
L−バリル−グリシル−L−アルギニル)アミ
ノ]−N−エチル−N−(β−ヒドロキシエチ
ル)アニリンの合成 t−ブチルオキシカルボニル−L−バリン26g
とグリシンエチルエステル塩酸塩14gをTHF400
mlに溶解させ、これに氷浴冷却下トリエチルアミ
ン15ml、HONB18g及びDCCD22gを加え室温
にて20時間攪拌反応させた。反応終了後、沈殿物
を瀘去し、溶媒を留去して、得られた残渣を酢酸
エチル500mlに溶解し、飽和重炭酸ソーダ水溶液、
1N−クエン酸、水の順で洗浄した後、有機層を
無水硫酸ソーダで乾燥した。乾燥剤を瀘去後、有
機層を減圧濃縮乾固し、残渣に石油ベンジンを加
え、ゲル状固体を得た。これを酢酸エチル/石油
ベンジンより再結晶し、t−ブチルオキシカルボ
ニル−L−バリル−グリシンエチルエステルを得
た。 収量 18.1g(50%)。 融点 98〜99℃。 上で得たt−ブチルオキシカルボニル−L−バ
リル−グリシンエチルエステル4.1gをメチルア
ルコール30mlに溶解し、これに氷浴冷却下1N−
水酸化ナトリウム水溶液20mlを加えて2時間攪拌
反応させた。反応終了後、反応液に1N−塩酸18
mlを加えて中和し、減圧濃縮した後、更に1N−
塩酸2mlを加え、これを酢酸エチル300mlで抽出
した。抽出液を無水硫酸ソーダで乾燥し、乾燥剤
を瀘去後、有機層を減圧濃縮乾固した。残渣に石
油エーテルを加え固化させた後、これを酢酸エチ
ル/石油エーテルより再結晶し、t−ブチルオキ
シカルボニル−L−バリル−グリシンを得た。 このt−ブチルオキシカルボニル−L−バリル
−グリシンを原料とし、参考例1(c)と同様の反応
及び操作を行つてt−ブチルオキシカルボニル−
L−バリル−グリシン−N−ヒドロキシ−5−ノ
ルボルネン2,3−ジカルボキシイミドエステル
0.95gを得た。このDMF20ml溶液に、参考例2
と同様の方法により得られた4−[(N〓−カルボ
ベンゾキシ−L−アルギニル)アミノ]−エチル
−N−(β−ヒドロキシエチル)アニリン・2酢
酸塩1.5gの接触還元物4−[(L−アルギニル)
アミノ]−N−エチル−N−(β−ヒドロキシエチ
ル)アニリンのTHF溶液50mlを加えた後、室温
で72時間攪拌反応せた。反応終了後、反応液を濃
縮乾固し、得られた残渣を水120mlに溶解し、ア
ンバーライトIRA−410(酢酸型)を通して、イオ
ン交換カラムクロマトグラフイ(CMセルロー
ス、0.2M酢酸アンモニウム)にて精製し、その
主溶出分を凍結乾燥して4−[(t−ブチルオキシ
カルボニル−L−バリル−グリシン−L−アルギ
ニル)アミノ]−N−エチル−N−(β−ヒドロキ
シエチル)アニリン・2酢酸塩を得た。 収量 387mg(12%)。 融点 101〜102℃。 比旋光度[α]21 D=−0.7(C=0.35、DMF)。 元素分析値(C28H48N8O6・2CH3COOHとして) 計算値(%):C53.92、H7.92、N15.71、 実測値(%):C53.72、H7.82、N15.46。 参考例 4 実施例1、2又は3で得られたペプチド誘導体
を基質とし、以下の試液を用いてエンドトキシン
濃度の測定を行つた。 (試液) (1) LAL溶液 リムルス・アメボサイト・ライセート(LAL)
(凍結乾燥品、5ml用)を注射用蒸留水5mlで溶
解したものをLAL溶液とした。 (2) 標準エンドトキシン溶液 標準エンドトキシン(凍結乾燥品、0.5μg/
vial)を所定濃度となるように注射用蒸留水に溶
解したものを標準エンドトキシン溶液とした。 (3) 基質緩衝液 1−ナフトール−2−スルホン酸カリウム
(0.2mM)及び実施例1、2又は3で得られた本
発明のペプチド誘導体(0.2mM)を含む0.1Mト
リス(ヒドロキシメチル)アミノメタン・塩酸緩
衝液(PH8.26、0.03M MgCl2含有、オートクレー
ブ中で滅菌済み。)を基質緩衝液とした。 (4) 発色液 0.2%過ヨウ素酸及び0.3Mホウ酸を含有する溶
液を発色液とした。 (測定操作) 所定濃度の標準エンドトキシン溶液0.05mlと
LAL溶液0.1mlとを混合し、37℃で10分間インキ
ユベイトし、次いでこれに基質緩衝液2.0mlを加
えて、更に37℃で15分間インキユベイトした。こ
の溶液に発色液1.0mlを加えて発色させた後、極
大吸収波長(660nm)に於ける吸光度を測定し
た。 (結果) 結果を表1に示す。 比較例1及び2. 実施例1、2又は3で得られた本発明のペプチ
ド誘導体の代りに、これと類似の構造を有する既
存のペプチド誘導体である4−[(t−ブチルオキ
シカルボニル−L−バリル−L−ロイシル−グリ
シル−L−アルギニル)アミノ]−N,N−ジエ
チルアニリン・2酢酸塩又は4−[(t−ブチルオ
キシカルボニル−L−バリル−L−ロイシル−グ
リシル−L−アルギニル)アミノ]−N,N−ジ
エチル−m−トルイジン・2酢酸塩を基質として
用いた以外は、参考例4と同じ試薬及び試液を用
い、同様の操作を行つてエンドトキシンの測定を
行つた結果を、表1に併せて示す。尚、吸光度の
測定は、夫々の極大吸収波長(675nm又は
690nm)に於けるそれを測定した。
[Table] The arginine derivative represented by the general formula [], which is a raw material for the synthesis of the peptide derivative of the present invention, can be easily synthesized, for example, as follows, so it is sufficient to use it. That is, arginine whose amino group is protected with an appropriate protecting group or arginine whose amino group and guanidino group are protected with an appropriate protecting group is mixed with a solvent commonly used in the synthesis of peptide derivatives, such as dimethylformamide (DMF). ), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), water, or a mixture thereof, and 4-amino-N-ethyl-N-(β-hydroxyethyl)aniline was dissolved in this under a room atmosphere. or 4
-amino-3-methyl-N-ethyl-N-(β-
After adding hydroxyethyl)aniline and a condensing agent commonly used in peptide synthesis, such as dicyclohexylcarbodiimide (DCCD), the mixture is allowed to react at room temperature, with heating if necessary, for an appropriate period of time. After the reaction is completed, the reaction solution is concentrated to dryness, and then purified by a method commonly used for purifying peptide derivatives.
For example, purification by silica gel column chromatography, ion exchange column chromatography, etc.
By carrying out deprotection treatment if necessary, the arginine derivative represented by the general formula [] can be easily obtained. EXAMPLES Below, the present invention will be explained in more detail with reference to Examples. [Example] Reference example 1 (a) Synthesis of carbobenzoxy-L-leucyl-glycine ethyl ester A solution of 26 g of carbobenzoxy-L-leucine and 14 g of glycine ethyl ester hydrochloride dissolved in 400 ml of THF was cooled in an ice bath. Lower triethylamine 15
ml, 18 g of HONB and 22 g of DCCD were added. Next, this was stirred and reacted at room temperature for 20 hours, and then the precipitate was filtered off and the solvent was distilled off. The resulting residue was dissolved in 500 ml of ethyl acetate, washed successively with saturated aqueous sodium bicarbonate solution, 1N hydrochloric acid, and water, and then the organic layer was dried over anhydrous sodium sulfate. After filtering out the desiccant,
The organic layer was concentrated to dryness under reduced pressure, and petroleum benzine was added to the resulting residue to obtain a gel-like solid, which was further recrystallized from ethyl acetate/petroleum benzine to obtain carboxy-L-leucyl-glycine ethyl ester. Ta. Yield: 30.1g (83%). Melting point 114-115℃. Specific optical rotation [α] 21 D = -26.1 (C = 1.05, ethanol). Elemental analysis values (as C 18 H 26 N 2 O 5 ) Calculated values (%): C61.70, H7.48, N7.99, Actual values (%): C62.07, H7.50, N7.91. (b) t-butyloxycarbonyl-L-valyl-
Synthesis of L-leucyl-glycine 10.5 g of carbobenzoxy-L-leucyl-glycine ethyl ester obtained in (a) and 5.7 g of p-toluenesulfonic acid were dissolved in 200 ml of ethyl alcohol.
To this was added 5 g of 5% palladium black catalyst, and the mixture was stirred and reacted at room temperature for 3 hours while passing hydrogen gas.
After the reaction was completed, the catalyst was filtered off from the reaction solution, and then the solvent was distilled off under reduced pressure. The obtained oil and 6.5 g of t-butyloxycarbonyl-L-valine and
Dissolve 5.4 g of HONB in 300 ml of THF, and add 4.2 ml of triethylamine and 7.4 g of DCCD to this while cooling in an ice bath.
was added, and the mixture was stirred and reacted at room temperature for 20 hours. After the reaction was completed, insoluble materials were filtered off and the solvent was distilled off. The resulting residue was dissolved in 500 ml of ethyl acetate, washed successively with saturated aqueous sodium bicarbonate solution, 10% citric acid, and water, and then the organic layer was dried over anhydrous sodium sulfate. After filtering off the desiccant, the organic layer was concentrated to dryness under reduced pressure. Petroleum ether was added to the residue to solidify it, which was further recrystallized from ethyl acetate/petroleum ether to obtain t-butyloxycarbonyl-L-valyl-L-leucyl-glycine ethyl ester. Yield 10g (83%). Melting point 113-114℃. Specific optical rotation [α] 21 D = 56.3 (C = 0.95, ethanol). Elemental analysis values (as C 20 H 37 N 3 O 6 ) Calculated values (%): C57.81, H8.98, N10.11, Actual values (%): C57.97, H8.91, N 9.92. Then, this t-butyloxycarbonyl-L-
Valyl-L-leucyl-glycine ethyl ester
4.1 g was dissolved in 30 ml of methyl alcohol, and while cooling in an ice bath, 20 ml of 1N aqueous sodium hydroxide solution was added, and the reaction was stirred for 2 hours. After the reaction is complete, add
After neutralizing by adding 18 ml of 1N hydrochloric acid and concentrating under reduced pressure,
Add 2 ml of 1N hydrochloric acid and add 300 ml of ethyl acetate.
Extracted in ml. The extract was dried over anhydrous sodium sulfate, the desiccant was filtered off, and the organic layer was concentrated to dryness under reduced pressure. After adding petroleum ether to the residue and solidifying it,
This was recrystallized from ethyl acetate/petroleum ether,
t-Butyloxycarbonyl-L-valyl-L-
Leucyl-glycine was obtained. Yield 3.6g (93)%. Melting point 104-108℃. Specific optical rotation [α] 21 D = -54.6 (C = 0.99, ethanol). (c) t-butyloxycarbonyl-L-valyl-
L-leucyl-glycine-N-hydroxy-5
- Synthesis of norbornene-2,3-dicarboximide ester 1.5 g of t-butyloxycarbonyl-L-valyl-L-leucyl-glycine obtained in (b) was added to 50 ml of THF.
0.84 g of HONB and
1.0 g of DCCD was added and the mixture was stirred and reacted at room temperature for 20 hours. After the reaction, the precipitate was filtered off and the solvent was distilled off to give t-butyloxycarbonyl-L-valyl-L-leucyl-glycine-N-hydroxy-5.
-Norbornene-2,3-dicarboximide ester was obtained. Yield 1.9g (90%). Reference Example 2 Synthesis of 4-[N〓-carbobenzoxy-L-arginine)amino]-N-ethyl-N-(β-hydroxyethyl)aniline 3.0 g of N〓-carbobenzoxy-L-arginine
Dissolve it in 80 ml of DMF under heat, add it to this in a nitrogen stream,
4-Amino-N-ethyl-N-(β
-Hydroxyethyl)aniline 2.75g and DCCD4.0
g was added thereto, and the mixture was stirred and reacted at room temperature for 20 hours. After the reaction, insoluble materials were filtered off, the solvent was distilled off, and the resulting residue was subjected to silica gel column chromatography (column: 15 x 5 cm, eluent: ethyl acetate: pyridine: water: acetic acid = 60: 20:10:5.), and the concentrated dry matter of the main eluate was dissolved in water and lyophilized to obtain 4-[(N〓-carbobenzoxy-L-arginyl)amino]-N -ethyl-N-
(β-hydroxyethyl)aniline diacetate was obtained. Yield 1.45g (25%). Specific optical rotation [α] 21 D = -17.2 (C = 0.95, methanol). Elemental analysis value (as C24H35N6O42CH3COOH ) Calculated value (%): C56.83, H7.33, N14.20, Actual value ( % ): C57.02, H7.05, N14.14. Reference example 3 4-[(N〓-carbobenzoxy-L-
Synthesis of N-carbobenzoxy-L-arginine 2.0 g
Dissolve it in 20 ml of DMF under heat, add it to this in a nitrogen stream,
1.8 g of 4-amino-3-methyl-N-ethyl-N-(β-hydroxyethyl)aniline under ice bath cooling.
and 1.4 g of DCCD were added, and the mixture was stirred and reacted at room temperature for 20 hours. After the reaction, the precipitate was filtered off, the solvent was distilled off, and the resulting residue was subjected to silica gel column chromatography (column: 40 x 2 cm, eluent: ethyl acetate: pyridine: water: acetic acid = 120:20). :10:5.)
The concentrated and dried main eluate was dissolved in water and lyophilized to give 4-[N〓-carbobenzoxy-L-arginyl)amino]-3-methyl-N-ethyl-N. -(β-hydroxyethyl)aniline diacetate was obtained. Yield 0.86g (22%). Specific optical rotation [α] 21 D = -10.1 (C = 0.88, methanol). Elemental analysis value (as C25H37N6O42CH3COOH ) Calculated value (%): C57.51, H7.49, N13.87, Actual value ( % ): C57.22, H7.18, N13.65. Example 1 4-[(t-butyloxycarbonyl-
Synthesis of L-valyl-L-leucyl-glycyl-L-arginyl)amino]-N-ethyl-N-(β-hydroxyethyl)aniline 4-[(N〓-carbobenzoxy- L-arginyl)amino]-N-ethyl-
N-(β-hydroxyethyl)aniline. Add t-butyl obtained in Reference Example 1(c) to 30 ml of THF solution of 1.45 g of diacetate and catalytic reduction product 4-[(L-arginyl)amino]-N-ethyl-N-(β-hydroxyethyl)aniline. Oxycarbonyl-L-valyl-L
30 ml of a DMF solution containing 0.95 g of -leucyl-glycine-N-hydroxy-5-norbornene-2,3-dicarboximide ester was added, and the mixture was stirred and reacted at room temperature for 72 hours. After the reaction was completed, the reaction solution was concentrated to dryness, and the resulting residue was dissolved in 120 ml of water, passed through Amberlite IRA-410 (acetic acid form), and subjected to ion exchange column chromatography (CM cellulose, 0.2M
ammonium acetate), and the main eluate was lyophilized to give 4-[t-butyloxycarbonyl-L-valyl-L-leucyl-glycine-L-arginyl)amino]-N-ethyl-N-( β-hydroxyethyl)aniline diacetate 1/2 hydrate was obtained. Yield 110mg (11%). Melting point 115-122℃. Specific optical rotation [α] 21 D = -37.1 (C = 0.42, methanol). Elemental analysis value (as C 34 H 59 N 9 O 7・2CH 3 COOH・1/2H 2 O) Calculated value (%): C54.66, H8.21, N15.09, Actual value (%): C54. 54, H8.02, N15.54. Example 2 4-[(N-carbobenzoxy-L-leucyl-glycine-L-arginyl)amino]
-N-ethyl-N-(β-hydroxyethyl)
Synthesis of aniline N-carbobenzoxy obtained in Reference Example 1(a)
Dissolve 4.1 g of L-leucyl-glycine ethyl ester in 30 ml of methyl alcohol, and add 20 ml of 1N aqueous sodium hydroxide solution under ice bath cooling.
The reaction was stirred for hours. After the reaction is complete, add 1N to the reaction solution.
- Neutralize by adding 18 ml of hydrochloric acid, concentrate under reduced pressure, add 2 ml of 1N hydrochloric acid, and add 300 ml of ethyl acetate.
Extracted with. Dry the extract with anhydrous sodium sulfate,
After filtering off the desiccant, the organic layer was concentrated to dryness under reduced pressure. After adding petroleum ether to the residue and solidifying it, this was further recrystallized from ethyl acetate/petroleum ether to give N-
Carbobenzoxy-L-leucyl-glycine was obtained. Using this N-carbobenzoxy-L-leucyl-glycine as a raw material, the same reaction and operation as in Reference Example 1(c) were performed to obtain N-carbobenzoxy-L-leucyl-glycine-N-hydroxy-5-norbornene. -2,3-dicarboximide ester 0.85g
I got it. 4-[(N〓-carbobenzoxy-L-arginyl)amino]-N-ethyl-
Add 30 ml of a THF solution of 4-[(L-arginyl)amino]-N-ethyl-N-(β-hydroxyethyl)aniline, a catalytic reduction product of 1.5 g of N-(β-hydroxyethyl)aniline diacetate, 72 at room temperature
The reaction was stirred for hours. After the reaction was completed, the reaction solution was concentrated to dryness, and the resulting residue was dissolved in 120 ml of water, passed through Amberlite IRA-410 (acetic acid type), and subjected to ion exchange column chromatography (CM cellulose,
The main eluate was lyophilized to give 4-[(N-carbobenzoxy-L-leucyl-glycine-L-arginyl)amino]-N-ethyl-N-(β -hydroxyethyl)aniline diacetate was obtained. Yield 311 mg (15%). Melting point 119℃. Specific optical rotation [α] 21 D = -12.2 (C = 0.41, ethanol). Elemental analysis value (as C32H48N8O62CH3COOH ) Calculated value (%): C56.82, H7.42, N14.70, Actual value ( % ): C56.50, H7.11, N14.50. Example 3 4-[(t-butyloxycarbonyl-
Synthesis of L-valyl-glycyl-L-arginyl)amino]-N-ethyl-N-(β-hydroxyethyl)aniline 26 g of t-butyloxycarbonyl-L-valine
and glycine ethyl ester hydrochloride 14g in THF400
15 ml of triethylamine, 18 g of HONB, and 22 g of DCCD were added thereto under cooling in an ice bath, and the mixture was stirred and reacted at room temperature for 20 hours. After the reaction, the precipitate was filtered off, the solvent was distilled off, the resulting residue was dissolved in 500 ml of ethyl acetate, and a saturated aqueous sodium bicarbonate solution,
After washing in this order with 1N citric acid and water, the organic layer was dried over anhydrous sodium sulfate. After filtering off the desiccant, the organic layer was concentrated to dryness under reduced pressure, and petroleum benzine was added to the residue to obtain a gel-like solid. This was recrystallized from ethyl acetate/petroleum benzine to obtain t-butyloxycarbonyl-L-valyl-glycine ethyl ester. Yield 18.1g (50%). Melting point 98-99℃. 4.1 g of t-butyloxycarbonyl-L-valyl-glycine ethyl ester obtained above was dissolved in 30 ml of methyl alcohol, and 1N-
20 ml of aqueous sodium hydroxide solution was added and the reaction was stirred for 2 hours. After the reaction is complete, add 1N hydrochloric acid 18 to the reaction solution.
ml to neutralize, concentrate under reduced pressure, and then add 1N-
2 ml of hydrochloric acid was added, and this was extracted with 300 ml of ethyl acetate. The extract was dried over anhydrous sodium sulfate, the desiccant was filtered off, and the organic layer was concentrated to dryness under reduced pressure. After adding petroleum ether to the residue and solidifying it, this was recrystallized from ethyl acetate/petroleum ether to obtain t-butyloxycarbonyl-L-valyl-glycine. Using this t-butyloxycarbonyl-L-valyl-glycine as a raw material, the same reaction and operation as in Reference Example 1(c) were carried out to produce t-butyloxycarbonyl-L-valyl-glycine.
L-valyl-glycine-N-hydroxy-5-norbornene 2,3-dicarboximide ester
0.95g was obtained. Reference example 2 is added to this DMF 20ml solution.
Catalytic reduction product of 1.5 g of 4-[(N〓-carbobenzoxy-L-arginyl)amino]-ethyl-N-(β-hydroxyethyl)aniline diacetate obtained by the same method as 4-[ (L-arginyl)
After adding 50 ml of a THF solution of [amino]-N-ethyl-N-(β-hydroxyethyl)aniline, the mixture was stirred and reacted at room temperature for 72 hours. After the reaction was completed, the reaction solution was concentrated to dryness, and the resulting residue was dissolved in 120 ml of water, passed through Amberlite IRA-410 (acetic acid form), and subjected to ion exchange column chromatography (CM cellulose, 0.2M ammonium acetate). The main eluate was lyophilized to give 4-[(t-butyloxycarbonyl-L-valyl-glycine-L-arginyl)amino]-N-ethyl-N-(β-hydroxyethyl)aniline. Diacetate was obtained. Yield 387 mg (12%). Melting point 101-102℃. Specific optical rotation [α] 21 D = -0.7 (C = 0.35, DMF). Elemental analysis value (as C28H48N8O62CH3COOH ) Calculated value (%): C53.92, H7.92, N15.71, Actual value ( % ): C53.72, H7.82, N15.46. Reference Example 4 Using the peptide derivative obtained in Example 1, 2, or 3 as a substrate, endotoxin concentration was measured using the following test solution. (Test solution) (1) LAL solution Limulus amebosite lysate (LAL)
(lyophilized product, for 5 ml) was dissolved in 5 ml of distilled water for injection to prepare the LAL solution. (2) Standard endotoxin solution Standard endotoxin (lyophilized product, 0.5μg/
vial) was dissolved in distilled water for injection to a predetermined concentration and used as a standard endotoxin solution. (3) Substrate buffer 0.1M tris(hydroxymethyl)amino containing potassium 1-naphthol-2-sulfonate (0.2mM) and the peptide derivative of the present invention obtained in Example 1, 2 or 3 (0.2mM) Methane/hydrochloric acid buffer (PH8.26, containing 0.03M MgCl2 , sterilized in an autoclave) was used as the substrate buffer. (4) Coloring liquid A solution containing 0.2% periodic acid and 0.3M boric acid was used as the coloring liquid. (Measurement procedure) Add 0.05ml of standard endotoxin solution of specified concentration.
The mixture was mixed with 0.1 ml of LAL solution and incubated at 37°C for 10 minutes, then 2.0 ml of substrate buffer was added thereto, and further incubated at 37°C for 15 minutes. After adding 1.0 ml of coloring solution to this solution to develop color, the absorbance at the maximum absorption wavelength (660 nm) was measured. (Results) The results are shown in Table 1. Comparative Examples 1 and 2. In place of the peptide derivative of the present invention obtained in Example 1, 2 or 3, 4-[(t-butyloxycarbonyl-L), an existing peptide derivative having a similar structure to this, was used. -valyl-L-leucyl-glycyl-L-arginyl)amino]-N,N-diethylaniline diacetate or 4-[(t-butyloxycarbonyl-L-valyl-L-leucyl-glycyl-L-arginyl) ) Amino]-N,N-diethyl-m-toluidine diacetate was used as the substrate, but the same reagents and reagents as in Reference Example 4 were used, and the same procedures were performed to measure endotoxin. , are also shown in Table 1. In addition, the absorbance measurement is performed at each maximum absorption wavelength (675 nm or
690nm).

【表】 表1から明らかな如く、実施例1、2又は3で
得られた本発明のペプチド誘導体を基質としてエ
ンドトキシン濃度の測定を行つた場合には、既存
の類似のペプチド誘導体を用いた場合と比べて明
らかに感度が高くなる。ことが判る。 [発明の効果] 以上述べた如く、本発明は、アルギニン残基の
C−末端側に、フエノール、ナフトール等と酸化
縮合させることにより長波長側に極大吸収
(λmax)を有する色素を生成する4−アミノ−
N−エチル−N−(β−ヒドロキシエチル)アニ
リン又は4−アミノ−3−メチル−N−エチル−
N−(β−ヒドロキシエチル)アニリンが結合し
ているペプチド誘導体を提供するものであり、こ
れを特定酵素(プロテアーゼ)の基質として用い
た場合には、該酵素の活性を簡便で高感度に、且
つ血液試料中の色素成分による影響を殆ど受けず
に測定することが可能となる点に顕著な効果を奏
する発明であり、斯業に貢献するところ大なる発
明である。
[Table] As is clear from Table 1, when the endotoxin concentration was measured using the peptide derivative of the present invention obtained in Example 1, 2, or 3 as a substrate, when the existing similar peptide derivative was used. The sensitivity is clearly higher than that of I understand that. [Effects of the Invention] As described above, the present invention produces a dye having maximum absorption (λmax) on the long wavelength side by oxidative condensation with phenol, naphthol, etc. on the C-terminal side of an arginine residue. -Amino-
N-ethyl-N-(β-hydroxyethyl)aniline or 4-amino-3-methyl-N-ethyl-
It provides a peptide derivative to which N-(β-hydroxyethyl)aniline is bonded, and when used as a substrate for a specific enzyme (protease), the activity of the enzyme can be easily and highly sensitively measured. Moreover, this invention has a remarkable effect in that it enables measurements to be carried out almost without being influenced by pigment components in blood samples, and it is a great invention that contributes to this industry.

Claims (1)

【特許請求の範囲】 1 一般式[] (式中、R1はN−末端に保護基を有する、ロ
イシル基、バリル基又はバリル−ロイシル基を表
わす。また、式中のアルギニン残基のグアニジノ
基は保護基を有していても、酸付加塩の状態とな
つていてもよい。) で示されるペプチド誘導体又はその酸付加塩。 2 N−末端の保護基がアシル基、カルボベンゾ
キシ基、第3アルキルオキシカルボニル基、トシ
ル基又はグルタリル基である特許請求の範囲第1
項に記載のペプチド誘導体又はその酸付加塩。
[Claims] 1. General formula [] (In the formula, R 1 represents a leucyl group, a valyl group, or a valyl-leucyl group having a protecting group at the N-terminus.Also, even if the guanidino group of the arginine residue in the formula has a protecting group, ) or an acid addition salt thereof. 2. Claim 1, wherein the N-terminal protecting group is an acyl group, a carbobenzoxy group, a tertiary alkyloxycarbonyl group, a tosyl group, or a glutaryl group.
The peptide derivative or acid addition salt thereof as described in 2.
JP12867882A 1982-07-23 1982-07-23 Novel color-developing peptide derivative Granted JPS5890535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12867882A JPS5890535A (en) 1982-07-23 1982-07-23 Novel color-developing peptide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12867882A JPS5890535A (en) 1982-07-23 1982-07-23 Novel color-developing peptide derivative

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56062819A Division JPS57176940A (en) 1981-04-25 1981-04-25 Novel color-developing peptide derivative

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2074827A Division JPH03227967A (en) 1990-03-23 1990-03-23 Arginine derivative

Publications (2)

Publication Number Publication Date
JPS5890535A JPS5890535A (en) 1983-05-30
JPH0366319B2 true JPH0366319B2 (en) 1991-10-16

Family

ID=14990733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12867882A Granted JPS5890535A (en) 1982-07-23 1982-07-23 Novel color-developing peptide derivative

Country Status (1)

Country Link
JP (1) JPS5890535A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605424A (en) * 1983-06-22 1985-01-12 Sharp Corp Magnetic tape recording and reproducing device
FI860043A (en) * 1986-01-06 1987-07-07 Orion Yhtymae Oy PEPTIDS SUBSTRATE SAMT FOERFARANDE FOER QUANTITATIVE ANALYSIS AV ENDOTOXIN.

Also Published As

Publication number Publication date
JPS5890535A (en) 1983-05-30

Similar Documents

Publication Publication Date Title
SU1277904A3 (en) Method of producing tripeptides
FR2503145A1 (en) PEPTIDES RELATING TO HUMAN INTERFERONS, ANTIBODIES OBTAINED FROM THESE PEPTIDES AND ADSORBENTS OBTAINED FROM THESE ANTIBODIES
PL99020B1 (en) METHOD OF PRODUCING NEW ENZYMATIC CHROMOGENIC SUBSTRATES AND THEIR SALTS FOR DETERMINING CHEESE PROTEASE AND ESPECIALLY XA FACTOR
SU786853A3 (en) Method of detecting activity of x-prolyldipeptidylaminopeptidane
SU736889A3 (en) Method of determining activity of serine proteases
Wilchek et al. Modification of the carboxyl groups of ribonuclease by attachment of glycine or alanylglycine
JPS6126558B2 (en)
JPS6134440B2 (en)
JPH0366319B2 (en)
JPS585674B2 (en) Alpha hydroxy dipeptide receptors
DK145799B (en) TRIPEPTIDES OR SALTS THEREOF USED AS DIAGNOSTIC CHROMOGENT SUBSTRATE WITH HIGH SPECIFICITY ABOVE THROMBIN AND THROMBIN SIMILAR ENZYMES
JPS63275551A (en) Color forming compound, intermediate product, manufacture of intermediate, peptide bond cleaving enzyme, method of measuring blood coagulating factor and diagnostic agent for measuring enzyme
Yamamoto et al. Action of trypsin on synthetic substrates: III. Hydrolysis of homologous peptides ranging from diglycyl-l-lysyl-glycine to diglycyl-l-lysyl-tetraglycine
JPH0391496A (en) Method and reagent for specific measurement of pancreas alpha amylase
JPH0440340B2 (en)
JP2561928B2 (en) Chromogenic compounds and methods for their production
Signor et al. Chemical modification of arginine by nitromalondialdehyde. Synthesis and properties of δ-(5-nitro-2-pyrimidyl) ornithyl derivatives
JPS6342635B2 (en)
Preveiro et al. C-Acylation of the tryptophan indole ring and its usefulness in protein chemistry
JPS59499B2 (en) peptide derivative
Morishita et al. The Non-enzymatic Cleavage of Peptide Bonds. I. Deacylation of γ-Oxoacyl Amino Acids and Peptide by Hydrazines
JPS58177951A (en) Chromogenic peptide and manufacture
JPS6027675B2 (en) 7-Arginylamino-4-methylcoumarin
JPS61112096A (en) Novel substrate for determination of blood coagulation factor, and determination using same
JP2660864B2 (en) Aminoacetophenone derivatives and methods for measuring enzyme activity using the same