JPH0365612B2 - - Google Patents

Info

Publication number
JPH0365612B2
JPH0365612B2 JP3743983A JP3743983A JPH0365612B2 JP H0365612 B2 JPH0365612 B2 JP H0365612B2 JP 3743983 A JP3743983 A JP 3743983A JP 3743983 A JP3743983 A JP 3743983A JP H0365612 B2 JPH0365612 B2 JP H0365612B2
Authority
JP
Japan
Prior art keywords
face portion
face
axis direction
curvature
cathode ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3743983A
Other languages
Japanese (ja)
Other versions
JPS59165352A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3743983A priority Critical patent/JPS59165352A/en
Priority to EP83112854A priority patent/EP0119317B1/en
Priority to DE8383112854T priority patent/DE3374489D1/en
Priority to US06/564,197 priority patent/US4537321A/en
Publication of JPS59165352A publication Critical patent/JPS59165352A/en
Publication of JPH0365612B2 publication Critical patent/JPH0365612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/861Vessels or containers characterised by the form or the structure thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/86Vessels and containers
    • H01J2229/8613Faceplates
    • H01J2229/8616Faceplates characterised by shape
    • H01J2229/862Parameterised shape, e.g. expression, relationship or equation

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は陰極線管に係り、特にそのガラスパネ
ルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cathode ray tube, and particularly to a glass panel thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に陰極線管の外囲器は内面に蛍光面を有す
るガラスパネルとこのガラスパネルに連結するフ
アンネル及びネツクから構成され、蛍光スクリー
ンに対向してネツク内に配設された電子銃からの
電子ビームの偏向走査により蛍光スクリーンを衝
撃発光せしめている。このような陰極線管のガラ
スパネルは第1図及び第2図に示すように、蛍光
スクリーンを透過映出するための実質的に矩形状
枠を有するように形成され、その内面及び外面が
外方に突出する曲面状をなすフエース部2とフエ
ース部端から管軸方向に延在しフアンネル(図示
せず)に連結されるスカート部3とから構成され
ている。尚、第1図はガラスパネル1の正面図
で、第2図はフエース部2とスカート部3の内面
のみの側面図で且つ中心線の右側は垂直軸(V−
V)と対角軸(D−D)を左側には水平軸(H−
H)をまとめて示してある。このようなガラスパ
ネル1内面及び外面の垂直軸方向、水平軸方向及
び対角軸方向の曲率半径をそれぞれ内面でRV
RH及びRD、外面でRVO,RHO及びRDOとすると設計
を容易にするためにRV=RH=RD=R及びRVO
RHO=RDO=RO、即ち単一の曲率半径とするのが
一般的である。またフエース部の内面のフエース
部端は実質的な矩形状外周(以下、フエース部内
面の矩形状外周と称す)を形成し、この様な矩形
状外周は4つの辺部とこれらの辺部を滑らかに連
続したコーナー部とから構成される。4つの辺部
は実際には各辺部共わずかに湾曲し曲線を形成し
ている(以下、矩形状外周の曲線を称す)。さて
視感者側から見ればこのようなフエース部は出来
るだけ平坦で、且つフエース部内面の矩形状外周
の垂直軸を含む最大有効長さの1/2、水平軸を含
む最大有効長さの1/2及び対角軸を含む最大有効
長さの1/2をそれぞれSV,SH及びSDとする時、
SV:SH:SD=3:4:5、即ち画面の縦、横及
び斜めの比率が3:4:5となる場合が最も好ま
しいとされている。しかし乍ら陰極線管外囲器内
を高真空に排気すると外部の大気圧との圧力差に
より、フエース部は内側方向への強い応力を受
け、特に画面をより平坦化するとわずかな衝撃や
ガラス欠陥をオリジンとして容易に爆縮する危険
性を有している。この爆縮を防止するための最も
簡便な手段はガラスパネルの肉厚を増加させるこ
とであるが、肉厚の過度の増加は重量の増加、コ
ストの増加を招き好ましくない。従つて従来のフ
エース部はより外方へ突出する曲率半径をとらざ
るを得ず、またコーナー部含めて矩形状のフエー
ス部は全体的に丸味を帯びた形状となり視感的に
は好ましくないものであつた。例えば20吋型陰極
線管のフエース部の設計の一例としては、RV
RH=RD=R=792mmでSV=151.7mm、SH=202.2mm
が採用されており、この場合SV:SH:SDの比は、
3:4:4.75となり、特に対角を短かくせざるを
得ず視感的には著るしい違和感を与えている。
Generally, the envelope of a cathode ray tube consists of a glass panel with a phosphor screen on its inner surface, a funnel and a net connected to this glass panel, and an electron beam emitted from an electron gun placed inside the net facing the phosphor screen. The fluorescent screen is made to emit light by impact by deflection scanning. As shown in FIGS. 1 and 2, the glass panel of such a cathode ray tube is formed to have a substantially rectangular frame for transmitting a fluorescent screen, and its inner and outer surfaces face outward. It is composed of a face portion 2 which has a curved surface shape that protrudes from the side, and a skirt portion 3 which extends from the end of the face portion in the tube axis direction and is connected to a funnel (not shown). Note that FIG. 1 is a front view of the glass panel 1, and FIG. 2 is a side view of only the inner surfaces of the face portion 2 and skirt portion 3, and the right side of the center line is a vertical axis (V-
V) and the diagonal axis (D-D), and the horizontal axis (H-
H) are shown together. The radii of curvature in the vertical axis direction, horizontal axis direction, and diagonal axis direction of the inner and outer surfaces of the glass panel 1 are respectively R V ,
R H and R D , and R VO , R HO and R DO on the outer surface, to facilitate the design, R V = R H = R D = R and R VO =
It is common to have R HO = R DO = R O , ie, a single radius of curvature. In addition, the end of the face part on the inner surface of the face part forms a substantially rectangular outer periphery (hereinafter referred to as the rectangular outer periphery of the inner face part), and such a rectangular outer periphery has four sides and these sides. Consists of smoothly continuous corner parts. The four sides are actually slightly curved to form a curved line (hereinafter referred to as a curved line around the rectangular periphery). Now, when viewed from the viewer's side, such a face part should be as flat as possible, and should be 1/2 of the maximum effective length including the vertical axis of the rectangular outer periphery of the inner surface of the face part, and 1/2 of the maximum effective length including the horizontal axis. When 1/2 and 1/2 of the maximum effective length including the diagonal axis are S V , S H and S D , respectively,
It is considered most preferable that S V :S H :S D =3:4:5, that is, the vertical, horizontal, and diagonal ratios of the screen are 3:4:5. However, when the inside of the cathode ray tube envelope is evacuated to a high vacuum, the face part receives strong stress inward due to the pressure difference with the outside atmospheric pressure. There is a danger that it could easily implode as the origin. The simplest means to prevent this implosion is to increase the wall thickness of the glass panel, but excessive increase in wall thickness is undesirable as it increases weight and cost. Therefore, the conventional face part has no choice but to have a radius of curvature that protrudes further outward, and the rectangular face part, including the corner parts, has a rounded shape as a whole, which is visually undesirable. It was hot. For example, as an example of the design of the face part of a 20-inch cathode ray tube, R V =
R H = R D = R = 792 mm, S V = 151.7 mm, S H = 202.2 mm
is adopted, and in this case the ratio of S V : S H : S D is
The ratio is 3:4:4.75, and the diagonal in particular has to be shortened, giving a striking visual sense of discomfort.

〔発明の目的〕[Purpose of the invention]

本発明はフエース部の縦、横及ひ斜めの比を実
質的に3:4:5とした場合フエース部の曲面を
出来る限り平坦化して視感的に最も好ましい印象
を与えるフエース部を有する陰極線管を提供する
ことを目的とする。
The present invention provides a cathode ray having a face part that flattens the curved surface of the face part as much as possible to give the most visually favorable impression when the vertical, horizontal and diagonal ratios of the face part are substantially 3:4:5. The purpose is to provide pipes.

〔発明の概要〕[Summary of the invention]

本発明はフエース部の内面の垂直軸方向、水平
軸方向及び対角軸方向を含む曲率半径をそれぞれ
RV,RH及びRDとし、且つフエース部内面の矩形
状外周の実質的に垂直軸を含む最大有効長さの1/
2、水平軸を含む最大有効長さの1/2及び対角軸を
含む最大有効長さの1/2をそれぞれSV,SH及びSD
とする時、垂直軸端から対角軸端にかけてのフエ
ース部内面の矩形状外周の曲線の変化率及び水平
軸端から対角軸端にかけてのフエース部内面の矩
形状外周の曲線の変化率を、 0.04RV×(SD2−RD×(SV2/2×SH×RV×RD
0.08 及び 0.03RH×(SD2−RD×(SH2/2×SV×RH×RD
0.06 とすることによつてSV,SH及びSDの比を実質的
に3:4:5とし、且つフエース部曲面をより平
坦化した陰極線管である。
In the present invention, the radius of curvature of the inner surface of the face portion including the vertical axis direction, horizontal axis direction, and diagonal axis direction is
R V , R H and R D , and 1/1/2 of the maximum effective length including the substantially vertical axis of the rectangular outer periphery of the inner surface of the face portion.
2. 1/2 of the maximum effective length including the horizontal axis and 1/2 of the maximum effective length including the diagonal axis are S V , S H and S D , respectively.
When, the rate of change of the curve of the rectangular outer circumference of the inner surface of the face portion from the vertical axis end to the diagonal axis end, and the rate of change of the curve of the rectangular outer circumference of the inner surface of the face portion from the horizontal axis end to the diagonal axis end are , 0.04R V × (S D ) 2 −R D × (S V ) 2 /2 × S H ×R V ×R D
0.08 and 0.03R H × (S D ) 2 −R D × (S H ) 2 /2 × S V × R H × R D
By setting the ratio to 0.06, the ratio of S V , S H and S D is substantially 3:4:5, and the cathode ray tube has a flattened face portion curved surface.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明について詳細に説明する。第3図
乃至第7図は本発明を概念的に説明するためのも
ので、第3図は第1図に、また第4図は第2図に
対応しており、図中点線は第1図と第2図の曲率
半径をそれぞれ比較するために示したものであ
る。また第3図及び第4図において、第1図及び
第2図に対応する曲率半径及び長さを示す符号は
全て第1図及び第2図に用いた符号と同一の符号
で示してある。第5図はフエース部2とスカート
部3の内面のみの斜視図であり、第6図a乃至第
6図cは第4図及び第5図に対応しフエース部中
心から各軸方向端部にかけてのフエース部断面を
表わしている。また第7図はフエース部内面の曲
面の変化率を説明するための模式図である。
The present invention will be explained in detail below. 3 to 7 are for conceptually explaining the present invention, and FIG. 3 corresponds to FIG. 1, and FIG. 4 corresponds to FIG. 2. This figure is shown for comparison of the curvature radii of FIG. 2 and FIG. Further, in FIGS. 3 and 4, all the symbols indicating the radius of curvature and length corresponding to FIGS. 1 and 2 are indicated by the same symbols as used in FIGS. 1 and 2. FIG. 5 is a perspective view of only the inner surfaces of the face portion 2 and skirt portion 3, and FIGS. 6a to 6c correspond to FIGS. 4 and 5, and extend from the center of the face portion to each axial end. It shows the cross section of the face part of. Further, FIG. 7 is a schematic diagram for explaining the rate of change of the curved surface of the inner surface of the face portion.

本発明を実施するに当たつて、フエース部の
SV,SH及びSD比を実質的に3:4:5とし、且
つフエース部の湾曲をより平坦化するための指標
とすべき部分はフエース部内面の矩形状外周を形
成している各辺部の湾曲状態である。即ちフエー
ス部中心から各軸端部にかけて画面が徐々に落ち
込む(ΔD′,ΔH′,ΔV′)ためフエース部内面の
矩形状外周を形成する各辺部も第5図のΔL′,
ΔS′で示されるように垂直軸端から対角軸端及び
水平軸端から対角軸端にかけて各辺部が湾曲し丸
味を帯びるため、視感的に著しい違和感を与え
る。一般に第7図に示すように半径Rの円と中心
(O)を通る軸(Z)が交わる点(Q)と軸(Z)
より距離xだけ離れた円周上の点(P)との軸
(Z)に沿つた距離hは次のように表わすことが
できる。
In carrying out the present invention, the face part
The S V , S H , and S D ratios are set to substantially 3:4:5, and the portion that should be used as an index for flattening the curve of the face portion forms the rectangular outer periphery of the inner surface of the face portion. This is the curved state of each side. In other words, since the screen gradually falls from the center of the face part to the end of each axis (ΔD', ΔH', ΔV'), each side forming the rectangular outer periphery of the inner surface of the face part also has a slope of ΔL',
As shown by ΔS', each side is curved and rounded from the vertical axis end to the diagonal axis end and from the horizontal axis end to the diagonal axis end, giving a visually striking sense of discomfort. Generally, as shown in Figure 7, the point (Q) and axis (Z) where a circle with radius R intersects with the axis (Z) passing through the center (O)
The distance h along the axis (Z) from a point (P) on the circumference that is a distance x away from the point (P) can be expressed as follows.

h=R−√22 従つて第5図に示したようにフエース部内面中
心から各軸方向端にかけての管軸(Z)に沿つた
フエース部内面の落ち込み量ΔD′,ΔH′及び
ΔV′は、第6図a,b,cに示すように対角軸
(D)に沿つてRD−√D 2D 2、水平軸(H)に
沿つてRH−√H 2H 2、垂直軸(V)に沿つて
RV−√V 2V 2と表わすことができる。
h=R- √2-2 Therefore, as shown in Fig. 5, the amount of depression of the inner surface of the face along the tube axis (Z) from the center of the inner surface of the face to each axial end is ΔD', ΔH', and ΔV ' is R D −√ D 2 − D 2 along the diagonal axis (D) and R H −√ H 2H along the horizontal axis ( H ), as shown in Figure 6 a , b, and c. 2 , along the vertical axis (V)
It can be expressed as R V −√ V 2V 2 .

従つて垂直軸端から対角軸端及び水平軸端から
対角軸端にかけての曲線の変化、即ちこの曲線の
落ち込み量ΔL′,ΔS′は次のように各々表すこと
ができる。
Therefore, the changes in the curve from the vertical axis end to the diagonal axis end and from the horizontal axis end to the diagonal axis end, that is, the drop amounts ΔL' and ΔS' of this curve can be expressed respectively as follows.

ΔL′=ΔD′−ΔV′ ΔS′=ΔD′−ΔH′ ここで、垂直軸端から対角軸端及び水平軸端か
ら対角軸端にかけての曲線の変化率、即ちこの曲
線の落ち込み率ΔL,及びΔSとしてΔL′,及び
ΔS′をSD,SH及びSVで除したものとして定義する
とそれらは、SD/RD<<1、SH/RH<<1及び
SV/RV<<1であるので近似的に、 ΔL=ΔL′/SH=[{RD−(RD 2−SD 21/2}−{RV
−(RV 2−SV 21/2}]/SH =[{RD−RD(1−(SD/RD21/2}−{RV−RV
(1−(SV/RV21/2}]/SH ≒[{RD−RD(1−(1/2)(SD/RD2)}−{RV
RV(1−(1/2)(SV/RV2)}]/SH ={(SD 2/2RD)−(SV 2/2RV)}/SH=(RV×SD
2−RD×SV 2)/(2×SH×RV×RD)……(1) 同様にして、 ΔS=ΔS′/SV=[{RD−(RD 2−SD 21/2}−{R
H−(RH 2−SH 21/2}]/SV ≒(RH×SD 2−RD×SH 2)/(2×SV×RH×RD)…
…(2) と表すことができる。
ΔL′=ΔD′−ΔV′ ΔS′=ΔD′−ΔH′ Here, the rate of change of the curve from the vertical axis end to the diagonal axis end and from the horizontal axis end to the diagonal axis end, that is, the drop rate ΔL of this curve , and ΔS are defined as ΔL′ and ΔS′ divided by S D , S H and S V , they become S D /R D <<1, S H /R H <<1 and
Since S V /R V <<1, approximately, ΔL=ΔL′/S H = [{R D −(R D 2 −S D 2 ) 1/2 }−{R V
−(R V 2 −S V 2 ) 1/2 }]/S H = [{R D −R D (1−(S D /R D ) 2 ) 1/2 }−{R V −R V
(1−(S V /R V ) 2 ) 1/2 }] / S H ≒ [{R D −R D (1−(1/2)(S D /R D ) 2 )}−{R V
R V (1−(1/2)(S V /R V ) 2 )}]/S H = {(S D 2 /2R D )−(S V 2 /2R V )}/S H = (R V ×S D
2 −R D ×S V 2 )/(2×S H ×R V ×R D )……(1) Similarly, ΔS=ΔS′/S V = [{R D −(R D 2 −S D 2 ) 1/2 }−{R
H − (R H 2 − S H 2 ) 1/2 }] / S V ≒ (R H × S D 2 − R D × S H 2 ) / (2 × S V × R H × R D )…
…(2) It can be expressed as:

即ち、ΔS、言い換えればフエース部内面の矩
形状外周のコーナーを含む各辺部の曲線状態がど
のような状態の場合視感的に好ましいかが問題と
なる。従つてこの場合、SV,SH及びSDの比率が
実質的に3:4:5で且つフエース部がより平坦
化されている、いわゆる視感的に好ましい状態に
近づけた時、上記(1)式及び(2)式で示されるΔL,
ΔSをどのような値に設定すればよいかが問題と
なる。またこの時の爆縮を防止する、いわゆる防
爆特性も問題となる。
That is, the question is ΔS, in other words, what state of the curve of each side including the corner of the rectangular outer periphery of the inner surface of the face portion is visually preferable. Therefore, in this case, when the ratio of S V , S H and S D is substantially 3:4:5 and the face portion is more flattened, which is close to the so-called visually preferable state, the above ( ΔL shown by equations 1) and (2),
The problem is what value ΔS should be set to. In addition, the so-called explosion-proof property that prevents implosion at this time also becomes a problem.

以上の観点から本発明者は種々考察検討を重ね
た結果、まずフエース部の縦と横の比率、即ち
SVとSHの比率が3:4の横長の場合、視感的に
見てフエース部のより平坦化に寄与する度合は
ΔSよりΔLの方が大きいことを確認した。
As a result of various considerations and studies from the above viewpoint, the inventor first determined the ratio of the length and width of the face portion, that is,
When the ratio of S V to S H is 3:4 in the horizontal direction, it was confirmed that ΔL contributes more to flattening the face portion than ΔS visually.

このような状態でフエース部の縦、横及び斜
め、即ちSV,SH及びSDの比を実質的に3:4:
5とし、フエース部の曲率半径を従来より大きく
より平坦化した時、ΔLが0.08以下及びΔSが0.06
以下の場合視感的に見てフエース部を平坦と感じ
好ましい印象を与えることを究明した。具体的に
は、まず画面の形状の内ΔL及びΔSを変化させた
ガラスパネルを使用したカラー受像管を製作し、
どの様な値が平坦性を認識できるか10人の観察者
(A〜J)による主観評価実験を行つた。実験は
21インチのカラー受像管を観察者が距離1.5mの
位置で椅子に掛けて行つた。評価のカテゴリーと
しては、従来の20インチの画面(RV=RH=RD
792mm)を基準として、次のように定めた。
In this state, the vertical, horizontal and diagonal ratio of the face portion, that is, the ratio of S V , S H and S D is substantially 3:4:
5, and when the radius of curvature of the face part is made larger and flatter than before, ΔL is 0.08 or less and ΔS is 0.06.
It has been determined that the following cases give a visually pleasing impression that the face portion is flat. Specifically, we first manufactured a color picture tube using a glass panel with different screen shapes, ΔL and ΔS.
A subjective evaluation experiment was conducted by 10 observers (A to J) to determine what kind of value would indicate flatness. The experiment is
The observer hung a 21-inch color picture tube on a chair at a distance of 1.5 m. The evaluation category is the conventional 20-inch screen (R V = R H = R D =
792mm) as the standard, and was determined as follows.

平坦性を感じない 0点 やや平坦性を感じる 1点、 かなり平坦性を感じる 2点、 非常に平坦性を感じる 3点 まず平坦性に関する寄与度が大きいΔLを変化
させ、ΔSは従来と同一にして評価した。その結
果、RVを従来よりやや小さくすることによりΔL
を0.105としたデザイン(RV=600mm)の場合、平
坦性を感じない観察者が4人もいた(評点合計は
8点)のに対しRVをさらに小さくすることによ
りΔLを0.08としたデザイン(RV=475mm)では全
員が少なからず、やや平坦性を感じており(評点
合計は16点)、30点満点中で過半数の16点以上を
得たΔLが0.08以下の場合が良好であつた。
I don't feel flatness 0 points I feel a little flatness 1 point I feel a lot of flatness 2 points I feel very flatness 3 points First, we change ΔL, which has a large contribution to flatness, and keep ΔS the same as before. It was evaluated. As a result, by making R V slightly smaller than before, ΔL
In the case of the design with R V = 0.105 (R V = 600 mm), as many as 4 observers did not feel the flatness (total score was 8 points), whereas the design with ΔL of 0.08 by further reducing R V (R V = 475 mm), all of them felt that it was somewhat flat (total score was 16 points), and a ΔL of 0.08 or less, which is the majority of points out of 30, is considered good. Ta.

次にΔSを変化させ、ΔLを上限の0.08(RV=475
mm、RD=792mm(従来と同一))にして評価した。
ΔLを変化させた場合0.08以内であれば全員が少
なからず、やや平坦性を感じている(全員が1点
以上)ためΔLに加えてΔSも変化させた場合には
さらに1ランク上の全員が少なからず、かなり平
坦性を感じている(全員が2点以上)デザインが
良好と判断できる。その結果、RHが655mmでΔS
が0.060のデザインは全員が少なからず、かなり
平坦性を感じ(評点合計は23点)、ΔSが0.06以下
の場合がさらに良好であつた。
Next, change ΔS and set ΔL to the upper limit of 0.08 (R V = 475
mm, R D = 792 mm (same as conventional)).
When ΔL is changed, if it is within 0.08, everyone feels that it is a little flat (everyone has 1 point or more), so when ΔS is changed in addition to ΔL, everyone one rank above It can be judged that the design is good as it feels quite flat (everyone scored 2 or more). As a result, when R H is 655 mm, ΔS
For designs with a value of 0.060, everyone felt that the design was fairly flat (total score was 23 points), and those with ΔS of 0.06 or less were even better.

因みに前記従来のR=792mm、SV=151.7mm、SH
=202.2mm及びSD=240.0mmの場合、SV:SH:SD
3:4:475でΔL=0.108及びΔS=0.070である。
By the way, the conventional R = 792mm, S V = 151.7mm, S H
= 202.2mm and S D = 240.0mm, S V : S H : S D =
At 3:4:475, ΔL=0.108 and ΔS=0.070.

ここで視感的にはフエース部が完全な矩形状、
即ちΔL=ΔS=0の場合が最も好ましいが、防爆
的観点からはガラスパネルの肉厚を著しく大とす
ることが必要である。即ちガラスパネルに、特に
フエース部肉厚を著しく厚く構成すれば完全矩形
状も可能ではあるが、重量の増加等による製造上
の条件、コスト及びフエース部での光散乱特性か
ら見て明らかに実用的には好ましくない。このよ
うな観点からガラスパネルの肉厚をそれ程増加さ
せずに防爆特性を劣化させないためには、ΔLは
0.04及びΔSは0.03が限界である。即ち以上の検討
からΔL及びΔSは、 0.04ΔL0.08 (3) 0.03ΔS0.06 (4) であることが必要である。
Visually, the face part is a perfect rectangle,
That is, the case where ΔL=ΔS=0 is most preferable, but from the viewpoint of explosion protection, it is necessary to significantly increase the thickness of the glass panel. In other words, it is possible to create a completely rectangular glass panel by making the face part particularly thick, but this is clearly not practical due to manufacturing conditions such as increased weight, cost, and the light scattering properties of the face part. Not desirable. From this point of view, in order to avoid deteriorating the explosion-proof properties without significantly increasing the wall thickness of the glass panel, ΔL should be
The limit for 0.04 and ΔS is 0.03. That is, from the above considerations, ΔL and ΔS need to be 0.04ΔL0.08 (3) 0.03ΔS0.06 (4).

防爆的見地からは大気圧により陰極線感の外囲
器に加わる応力は、フエース部とフアンネル部は
外囲器内方向へ加わり、フエース部の矩形状外周
の近傍は逆に外囲器外方向へ応力が加わる。従つ
てフエース部の矩形状外周の近傍は最も大きな応
力歪が加わる部位であるから、この部分を金属バ
ンド等でより強く緊締することも有効である。ま
たフエース部の矩形状外周の近傍を主体として強
化することも有効であり、従つてフエース部端ほ
ど肉厚を大とすることも有効である。このために
はRV,RH及びRDよりもRVO,RHO及びRDOの値を
大きくすればよい。この場合、視感者側から見て
フエース部外面がより平坦化されるのでさらに好
ましい影響を与える。
From an explosion-proof perspective, the stress applied to the cathode ray sensitive envelope due to atmospheric pressure is applied toward the inside of the envelope at the face and funnel sections, and conversely toward the outside of the envelope near the rectangular outer periphery of the face. Adds stress. Therefore, since the area near the rectangular outer periphery of the face portion is the area where the greatest stress and strain is applied, it is also effective to tighten this area more strongly with a metal band or the like. It is also effective to mainly strengthen the vicinity of the rectangular outer periphery of the face portion, and therefore it is also effective to increase the wall thickness toward the ends of the face portion. For this purpose, the values of R VO , R HO and R DO should be made larger than R V , R H and RD . In this case, the outer surface of the face portion becomes more flattened when viewed from the viewer's side, giving a more favorable effect.

さらにフエース部の設計を容易とするために、
フエース部内面の各軸曲率半径を全て単一とす
る、即ちRV=RH=RD=Rとし、且つSV,SH及び
SDの比を3:4:5とした場合、 0.22SD/R0.4 (5) で示され、フエース部の有効対角寸法とフエース
部内面の曲率半径の比が(5)式で示すように0.2か
ら0.4の範囲となるようにすればよく、このRと
対角寸法(2SD)に応じて適宜フエース部外面曲
率半径を選定すればよい。
Furthermore, in order to facilitate the design of the face part,
The radius of curvature of each axis on the inner surface of the face part is all the same, that is, R V = R H = R D = R, and S V , S H and
When the ratio of S D is 3:4:5, it is expressed as 0.22S D /R0.4 (5), and the ratio of the effective diagonal dimension of the face part to the radius of curvature of the inner surface of the face part is given by equation (5). As shown, the radius of curvature of the outer surface of the face portion may be appropriately selected in accordance with this R and the diagonal dimension (2S D ).

上記式(5)は次のように導くことができる。 The above equation (5) can be derived as follows.

式(1)にRV=RD=R及びSV=(3/5)SD,SH
(4/5)SDを代入すると、 ΔL=2SD/5R となる。ここでこのΔLを式(3)に代入して整理す
ると、 0.22SD/R0.4 となる。
In equation (1), R V = R D = R and S V = (3/5) S D , S H =
(4/5) When S D is substituted, ΔL=2S D /5R. If this ΔL is substituted into equation (3) and rearranged, it becomes 0.22S D /R0.4.

一方、式(2)からも同一の解が得られる。即ち、
式(2)にRH=RD=R及びSH=(4/5)SD,SV
(3/5)SDを代入すると、 ΔS=3SD/10R となる。ここでこのΔSを式(4)に代入して整理す
ると、 0.22SD/R0.4 となる。
On the other hand, the same solution can be obtained from equation (2). That is,
In equation (2), R H = R D = R and S H = (4/5) S D , S V =
Substituting (3/5) S D gives ΔS=3S D /10R. If this ΔS is substituted into equation (4) and rearranged, it becomes 0.22S D /R0.4.

尚、以上の説明において、フエース部垂直軸方
向、水平軸方向及び対角軸方向を含む内面及び外
面の曲率半径はRV,RH,RD及びRVO,RHO,RDO
と全て単一の曲率半径で表現しているが、本発明
は一つの曲率半径、例えばRVがフエース部中央
からフエース部端にかけて曲率半径が徐々に変化
する、いわゆる複合曲率半径の場合も含むことは
言うまでもない。このような場合は例えば複合曲
率半径を近似的に級数展開した時の近似平均曲率
半径の値を以つて本発明で言う一つの曲率半径と
すればよい。すなわち第8図に示すようにフエー
ス部2中央、すなわち管軸(Z)からフエース部
端にかけて管軸(Z)に近い領域では曲率半径
R1で変化し、さらにフエース部端に近づくと異
なる曲率半径R2で曲面が形成されている場合、
フエース部中央部の点(Q)とフエース部の最大
有効長さ1/2に相当する点(P)との管軸(Z)
に沿つた距離h求めこのhとSから式h=R−√
R2−S2より得られる平均曲率半径Rを本発明で
言う曲率半径とすればよい。
In the above explanation, the radius of curvature of the inner and outer surfaces including the vertical axis direction, horizontal axis direction, and diagonal axis direction of the face part is R V , R H , R D and R VO , R HO , R DO
Although all of these are expressed as a single radius of curvature, the present invention also includes cases where one radius of curvature, for example R V , is a so-called compound radius of curvature in which the radius of curvature gradually changes from the center of the face part to the end of the face part. Needless to say. In such a case, for example, the value of the approximate average radius of curvature when the composite radius of curvature is approximately expanded into a series may be used as one radius of curvature in the present invention. In other words, as shown in Fig. 8, the radius of curvature in the center of the face part 2, that is, in the area from the pipe axis (Z) to the end of the face part and close to the pipe axis (Z), is
When a curved surface is formed with a radius of curvature R 1 that changes at R 1 and further changes as it approaches the end of the face,
Pipe axis (Z) between the point (Q) at the center of the face part and the point (P) corresponding to 1/2 of the maximum effective length of the face part
Find the distance h along the line and use the formula h=R-√ from this h and S.
The average radius of curvature R obtained from R 2 −S 2 may be used as the radius of curvature in the present invention.

実施例 1 RV,RH及びRDとRVO,RHO及びRDOを全て同一
の曲率半径とし、SV,SH及びSDをそれぞれ下記
のように設定した。
Example 1 R V , R H and R D and R VO , R HO and R DO all had the same radius of curvature, and S V , S H and S D were set as shown below.

RV=RH=RD=R=1275mm RVO=RHO=RDO=RO=1800mm SV=152.4mm SH=203.2mm SD=254.0mm 上記の場合SV(152.4):SH(=203.2):SD(=
254.0)=3:4:5であり、且つ前記の(1)式及び
(2)式で示すΔL及びΔSは、 ΔL≒0.080 ΔS≒0.060 となり、前記の(3)式及び(4)式の上限範囲内であ
る。また防爆特性については、フエース部外面の
曲率半径ROを内面の曲率半径Rより大とし、フ
エース部の肉厚分布を端部程大とし、真空膨張応
力が一般に最も大きくなる垂直軸有効径端近傍の
応力値を従来のものと同等とすることができた。
従つて本実施例ではガラスパネルのわずかな重量
増で従来と同等の防爆特性が得られた。
R V = R H = R D = R = 1275mm R VO = R HO = R DO = R O = 1800mm S V = 152.4mm S H = 203.2mm S D = 254.0mm In the above case S V (152.4): S H (=203.2): S D (=
254.0)=3:4:5, and the above formula (1) and
ΔL and ΔS shown in equation (2) are ΔL≒0.080 and ΔS≒0.060, which are within the upper limit range of equations (3) and (4) above. Regarding explosion-proof properties, the radius of curvature R O of the outer surface of the face part is made larger than the radius of curvature R of the inner surface, and the wall thickness distribution of the face part is made larger toward the ends. It was possible to make the stress values in the vicinity equivalent to the conventional ones.
Therefore, in this example, explosion-proof characteristics equivalent to those of the conventional glass panel were obtained with a slight increase in the weight of the glass panel.

実施例 2 実施例1と同様フエース部の各値を下記のよう
に選定した。
Example 2 As in Example 1, each value of the face portion was selected as follows.

RV=1450mm RH=1690mm RD=1790mm RVO=RHO=RDO=RO=2000mm SV=152.4mm SH=203.2mm SD=254.0mm 上記の場合SV,SH及びSDの比は実施例1と同
様3:4:5であり、且つ前記の(1)式及び(2)式で
示すΔL及びΔSは、 ΔL≒0.049 ΔS≒0.038 となり、前記の(3)式及び(4)式の下限近くの範囲内
である。即ち、この実施例の場合は実施例1より
もフエース部の内面及び外面をより平坦化したも
ので、視観的にもより好ましい印象を与えるもの
である。また防爆特性からはフエース部をより平
坦化すると共にRV,RH及びRDをそれぞれ異なら
しめ、しかもフエース部の垂直軸方向端部の肉厚
が最も大となるようにされているので有利であ
り、結果としてフエース部全体の肉厚を約1mm程
度増加させるだけで従来と同等の防爆特性を得る
ことができた。
R V = 1450mm R H = 1690mm R D = 1790mm R VO = R HO = R DO = R O = 2000mm S V = 152.4mm S H = 203.2mm S D = 254.0mm In the above case S V , S H and S The ratio of D is 3:4:5 as in Example 1, and ΔL and ΔS shown in the above formulas (1) and (2) are ΔL≒0.049 ΔS≒0.038, and the above formula (3) and is within the range near the lower limit of equation (4). That is, in this example, the inner and outer surfaces of the face portion are made flatter than in Example 1, giving a more favorable impression visually. In addition, from the perspective of explosion-proof properties, it is advantageous because the face part is made flatter, R V , R H and R D are made different, and the wall thickness at the end of the face part in the vertical axis direction is the largest. As a result, it was possible to obtain the same explosion-proof characteristics as the conventional product by increasing the wall thickness of the entire face portion by approximately 1 mm.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、フエース部の
縦、横及び斜めの有効寸法を実質的に3:4:5
とし、且つフエース部曲面がより平坦化された視
感的に極めて好ましい印象を与えることができ、
カラー受像管を含む実質的に矩形状のフエース部
を有する有用な陰極線管を提供することができ
る。
As described above, according to the present invention, the vertical, horizontal and diagonal effective dimensions of the face portion are substantially 3:4:5.
In addition, the curved surface of the face portion can give an extremely flattering visual impression,
A useful cathode ray tube having a substantially rectangular face including a color picture tube can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は陰極線管のガラスパネルの
正面及び側断面を示す模式図、第3図及び第4図
は本発明を適用したガラスパネルのそれぞれ第1
図及び第2図に対応して示す正面及び側断面の模
式図、第5図はガラスパネル内面の斜視図、第6
図a乃至第6図cはガラスパネルの対角軸、水平
軸及び垂直軸方向の断面図、第7図はフエース部
内面の曲面の変化率を説明するための模式図、第
8図は曲率半径を説明するための模式図である。 1……ガラスパネル、2……フエース部、3…
…スカート部、RV……フエース部内面の垂直軸
方向を含む曲率半径、RH……フエース部内面の
水平軸方向を含む曲率半径、RD……フエース部
内面の対角軸方向を含む曲率半径、SV……フエ
ース部内面の矩形状外周の実質的に垂直軸を含む
最大長さの1/2、SH……フエース部内面の矩形状
外周の実質的に水平軸を含む最大長さの1/2、SD
……フエース部内面の矩形状外周の実質的に対角
軸を含む最大長さの1/2。
1 and 2 are schematic diagrams showing the front and side cross sections of a glass panel of a cathode ray tube, and FIGS.
5 is a perspective view of the inner surface of the glass panel, and FIG.
Figures a to 6c are cross-sectional views of the glass panel in the diagonal, horizontal, and vertical axis directions, Figure 7 is a schematic diagram for explaining the rate of change of the curved surface of the inner surface of the face, and Figure 8 is the curvature. It is a schematic diagram for explaining a radius. 1...Glass panel, 2...Face portion, 3...
…Skirt portion, R V … Radius of curvature including the vertical axis direction of the inner surface of the face portion, R H … Radius of curvature including the horizontal axis direction of the inner surface of the face portion, R D … Including the diagonal axis direction of the inner surface of the face portion Radius of curvature, S V ... 1/2 of the maximum length of the rectangular outer periphery of the inner surface of the face section, including the substantially vertical axis, S H ... The maximum length of the rectangular outer periphery of the inner surface of the face section, including the substantially horizontal axis 1/2 length, S D
... 1/2 of the maximum length of the rectangular outer periphery of the inner surface of the face section, including the diagonal axis.

Claims (1)

【特許請求の範囲】 1 少くとも内面に蛍光スクリーンを有し実質的
な矩形状からなる曲面状のフエース部と、前記フ
エース部端から延在するスカート部とからなり、
前記フエース部端により形成される矩形状外周の
各辺部及び各辺部を連結する各コーナー部がそれ
ぞれ曲面状に形成されたガラスパネルを有する陰
極線管において、前記フエース部の内面の垂直軸
方向、水平軸方向及び対角軸方向を含む曲率半径
をそれぞれRV,RH及びRDとし、且つ前記フエー
ス部の内面のフエース部端により形成される矩形
状外周の実質的に垂直軸を含む最大有効長さの1/
2、水平軸を含む最大有効長さの1/2及び対角軸を
含む最大長さの1/2をそれぞれSV,SH及びSDとす
る時、 0.04RV×(SD2−RD×(SV2/2×SH×RV×RD
0.08 なる関係を有することを特徴とする陰極線管。 2 前記ガラスパネルのRV,RH及びRD,SV,SH
及びSDが 0.03RH×(SD2−RD×(SH2/2×SV×RH×RD
0.06 なる関係を有することを特徴とする特許請求の範
囲第1項記載の陰極線管。 3 前記ガラスパネルのSV,SH及びSDが実質的
に3:4:5の関係を有することを特徴とする特
許請求の範囲第1項記載の陰極線管。 4 前記フエース部の内面の各軸方向を含む曲率
半径がRV=RH=RD=Rの時、 0.22SD/R0.4 なる関係を有することを特徴とする特許請求の範
囲第3項記載の陰極線管。 5 前記フエース部の内面の各軸方向を含む曲率
半径の値よりも前記フエース部の外面の各軸方向
を含む曲率半径の値の方が大きいことを特徴とす
る特許請求の範囲第3項記載の陰極線管。 6 前記フエース部の垂直軸方向の端部近傍の肉
厚が前記フエース部の水平軸方向及び対角軸方向
の端部近傍の肉厚よりも大きいことを特徴とする
特許請求の範囲第5項記載の陰極線管。
[Scope of Claims] 1. Consisting of a curved face portion having a substantially rectangular shape and having a fluorescent screen on at least the inner surface, and a skirt portion extending from the end of the face portion,
In a cathode ray tube having a glass panel in which each side of the rectangular outer periphery formed by the end of the face part and each corner part connecting each side part are each formed into a curved surface, the vertical axis direction of the inner surface of the face part , the radius of curvature including the horizontal axis direction and the diagonal axis direction is R V , R H and R D respectively, and includes the substantially vertical axis of the rectangular outer periphery formed by the end of the face portion of the inner surface of the face portion. 1/ of maximum effective length
2. When 1/2 of the maximum effective length including the horizontal axis and 1/2 of the maximum length including the diagonal axis are S V , S H and S D , respectively, 0.04R V × (S D ) 2 −R D ×(S V ) 2 /2×S H ×R V ×R D
A cathode ray tube characterized by having a relationship of 0.08. 2 R V , R H and R D , S V , S H of the glass panel
and S D is 0.03R H × (S D ) 2 −R D × (S H ) 2 /2 × S V × R H × R D
The cathode ray tube according to claim 1, wherein the cathode ray tube has a relationship of 0.06. 3. The cathode ray tube according to claim 1, wherein S V , S H and S D of the glass panel have a substantially 3:4:5 relationship. 4. Claim 3, characterized in that when the radius of curvature of the inner surface of the face portion including each axial direction is R V =R H =R D =R, the relationship is 0.22S D /R0.4. Cathode ray tube as described in section. 5. Claim 3, characterized in that the value of the radius of curvature of the outer surface of the face portion including each axis direction is larger than the value of the radius of curvature including each axis direction of the inner surface of the face portion cathode ray tube. 6. Claim 5, characterized in that the wall thickness near the end of the face portion in the vertical axis direction is larger than the wall thickness near the end portion of the face portion in the horizontal axis direction and the diagonal axis direction. The cathode ray tube described.
JP3743983A 1983-03-09 1983-03-09 Cathode-ray tube Granted JPS59165352A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3743983A JPS59165352A (en) 1983-03-09 1983-03-09 Cathode-ray tube
EP83112854A EP0119317B1 (en) 1983-03-09 1983-12-20 Cathode-ray tube
DE8383112854T DE3374489D1 (en) 1983-03-09 1983-12-20 Cathode-ray tube
US06/564,197 US4537321A (en) 1983-03-09 1983-12-22 Cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3743983A JPS59165352A (en) 1983-03-09 1983-03-09 Cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS59165352A JPS59165352A (en) 1984-09-18
JPH0365612B2 true JPH0365612B2 (en) 1991-10-14

Family

ID=12497538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3743983A Granted JPS59165352A (en) 1983-03-09 1983-03-09 Cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS59165352A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ278548B6 (en) * 1983-09-06 1994-03-16 Rca Licensing Corp Cathode-ray tube comprising a rectangular panel of the front plate
KR100331820B1 (en) * 2000-04-12 2002-04-09 구자홍 Flat Cathode Ray Tube

Also Published As

Publication number Publication date
JPS59165352A (en) 1984-09-18

Similar Documents

Publication Publication Date Title
EP0448401A2 (en) A shadow mask type cathode ray tube
KR100353185B1 (en) Glass bulb for a cathode ray tube
EP1333464B1 (en) Color cathode ray tube
KR100300319B1 (en) Cathode ray tube
CA1199359A (en) Cathode-ray tube having a faceplate panel with a substantially planar periphery
KR0143077B1 (en) Front panel for color TV tubes
JPH10241604A (en) Glass panel for cathode-ray tube
KR100277797B1 (en) Cathode ray tube
JP2685461B2 (en) Shadow mask type color picture tube
JP2000516384A (en) Color picture tube with improved funnel
CA1216619A (en) Cathode-ray tube having a faceplate panel with an essentially planar screen periphery
EP0081366A2 (en) Television bulb
US6812632B2 (en) Glass funnel for a cathode ray tube and a cathode ray tube
JPH0365612B2 (en)
CA1218406A (en) Display tube and picture display device comprising such a display tube
US4887001A (en) Cathode-ray tube having faceplate panel with essentially planar screen periphery
JPH0365613B2 (en)
JP2001357800A (en) Implosion-proof cathode ray tube panel
US4029898A (en) Television picture tube face plate
JP2001525114A (en) Image display device having a conical portion
KR100282536B1 (en) Cathode ray tube
WO2000017904A1 (en) Color picture tube
US6812631B2 (en) Glass bulb for a cathode ray tube and cathode ray tube
JPH0365611B2 (en)
JPH0364981B2 (en)