JPH0365613B2 - - Google Patents

Info

Publication number
JPH0365613B2
JPH0365613B2 JP5351183A JP5351183A JPH0365613B2 JP H0365613 B2 JPH0365613 B2 JP H0365613B2 JP 5351183 A JP5351183 A JP 5351183A JP 5351183 A JP5351183 A JP 5351183A JP H0365613 B2 JPH0365613 B2 JP H0365613B2
Authority
JP
Japan
Prior art keywords
face portion
face
cathode ray
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5351183A
Other languages
Japanese (ja)
Other versions
JPS59180939A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5351183A priority Critical patent/JPS59180939A/en
Priority to EP83112854A priority patent/EP0119317B1/en
Priority to DE8383112854T priority patent/DE3374489D1/en
Priority to US06/564,197 priority patent/US4537321A/en
Publication of JPS59180939A publication Critical patent/JPS59180939A/en
Publication of JPH0365613B2 publication Critical patent/JPH0365613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/861Vessels or containers characterised by the form or the structure thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/86Vessels and containers
    • H01J2229/8613Faceplates
    • H01J2229/8616Faceplates characterised by shape
    • H01J2229/862Parameterised shape, e.g. expression, relationship or equation

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は陰極線管に係り、特にそのガラスパネ
ルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cathode ray tube, and particularly to a glass panel thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に陰極線管の外囲器は内面に蛍光面を有す
るガラスパネルとこのガラスパネルに連結するフ
アンネル及びネツクから構成され、蛍光スクリー
ンに対向してネツク内に配設された電子銃からの
電子ビームの偏向走査により蛍光スクリーンを衝
撃発光せしめている。このような陰極線管のガラ
スパネルは第1図及び第2図に示すように、蛍光
スクリーンを透過映出するための実質的に矩形状
枠を有するように形成され、その内面及び外面が
外方に突出する曲面状をなすフエース部2とフエ
ース部端から管軸方向に延在しフアンネル(図示
せず)に連結されるスカート部3とから構成され
ている。尚、第1図はガラスパネル1の正面図
で、第2図はフエース部2とスカート部3の内面
のみの側面図で且つ中心線の右側は垂直軸(V−
V)と対角軸(D−D)を左側には水平軸(H−
H)をまとめて示してある。このようなガラスパ
ネル1内面及び外面の垂直軸方向、水平軸方向及
び対角軸方向の曲率半径をそれぞれ内面でRV
RH及びRD、外面でRVO,RHO及びRDOとすると設計
を容易にするためにRV=RH=RD=R及びRVO
RHO=RDO=RO、即ち単一の曲率半径とするのが
一般的である。またフエース部の内面のフエース
部端は実質的な矩形状外周(以下、フエース部内
面の矩形状外周と称す)を形成し、この様な矩形
状外周は4つの辺部とこれらの辺部を滑らかに連
続したコーナー部とから構成される。4つの辺部
は実際には各辺部ともわずかに湾曲し曲線を形成
している。さて視感者側から見ればこのようなフ
エース部は出来るだけ平坦で、且つフエース部内
面の矩形状外周の垂直軸を含む最大有効長さの1/
2、水平軸を含む最大有効長さの1/2及び対角軸を
含む最大有効長さの1/2をそれぞれSV,SH及びSD
とする時、SV:SH:SD=3:4:5、即ち画面
の縦、横及び斜めの比率が3:4:5となる場合
が最も好ましいとされている。しかし乍ら陰極線
管外囲器内を高真空に排気すると外部の大気圧と
の圧力差により、フエース部は内側方向への強い
応力を受け、特に画面をより平坦化するとわずか
な衝撃やガラス欠陥をオリジンとして容易に爆縮
する危険性を有している。この爆縮を防止するた
めの最も簡便な手段はガラスパネルの肉厚を増加
させることであるが、肉厚の過度の増加は重量の
増加、コストの増加を招き好ましくない。従つて
従来のフエース部はより外方へ突出する曲率半径
をとらざるを得ず、またコーナー部を含めて矩形
状のフエース部は全体的に丸味を帯びた形状とな
り視感的には好ましくないものであつた。例えば
14吋型(フエース部内面の矩形状外周の対角軸の
最大径は13吋型)陰極線管のフエース部の設計の
一例としては、RV=RH=RD=R551mm、RVO=RHO
=RDO=RO=575mmでSV=105.3mm、SH=140.4mm及
びSD=166.7mmが採用されている。また26吋型
(フエース部内面の矩形状外周の対角軸の最大径
は25吋型)陰極線管のフエース部の設計の一例と
しては、RV=RH=RD=R=1034mm、RVO=RHO
RDO=RO=1100mmでSV=197.9mm、SH=263.9mm及
びSD=313.2mmが採用されている。之等両者の
SV:SH:SDの比は何れも3:4:4.75となり、特
に対角を短くせざるを得ず視感的には著しい違和
感を与えている。
Generally, the envelope of a cathode ray tube consists of a glass panel with a phosphor screen on its inner surface, a funnel and a net connected to this glass panel, and an electron beam emitted from an electron gun placed inside the net facing the phosphor screen. The fluorescent screen is made to emit light by impact by deflection scanning. As shown in FIGS. 1 and 2, the glass panel of such a cathode ray tube is formed to have a substantially rectangular frame for transmitting a fluorescent screen, and its inner and outer surfaces face outward. It is composed of a face portion 2 which has a curved surface shape that protrudes from the side, and a skirt portion 3 which extends from the end of the face portion in the tube axis direction and is connected to a funnel (not shown). Note that FIG. 1 is a front view of the glass panel 1, and FIG. 2 is a side view of only the inner surfaces of the face portion 2 and skirt portion 3, and the right side of the center line is a vertical axis (V-
V) and the diagonal axis (D-D), and the horizontal axis (H-
H) are shown together. The radii of curvature in the vertical axis direction, horizontal axis direction, and diagonal axis direction of the inner and outer surfaces of the glass panel 1 are respectively R V ,
R H and R D , and R VO , R HO and R DO on the outer surface, to facilitate the design, R V = R H = R D = R and R VO =
It is common to have R HO = R DO = R O , ie, a single radius of curvature. In addition, the end of the face part on the inner surface of the face part forms a substantially rectangular outer periphery (hereinafter referred to as the rectangular outer periphery of the inner face part), and such a rectangular outer periphery has four sides and these sides. Consists of smoothly continuous corner parts. The four sides are actually slightly curved to form a curved line. Now, when viewed from the viewer's side, such a face part should be as flat as possible, and should be 1/1/2 of the maximum effective length including the vertical axis of the rectangular outer periphery of the inner surface of the face part.
2. 1/2 of the maximum effective length including the horizontal axis and 1/2 of the maximum effective length including the diagonal axis are S V , S H and S D , respectively.
It is said that it is most preferable that S V :S H :S D =3:4:5, that is, the vertical, horizontal, and diagonal ratios of the screen are 3:4:5. However, when the cathode ray tube envelope is evacuated to a high vacuum, the face part receives strong stress inward due to the pressure difference with the outside atmospheric pressure. There is a danger that it could easily implode as the origin. The simplest means to prevent this implosion is to increase the wall thickness of the glass panel, but excessive increase in wall thickness is undesirable as it increases weight and cost. Therefore, the conventional face part has no choice but to have a radius of curvature that projects further outward, and the rectangular face part, including the corner parts, has a rounded shape as a whole, which is not visually desirable. It was hot. for example
An example of the design of the face section of a 14-inch cathode ray tube (the maximum diameter of the diagonal axis of the rectangular outer circumference of the inner surface of the face section is 13 inches) is as follows: R V = R H = R D = R551mm, R VO = R H.O.
= R DO = R O = 575 mm, S V = 105.3 mm, S H = 140.4 mm and S D = 166.7 mm are adopted. An example of the design of the face section of a 26-inch cathode ray tube (the maximum diameter of the diagonal axis of the rectangular outer periphery of the inner surface of the face section is 25 inches) is as follows: R V = R H = R D = R = 1034 mm, R VO = RHO =
R DO = R O = 1100 mm, S V = 197.9 mm, S H = 263.9 mm and S D = 313.2 mm are adopted. both of them
The ratio of S V :S H :S D is 3:4:4.75 in all cases, and the diagonal in particular has to be shortened, giving a striking visual sense.

〔発明の目的〕[Purpose of the invention]

本発明はフエース部の縦、横及び斜めの比を実
質的に3:4:5とした場合フエース部の曲率半
径を出来る限り平坦化して視感的に最も好ましい
印象を与えるフエース部を有する陰極線管を提供
することを目的とする。
The present invention provides a cathode ray having a face portion which flattens the radius of curvature of the face portion as much as possible to give the most visually favorable impression when the vertical, horizontal and diagonal ratios of the face portion are substantially 3:4:5. The purpose is to provide pipes.

〔発明の概要〕[Summary of the invention]

本発明はフエース部の内面の垂直軸方向、水平
軸方向及び対角軸方向を含む曲率半径をそれぞれ
RV,RH及びRDとし、且つフエース部内面の矩形
状外周の実質的に垂直軸を含む最大有効長さの1/
2、水平軸を含む最大有効長さの1/2及び対角軸を
含む最大有効長さの1/2をそれぞれSV,SH及びSD
とする時、フエース部中心から対角軸端及びフエ
ース部中心から水平軸端、フエース部中心から垂
直軸端にかけての曲面の変化率を、 0.06RD−√(RD2−(SD2/SD0.12 及び 0.05RH−√(RH2−(SH2/SH0.10 0.04RV−√(RV2−(SV2/SV0.08 とすることによつてSV,SH及びSDの比を実質的
に3:4:5とし、且つフエース部をより平坦化
した陰極線管である。
In the present invention, the radius of curvature of the inner surface of the face portion including the vertical axis direction, horizontal axis direction, and diagonal axis direction is
R V , R H and R D , and 1/1/2 of the maximum effective length including the substantially vertical axis of the rectangular outer periphery of the inner surface of the face portion.
2. 1/2 of the maximum effective length including the horizontal axis and 1/2 of the maximum effective length including the diagonal axis are S V , S H and S D , respectively.
Then, the rate of change of the curved surface from the center of the face part to the end of the diagonal axis, from the center of the face part to the end of the horizontal axis, and from the center of the face part to the end of the vertical axis is 0.06R D −√(R D ) 2 −(S D ) 2 /S D 0.12 and 0.05R H −√(R H ) 2 −(S H ) 2 /S H 0.10 0.04R V −√(R V ) 2 −(S V ) 2 /S V 0.08 This is a cathode ray tube in which the ratio of S V , S H and S D is substantially 3:4:5, and the face portion is made flatter.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明について詳細に説明する。第3図
乃至第7図は本発明を概念的に説明するためのも
ので、第3図は第1図に、また第4図は第2図に
対応しており、図中点線は第1図と第2図の曲率
半径をそれぞれ比較するために示したものであ
る。また第3図及び第4図において、第1図及び
第2図に対応する曲率半径及び長さを示す符号は
全て第1図及び第2図に用いた符号と同一の符号
で示してある。第5図はフエース部2とスカート
部3の内面のみの斜視図であり、第6図a乃至第
6図cは第4図及び第5図に対応しフエース部中
心から各軸方向端部にかけてのフエース部断面を
表わしている。また第7図はフエース部内面の曲
面の変化率を説明するための模式図である。
The present invention will be explained in detail below. 3 to 7 are for conceptually explaining the present invention, and FIG. 3 corresponds to FIG. 1, and FIG. 4 corresponds to FIG. 2. This figure is shown for comparison of the curvature radii of FIG. 2 and FIG. Further, in FIGS. 3 and 4, all the symbols indicating the radius of curvature and length corresponding to FIGS. 1 and 2 are indicated by the same symbols as used in FIGS. 1 and 2. FIG. 5 is a perspective view of only the inner surfaces of the face portion 2 and skirt portion 3, and FIGS. 6a to 6c correspond to FIGS. 4 and 5, and extend from the center of the face portion to each axial end. It shows the cross section of the face part of. Further, FIG. 7 is a schematic diagram for explaining the rate of change of the curved surface of the inner surface of the face portion.

本発明を実施するに当たつて、フエース部の
SV,SH及びSD比を実質的に3:4:5とし、且
つフエース部を湾曲をより平坦化するための指標
とすべき部分はフエース部中心部から各軸方向端
部にかけての曲面の変化率である。即ち第5図の
ΔD′,ΔH′及びΔV′で示されるようにフエース部
中心から各軸方向端部にかけて画面が徐々に落ち
込み丸味を帯びるため、視感的に著しい違和感を
与える。一般に第7図に示すように半径Rの円と
中心(O)を通る軸(Z)が交わる点(Q)と軸
(Z)より距離xだけ離れた円周上の点(P)と
の軸(Z)に沿つた距離hは次のように表わすこ
とができる。
In carrying out the present invention, the face part
The S V , S H and S D ratios should be substantially 3:4:5, and the areas that should be used as indicators for making the curve of the face part flatter are from the center of the face part to each axial end. It is the rate of change of the curved surface. That is, as shown by ΔD', ΔH', and ΔV' in FIG. 5, the screen gradually dips and becomes rounded from the center of the face section to each axial end, giving a visually striking sense of discomfort. Generally, as shown in Figure 7, the intersection between a point (Q) where a circle with radius R intersects with an axis (Z) passing through the center (O) and a point (P) on the circumference that is a distance x away from the axis (Z) is The distance h along the axis (Z) can be expressed as:

h=R−√22 (1) 従つて第5図に示したようにフエース部内面中
心から各軸方向端部にかけての管軸(Z)に沿つ
た落ち込み量ΔD′,ΔH′及びΔV′は、第6図a,
b,cに示すように対角軸(D)に沿つてRD
D 2D 2、水平軸(H)に沿つてRH−√H 2
SH 2、垂直軸(V)に沿つてRV−√V 2V 2と表
わすことができる。ここで、フエース部内面から
対角軸、水平軸及び垂直軸方向の端部にかけて曲
面の変化率、いわば落ち込み率をΔD,ΔH及び
ΔVとし、これらをΔD′,ΔH′及びΔV′をそれぞ
れSD,SH及びSVで割つた値と定義すると、それ
らの相関関係は、 ΔD=RD−√(RD2−(SD2/SD (2) ΔH=RH−√(RH2−(SH2/SH (3) ΔV=RV−√(RV2−(SV2/SV (4) と示すことができる。
h=R−√ 22 (1) Therefore, as shown in Fig. 5, the amount of depression ΔD′, ΔH′, and ΔV along the tube axis (Z) from the center of the inner surface of the face part to each axial end ' is shown in Figure 6a,
R D − along the diagonal axis (D) as shown in b, c
D 2D 2 , R H −√ H 2 − along the horizontal axis (H)
S H 2 , along the vertical axis (V) can be expressed as R V −√ V 2V 2 . Here, the rate of change of the curved surface from the inner surface of the face part to the ends in the diagonal axis, horizontal axis, and vertical axis directions is ΔD, ΔH, and ΔV, and ΔD′, ΔH′, and ΔV′ are S Defined as the value divided by D , S H and S V , their correlation is ΔD=R D −√(R D ) 2 −(S D ) 2 /S D (2) ΔH=R H −√ (R H ) 2 − (S H ) 2 /S H (3) ΔV=R V −√(R V ) 2 −(S V ) 2 /S V (4)

即ち、SV,SH及びSDとΔV,ΔH及びΔDがどの
ような状態の場合視感的に好ましいかが問題とな
る。従つてこの場合、SV,SH及びSDの比率が実
質的に3:4:5で且つフエース部がより平坦化
されている、いわゆる視感的に好ましい状態に近
づけた時、上記(2)式乃至(4)式で示されるΔV,
ΔH及びΔDをどのような値に設定すればよいか
が問題となる。またこの時の爆縮を防止する、い
わゆる防爆特性も問題となる。
That is, the question is what state of S V , S H and S D and ΔV, ΔH and ΔD is visually preferable. Therefore, in this case, when the ratio of S V , S H and S D is substantially 3:4:5 and the face portion is more flattened, which is close to the so-called visually preferable state, the above ( ΔV shown by equations 2) to (4),
The problem is what values ΔH and ΔD should be set to. In addition, the so-called explosion-proof property that prevents implosion at this time also becomes a problem.

以上の観点から本発明者は種々考察検討を重ね
た結果、まずフエース部の縦と横の比率、即ち
SVとSHの比率が3:4と横長の場合、視感的に
見てフエース部のより平坦化に寄与する度合は
ΔDが最大でこのΔDを満足するだけでも平坦性
を出すことができ、次いでΔHであり、ΔVの寄
与度が最も小さいことを確認した。
As a result of various considerations and studies from the above viewpoint, the inventor first determined the ratio of the length and width of the face portion, that is,
When the ratio of S V and S H is 3:4 and it is horizontally long, ΔD contributes to the flattening of the face portion visually, and the maximum degree of contribution is that flatness can be achieved just by satisfying this ΔD. It was confirmed that the contribution of ΔV was the smallest, followed by ΔH.

このような状態でSV,SH及びSDの比を実質的
に3:4:5とし、フエース部の曲率半径の値を
従来より大きくより平坦化した時、ΔDが0.12以
内及びΔHが0.10以内、ΔVが0.08以内の場合視感
的に見てフエース部を平坦と感じ好ましい印象を
与えることを究明した。具体的には、まず画面の
形状の内ΔD,ΔH及びΔVを変化させたガラスパ
ネルを使用したカラー受像管を製作し、どの様な
値が平坦性を認識できるか10人の観察者(A〜
J)による主観評価実験を行なつた。実験は28イ
ンチのカラー受像管を観察者が距離2mの位置で
椅子に掛けて行つた。評価のカテゴリーとして
は、従来の26インチ画面(RV=RH=RD=1034mm)
を基準として、次のように定めた。
In this state, when the ratio of S V , S H and S D is substantially 3:4:5 and the radius of curvature of the face is made larger and flatter than before, ΔD is within 0.12 and ΔH is It has been found that when ΔV is within 0.10 and ΔV is within 0.08, the face portion visually feels flat and gives a favorable impression. Specifically, we first fabricated a color picture tube using a glass panel with varying screen shapes ΔD, ΔH, and ΔV, and 10 observers (A ~
J) conducted a subjective evaluation experiment. The experiment was conducted with an observer hanging a 28-inch color picture tube on a chair at a distance of 2 m. The evaluation category is the conventional 26-inch screen (R V = R H = R D = 1034 mm)
Based on this, the following was established.

平坦性を感じない 0点 やや平坦性を感じる 1点、 かなり平坦性を感じる 2点、 非常に平坦性を感じる 3点 まず平坦性に関する寄与度が大きいΔDを変化
させ、ΔH及びΔVは従来と同一にして評価した。
その結果、RDを従来よりやや大きくすることに
よりΔDを0.14としたデザイン(RD=1200mm)の
場合、平坦性を感じない観察者が4人もいた。
(評点合計は8点)のに対しRDをさらに大きくす
ることによりΔDを0.12としたデザイン(RD
1390mm)では全員が少なからず、やや平坦性を感
じており(評点合計は16点)、30点満点中で過半
数の16点以上を得たΔDが0.12以内の場合が良好
であつた。
I don't feel flatness 0 points I feel a little flatness 1 point I feel quite flatness 2 points I feel very flatness 3 points First, ΔD, which has a large contribution to flatness, is changed, and ΔH and ΔV are changed from the conventional values. They were evaluated in the same way.
As a result, in the case of a design in which ΔD was set to 0.14 by making R D slightly larger than the conventional design (R D =1200 mm), as many as four observers did not feel flatness.
(The total score was 8 points), whereas the design made ΔD 0.12 by further increasing R D (R D =
1390mm), all of them felt that it was a little flat (total score was 16 points), and ΔD of 0.12 or less, which is the majority of points out of 30, was considered good.

次にΔHを変化させ、ΔDを上限の0.12(RD
1390mm)、ΔVを従来と同一にして評価した。ΔD
を変化させた場合0.12以内であれば全員が少なか
らず、やや平坦性を感じている(全員が1点以
上)ためΔDに加えてΔHも変化させた場合には
1ランク上の全員が少なからず、かなり平坦性を
感じている(全員が2点以上)デザインが良好で
あつた。その結果、RHが1325mmでΔHが0.100の
デザインは全員が少なからず、かなり平坦性を感
じ(評点合計は23点)、ΔHが0.10以内の場合がさ
らに良好であつた。
Next, change ΔH and set ΔD to the upper limit of 0.12 (R D =
1390mm), and ΔV was kept the same as before. ΔD
When changing ΔH within 0.12, everyone feels that it is a little flat (everyone has 1 point or more), so when ΔH is changed in addition to ΔD, quite a few everyone one rank higher feels that it is a little flat. The design was good, with a feeling of fairly flatness (everyone scored 2 or more). As a result, everyone felt that the design with R H of 1325 mm and ΔH of 0.100 was fairly flat (total score was 23 points), and the design with ΔH of 0.10 or less was even better.

更にΔVを変化させ、ΔDを上限の0.12(RD
1390mm)、ΔHを上限の0.10(RH=1325mm)として
評価した。この場合ΔD及びΔHが良好な値であ
るのでさらに1ランク上の大半が非常に平坦性を
感じている(大半が3点)デザインが良好と判断
できる。その結果、RVが1240mmでΔVが0.080の
デザインは大半の観察者が非常に平坦性を感じ
(評点合計は27点)、ΔVが0.08以内の場合が極め
て良好であつた。
Further change ΔV, and set ΔD to the upper limit of 0.12 (R D =
1390 mm), and ΔH was evaluated with the upper limit of 0.10 (R H =1325 mm). In this case, since ΔD and ΔH have good values, it can be determined that a design in which most of the people one rank higher feel extremely flat (most of them score 3 points) is good. As a result, most observers felt that the design with R V of 1240 mm and ΔV of 0.080 was very flat (total score was 27 points), and the design with ΔV of 0.08 or less was extremely good.

因みに前述の14吋型及び26吋型の陰極線管で
は、SV:SH:SDの比は何れも3:4:4.75である
上に、上記(2)式乃至(4)式の値は14吋型で、ΔD≒
0.155及びΔH≒0.130、ΔV≒0.097であり、26吋型
で、ΔD≒0.155及びΔH≒0.130、ΔV≒0.097を
夫々示し著しい違和感を与える。ここで視感的に
はフエース部内面の矩形状外周が前述の3:4:
5の比率で且つ安全な平坦状、即ちΔD=ΔH=
ΔV=0の場合が最も好ましいが、防爆的観点か
らはフエース部を含めたガラスパネルの肉厚を著
しく大とすることが必要である。即ちガラスパネ
ル、特にフエース部肉厚を著しく厚く構成すれば
完全平坦状も可能ではあるが、重量の増加等によ
る製造上の条件、コスト及びフエースでの光学的
特性から見て明らかに実用的には好ましくない。
このような観点からガラスパネルの肉厚をそれ程
増加させずに防爆特性を劣化させないためには、
ΔDは0.06及びΔHは0.05、ΔVは0.04が限界であ
る。即ち以上の検討からΔD及びΔH,ΔVは、 0.06ΔD0.12 (5) 及び 0.05ΔH0.10 (6) 0.04ΔV0.08 (7) であることが必要である。
Incidentally, in the aforementioned 14-inch and 26-inch cathode ray tubes, the ratio of S V : S H : S D is 3:4:4.75, and the values of equations (2) to (4) above are is 14 inch type, ΔD≒
0.155, ΔH≒0.130, ΔV≒0.097, and the 26-inch model shows ΔD≒0.155, ΔH≒0.130, and ΔV≒0.097, respectively, giving a remarkable sense of discomfort. Visually, the rectangular outer circumference of the inner surface of the face part is 3:4:
5 ratio and safe flat state, i.e. ΔD=ΔH=
The case where ΔV=0 is most preferable, but from the viewpoint of explosion protection, it is necessary to significantly increase the thickness of the glass panel including the face portion. In other words, it is possible to create a completely flat glass panel by making the wall thickness of the glass panel extremely thick, especially at the face part, but this is clearly not practical considering the manufacturing conditions due to increased weight, cost, and the optical properties of the face part. is not desirable.
From this point of view, in order to avoid deteriorating the explosion-proof properties without significantly increasing the wall thickness of the glass panel,
The limits for ΔD are 0.06, 0.05 for ΔH, and 0.04 for ΔV. That is, from the above considerations, ΔD, ΔH, and ΔV need to be 0.06ΔD0.12 (5), 0.05ΔH0.10 (6), and 0.04ΔV0.08 (7).

防爆的見地からは大気圧により陰極線管の外囲
器に加わる応力は、フエース部とフアンネル部は
外囲器内方向へ加わり、フエース部の矩形状外周
の近傍は逆に外囲器外方向へ応力が加わる。従つ
てフエース部の矩形状外周の近傍は最も大きな応
力歪が加わる部位であるから、スカート部を金属
バンド等でより強く緊締することも有効である。
またフエース部の矩形状外周の近傍を主体として
強化することも有効であり、従つてフエース部端
ほど肉厚を大とすることも有効である。このため
にはRV,RH及びRDよりもRVO,RHO及びRDOの値
を大きくすればよい。この場合、視感者側から見
てフエース部外面がより平坦化されるのでさらに
好ましい影響を与える。
From an explosion-proof perspective, the stress applied to the envelope of a cathode ray tube by atmospheric pressure is applied toward the inside of the envelope at the face and funnel sections, and conversely toward the outside of the envelope near the rectangular outer periphery of the face. Adds stress. Therefore, since the vicinity of the rectangular outer periphery of the face portion is the area where the greatest stress and strain is applied, it is also effective to tighten the skirt portion more strongly with a metal band or the like.
It is also effective to mainly strengthen the vicinity of the rectangular outer periphery of the face portion, and therefore it is also effective to increase the wall thickness toward the ends of the face portion. For this purpose, the values of R VO , R HO and R DO should be made larger than R V , R H and RD . In this case, the outer surface of the face portion becomes more flattened when viewed from the viewer's side, giving a more favorable effect.

尚、以上の説明において、RV,RH,RD及び
RVO,RHO,RDOは全て単一の曲率半径で表現して
いるが、本発明は一つの曲率半径、例えばRV
フエース部中央から部端にかけて曲率半径が徐々
に変化する、いわゆる複合曲率半径の場合も含む
ことは言うまでもない。このような場合は例えば
複合曲率半径を近似的に級数展開した時の近似平
均曲率半径の値を以つて本発明で言う一つの曲率
半径とすればよい。すなわち第8図に示すように
フエース部2中央、すなわち管軸(Z)からフエ
ース部端にかけて管軸(Z)に近い領域では曲率
半径R1で変化し、さらにフエース部端に近づく
と異なる曲率半径R2で曲面が形成されている場
合、フエース部中央の点(Q)とフエース部の最
大有効長さ1/2に相当する点(P)との管軸(Z)
に沿つた距離hを求め、式(1)より得られる平均曲
率半径Rを本発明で言う曲率半径とすればよい。
In addition, in the above explanation, R V , R H , R D and
R VO , R HO , and R DO are all expressed by a single radius of curvature, but in the present invention, one radius of curvature, for example, R Needless to say, this also includes the case of a compound radius of curvature. In such a case, for example, the value of the approximate average radius of curvature when the composite radius of curvature is approximately expanded into a series may be used as one radius of curvature in the present invention. In other words, as shown in Fig. 8, the radius of curvature changes by R 1 in the center of the face portion 2, that is, in the area from the tube axis (Z) to the end of the face portion and close to the tube axis (Z), and as it approaches the end of the face portion, the curvature changes to a different radius. When a curved surface is formed with a radius of R 2 , the tube axis (Z) between the center point (Q) of the face part and the point (P) corresponding to 1/2 of the maximum effective length of the face part.
The average radius of curvature R obtained from equation (1) may be taken as the radius of curvature in the present invention.

実施例 1 15吋型(フエース部内面の矩形状外周の対角軸
の最大径は14吋型)陰極線管のRV,RH及びRD
RVO,RHO及びRDOを全て同一の曲率半径とし、
SV,SH及びSDをそれぞれ下記のように設定した。
Example 1 R V , R H and R D of a 15-inch cathode ray tube (the maximum diameter of the diagonal axis of the rectangular outer circumference on the inner surface of the face is 14 inches)
Let R VO , R HO and R DO all have the same radius of curvature,
S V , S H and S D were set as shown below.

RV=RH=RD=R=1300mm RVO=RHO=RDO=RO=1400mm SV=106.7mm SH=142.2mm SD=177.8mm 上記の場合SV(106.7):SH(=142.2):SD(=
177.8)=3:4:5であり、且つ前記の(2)式乃至
(4)式で示すΔD及びΔH,ΔVは、 ΔD≒0.069 ΔH≒0.055 ΔV≒0.041 となり、前述の(5)式乃至(7)式の下限範囲内であ
る。また防爆特性については、フエース部外面の
曲率半径ROを内面の曲率半径Rより大とし、フ
エース部の肉厚分布を端部程大とし、真空膨張応
力が一般に最も大きくなる垂直軸有効径端近傍の
応力値を従来のものと同等とすることができた。
従つて本実施例ではガラスパネルのわずかな重量
増で従来と同等の防爆特性が得られた。
R V = R H = R D = R = 1300mm R VO = R HO = R DO = R O = 1400mm S V = 106.7mm S H = 142.2mm S D = 177.8mm In the above case S V (106.7): S H (=142.2): S D (=
177.8) = 3:4:5, and the above formula (2) to
ΔD, ΔH, and ΔV shown in equation (4) are ΔD≒0.069 ΔH≒0.055 ΔV≒0.041, which are within the lower limit range of the above-mentioned equations (5) to (7). Regarding explosion-proof properties, the radius of curvature R O of the outer surface of the face part is made larger than the radius of curvature R of the inner surface, and the wall thickness distribution of the face part is made larger toward the ends. It was possible to make the stress values in the vicinity equivalent to the conventional ones.
Therefore, in this example, explosion-proof characteristics equivalent to those of the conventional glass panel were obtained with a slight increase in the weight of the glass panel.

実施例 2 実施例1と同様28吋型(フエース部内面の矩形
状外周の対角軸の最大径は26吋型)陰極線管のフ
エース部の各値を下記のように選定した。
Example 2 As in Example 1, each value of the face portion of a cathode ray tube of 28 inch type (the maximum diameter of the diagonal axis of the rectangular outer periphery of the inner surface of the face portion is 26 inch type) was selected as follows.

RV=1300mm RH=1435mm RD=1490mm RVO=RHO=RDO=RO=1700mm SV=197.1mm SH=262.8mm SD=328.5mm 上記の場合SV,SH及びSDの比は実施例1と同
様3:4:5であり、且つ前記の(2)式乃至(4)式で
示すΔD及びΔH,ΔVは、 ΔD≒0.112 ΔH≒0.092 ΔV≒0.076 となり、前述の(5)式乃至(7)式の上限範囲内であ
る。また防爆特性からはフエース部をより平坦化
すると共にRV,RH及びRDをそれぞれ異ならしめ、
しかもフエース部の垂直軸方向端部の肉厚が最も
大となるようにされているので有利であり、結果
としてフエース部全体の肉厚を約1mm程度増加さ
せるだけで従来と同等の防爆特性を得ることがで
きた。
R V = 1300mm R H = 1435mm R D = 1490mm R VO = R HO = R DO = R O = 1700mm S V = 197.1mm S H = 262.8mm S D = 328.5mm In the above case S V , S H and S The ratio of D is 3:4:5 as in Example 1, and ΔD, ΔH, and ΔV shown in equations (2) to (4) above are ΔD≒0.112 ΔH≒0.092 ΔV≒0.076, and as described above. is within the upper limit range of equations (5) to (7). In addition, from the perspective of explosion-proof properties, the face part is made flatter and R V , R H and R D are made different.
Moreover, it is advantageous because the wall thickness at the end of the face in the vertical axis direction is the largest.As a result, by increasing the wall thickness of the entire face by about 1 mm, the same explosion-proof properties as before can be achieved. I was able to get it.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、フエース部の
縦、横及び斜めの有効寸法を実質的に3:4:5
とし、且つフエース部曲面がより平坦化された視
感的に極めて好ましい印象を与えることができ、
カラー受像管を含む実質的に矩形状のフエース部
を有する有用な陰極線管を提供することができ
る。
As described above, according to the present invention, the vertical, horizontal and diagonal effective dimensions of the face portion are substantially 3:4:5.
In addition, the curved surface of the face portion can give an extremely flattering visual impression,
A useful cathode ray tube having a substantially rectangular face including a color picture tube can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は陰極線管のガラスパネルの
正面及び側断面を示す模式図、第3図及び第4図
は本発明を適用したガラスパネルのそれぞれ第1
図及び第2図に対応して示す正面及び側断面の模
式図、第5図はガラスパネル内面の斜視図、第6
図a乃至第6図cはガラスパネルの対角軸、水平
軸及び垂直軸方向の断面図、第7図はフエース部
内面の曲面の変化率を説明するための模式図、第
8図は曲率半径を説明するための模式図である。 1……ガラスパネル、2……フエース部、3…
…スカート部、RV……フエース部内面の垂直軸
方向を含む曲率半径、RH……フエース部内面の
水平軸方向を含む曲率半径、RD……フエース部
内面の対角軸方向を含む曲率半径、SV……フエ
ース部内面の矩形状外周の実質的に垂直軸を含む
最大長さの1/2、SH……フエース部内面の矩形状
外周の実質的に水平軸を含む最大長さの1/2、SD
……フエース部内面の矩形状外周の実質的に対角
軸を含む最大長さの1/2。
1 and 2 are schematic diagrams showing the front and side cross sections of a glass panel of a cathode ray tube, and FIGS.
5 is a perspective view of the inner surface of the glass panel, and FIG.
Figures a to 6c are cross-sectional views of the glass panel in the diagonal, horizontal, and vertical axis directions, Figure 7 is a schematic diagram for explaining the rate of change of the curved surface of the inner surface of the face, and Figure 8 is the curvature. It is a schematic diagram for explaining a radius. 1...Glass panel, 2...Face portion, 3...
…Skirt portion, R V … Radius of curvature including the vertical axis direction of the inner surface of the face portion, R H … Radius of curvature including the horizontal axis direction of the inner surface of the face portion, R D … Including the diagonal axis direction of the inner surface of the face portion Radius of curvature, S V ... 1/2 of the maximum length of the rectangular outer periphery of the inner surface of the face section, including the substantially vertical axis, S H ... The maximum length of the rectangular outer periphery of the inner surface of the face section, including the substantially horizontal axis 1/2 length, S D
... 1/2 of the maximum length of the rectangular outer periphery of the inner surface of the face section, including the diagonal axis.

Claims (1)

【特許請求の範囲】 1 少くとも内面に蛍光スクリーンを有し実質的
な矩形状からなる曲面状のフエース部と、前記フ
エース部端から延在するスカート部とからなり、
前記フエース部端により形成される矩形状外周の
各辺部及び各辺部を連結する各コーナー部がそれ
ぞれ曲面状に形成されたガラスパネルを有する陰
極線管において、前記フエース部の内面の垂直軸
方向、水平軸方向及び対角軸方向を含む曲率半径
をそれぞれRV,RH及びRDとし、且つ前記フエー
ス部の内面のフエース部端により形成される矩形
状外周の実質的に垂直軸を含む最大有効長さの1/
2、水平軸を含む最大有効長さの1/2及び対角軸を
含む最大長さの1/2をそれぞれSV,SH及びSDとす
る時、 0.06RD−√(RD2−(SD2/SD0.12 なる関係を有することを特徴とする陰極線管。 2 前記ガラスパネルのRH及びSHが 0.05RH−√(RH2−(SH2/SH0.10 なる関係を有することを特徴とする特許請求の範
囲第1項記載の陰極線管。 3 前記ガラスパネルのRV及びSVが 0.04RV−√(RV2−(SV2/SV0.08 なる関係を有することを特徴とする特許請求の範
囲第1項または第2項記載の陰極線管。 4 前記ガラスパネルのSV,SH及びSDが実質的
に3:4:5の関係を有することを特徴とする特
許請求の範囲第1項記載の陰極線管。 5 前記フエース部の内面の各軸方向を含む曲率
半径の値よりも前記フエース部の外面の各軸方向
を含む曲率半径の値の方が大きいことを特徴とす
る特許請求の範囲第4項記載の陰極線管。 6 前記フエース部の垂直軸方向の端部近傍の肉
厚が前記フエース部の水平軸方向及び対角軸方向
の端部近傍の肉厚よりも大きいことを特徴とする
特許請求の範囲第5項記載の陰極線管。
[Scope of Claims] 1. Consisting of a curved face portion having a substantially rectangular shape and having a fluorescent screen on at least the inner surface, and a skirt portion extending from the end of the face portion,
In a cathode ray tube having a glass panel in which each side of the rectangular outer periphery formed by the end of the face part and each corner part connecting each side part are each formed into a curved surface, the vertical axis direction of the inner surface of the face part , the radius of curvature including the horizontal axis direction and the diagonal axis direction is R V , R H and R D respectively, and includes the substantially vertical axis of the rectangular outer periphery formed by the end of the face portion of the inner surface of the face portion. 1/ of maximum effective length
2. When 1/2 of the maximum effective length including the horizontal axis and 1/2 of the maximum length including the diagonal axis are S V , S H and S D , respectively, 0.06R D −√(R D ) A cathode ray tube characterized by having the following relationship: 2 − (S D ) 2 /S D 0.12. 2. The cathode ray according to claim 1, wherein R H and S H of the glass panel have the following relationship: 0.05R H −√(R H ) 2 −(S H ) 2 /S H 0.10 tube. 3. Claim 1 or 2, characterized in that RV and S V of the glass panel have a relationship of 0.04R V −√(R V ) 2 −(S V ) 2 /S V 0.08 Cathode ray tube as described in section. 4. The cathode ray tube according to claim 1, wherein S V , S H and S D of the glass panel have a substantially 3:4:5 relationship. 5. Claim 4, characterized in that the value of the radius of curvature of the outer surface of the face portion including each axial direction is larger than the value of the radius of curvature of the inner surface of the face portion including each axial direction. cathode ray tube. 6. Claim 5, characterized in that the wall thickness near the end of the face portion in the vertical axis direction is larger than the wall thickness near the end portion of the face portion in the horizontal axis direction and the diagonal axis direction. The cathode ray tube described.
JP5351183A 1983-03-09 1983-03-31 Cathode ray tube Granted JPS59180939A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5351183A JPS59180939A (en) 1983-03-31 1983-03-31 Cathode ray tube
EP83112854A EP0119317B1 (en) 1983-03-09 1983-12-20 Cathode-ray tube
DE8383112854T DE3374489D1 (en) 1983-03-09 1983-12-20 Cathode-ray tube
US06/564,197 US4537321A (en) 1983-03-09 1983-12-22 Cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5351183A JPS59180939A (en) 1983-03-31 1983-03-31 Cathode ray tube

Publications (2)

Publication Number Publication Date
JPS59180939A JPS59180939A (en) 1984-10-15
JPH0365613B2 true JPH0365613B2 (en) 1991-10-14

Family

ID=12944837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5351183A Granted JPS59180939A (en) 1983-03-09 1983-03-31 Cathode ray tube

Country Status (1)

Country Link
JP (1) JPS59180939A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241604A (en) * 1997-02-27 1998-09-11 Asahi Glass Co Ltd Glass panel for cathode-ray tube
KR100331820B1 (en) * 2000-04-12 2002-04-09 구자홍 Flat Cathode Ray Tube

Also Published As

Publication number Publication date
JPS59180939A (en) 1984-10-15

Similar Documents

Publication Publication Date Title
EP1333464B1 (en) Color cathode ray tube
KR100300319B1 (en) Cathode ray tube
KR0143077B1 (en) Front panel for color TV tubes
US4786840A (en) Cathode-ray tube having a faceplate panel with a substantially planar periphery
US6333594B1 (en) Color cathode ray tube having particular effective inner panel surface and shadow mask effective surface shapes
JPH043619B2 (en)
JP2685461B2 (en) Shadow mask type color picture tube
KR20000051256A (en) Cathode ray tube
JP2000516384A (en) Color picture tube with improved funnel
RU2010390C1 (en) Cathode-ray tube
JPH09245685A (en) Color picture tube
JP3149350B2 (en) Face plate panel improved color picture tube
JPH0365613B2 (en)
US4887001A (en) Cathode-ray tube having faceplate panel with essentially planar screen periphery
JPH0365612B2 (en)
JP2977623B2 (en) Cathode ray tube and display device
US6812631B2 (en) Glass bulb for a cathode ray tube and cathode ray tube
WO2000017904A1 (en) Color picture tube
KR100282536B1 (en) Cathode ray tube
JPH0365611B2 (en)
JPH0364981B2 (en)
JP3171900B2 (en) Cathode ray tube
JPS59165349A (en) Cathode-ray tube
JP2000149812A (en) Cathode-ray tube shadow mask and cathode-ray tube
US20060091777A1 (en) Cathode ray tube