JPH0365503A - Stabilizer for peroxy poly-acid, composition containing the same, radiation-sensitive composition and electrochromic display element - Google Patents

Stabilizer for peroxy poly-acid, composition containing the same, radiation-sensitive composition and electrochromic display element

Info

Publication number
JPH0365503A
JPH0365503A JP19945689A JP19945689A JPH0365503A JP H0365503 A JPH0365503 A JP H0365503A JP 19945689 A JP19945689 A JP 19945689A JP 19945689 A JP19945689 A JP 19945689A JP H0365503 A JPH0365503 A JP H0365503A
Authority
JP
Japan
Prior art keywords
organic substance
acid
water
soluble nitrogen
containing organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19945689A
Other languages
Japanese (ja)
Inventor
Akira Ishikawa
晃 石川
Ichisuke Yamanaka
山中 一助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19945689A priority Critical patent/JPH0365503A/en
Publication of JPH0365503A publication Critical patent/JPH0365503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the stability of a peroxy poly-acid containing W and/or V by adding one or more water-soluble nitrogen-containing organic compounds selected from nitriles, amines and amides as a stabilizer to the peroxy poly-acid. CONSTITUTION:A water-soluble nitrogen-containing organic compound including one or more organic compounds selected from nitriles, amines and amines such as N,N-dimethyl formamide is added in a concentration of >=1wt.% to and mixed with the aqueous solution of a peroxy poly-acid containing one or more elements selected from W, Nb, Ta and Ti and represented by formula I (0<=x+y+z<1, 0<l<=1, 0.16<m<4, 0<=n<=0.025) to provide a radiation-sensitive composition. ON the other hand a water-soluble nitrogen-containing organic compound including one or more organic compounds selected from nitriles, amines and amides such as acetoamide is added to concentration of >=1wt.% and mixed with the aqueous solution of a peroxy poly-acid containing V, W and Mo and represented by formula II (0<=l+m<1, 0.05<=x<=1, 1.5<=y<=3) to obtain a color-generating composition for electrochromic display elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、過酸化縮合酸の安定化剤、過酸化縮合酸を含
む組成物、その製法、放射線感応性組成物、パターン形
成方法、エレクトロクロミック表示素子の発色膜用組成
物及びエレクトロクロミック表示素子に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a stabilizer for peroxycondensed acid, a composition containing peroxycondensation acid, a method for producing the same, a radiation-sensitive composition, a pattern forming method, an electrolytic The present invention relates to a composition for a coloring film of a chromic display element and an electrochromic display element.

〔従来の技術〕[Conventional technology]

従来、何種かの過酸化縮合酸が放射線感応性材料やエレ
クトロクロミック表示素子(以下ECDと略す)に用い
られている。
Conventionally, several types of peroxide condensed acids have been used in radiation-sensitive materials and electrochromic display devices (hereinafter abbreviated as ECD).

例えば、特開昭63−100448号や特開昭63−2
↓6042号には過酸化縮合タングステン酸、過酸化縮
合ニオブ・タングステン酸等の過酸化縮合酸を含む無機
レジスト材料が記載されている。この材料は金属タング
ステン(又は炭化タングステン)を過酸化水素水溶液を
溶解して得られるペロキソボリタングステン酸の一柿で
、以下の実験式(一般式)によって表わされる非晶質体
である。
For example, JP-A-63-100448 and JP-A-63-2
↓No. 6042 describes inorganic resist materials containing peroxide condensed acids such as peroxide condensed tungstic acid and peroxide condensed niobium tungstic acid. This material is a peroxide of peroxoborotungstic acid obtained by dissolving metallic tungsten (or tungsten carbide) in an aqueous hydrogen peroxide solution, and is an amorphous material expressed by the following empirical formula (general formula).

(1,x  y  z)WOi’x/2Nb20.;’
y/2Ta20..’zTj○2・αH2O2・mH2
O−nC02(1−O≦z + y + z (1,0
く党≦1.0 、16 <m、nはそれぞれ0.025
)一般に無機レジスト、例えば非晶質カルコゲナイド等
の材料においては、薄膜形成のために蒸=nやスパッタ
等の真空技術が必要であったのに対し、この物質は、そ
の水溶液を塗布することにより均質な薄膜を形成するこ
とができる。この塗布膜にパターン状の深紫外光、エキ
シマレーザ−1電子線、X!iAを照射することにより
、照射部の現像液に対する溶解度が低下し、0.5μm
以下の微細パターンが形成できる。
(1, x y z)WOi'x/2Nb20. ;'
y/2Ta20. .. 'zTj○2・αH2O2・mH2
O-nC02(1-O≦z + y + z (1,0
≦1.0, 16 <m and n are each 0.025
) In general, inorganic resists, such as materials such as amorphous chalcogenide, require vacuum techniques such as evaporation or sputtering to form thin films, but this material can be formed by applying an aqueous solution. A homogeneous thin film can be formed. This coating film is coated with patterned deep ultraviolet light, excimer laser 1 electron beam, and X! By irradiating iA, the solubility of the irradiated area in the developer decreases, and the
The following fine patterns can be formed.

また、従来、ECDとして、酸化タングステンや酸化バ
ナジウム等の遷移金属酸化物を発色膜として用い、電解
質に過塩素酸リチウムのプ目ピレンカーボネート溶液の
如き電解質又は固体イオン4電材料を用いたもの、ある
いは発色膜と酸化タンタル等の誘電体を組み合わせた構
造のものが知られていた。しかし、これらは発色膜等の
薄膜形成を蒸着やスパッタ等の真空技術に依存している
ため、製品価格が高いという問題があった。そこで、酸
化バナジウムを用いた安価な湿式塗布法によりECDの
発色膜を形成する方法が電気化学協会筒56回大会予稿
集、2DO4(1989年)に開示された。この方法は
、バナジウムと過酸化水素の反応により合成されたペロ
キソ又は過酸化物イオンを含有する縮合バナジン酸を発
色膜として用いるものである。
In addition, conventional ECDs have used a transition metal oxide such as tungsten oxide or vanadium oxide as a coloring film, and an electrolyte such as a solution of lithium perchlorate in diluted pyrene carbonate, or a solid ionic quaternary material. Alternatively, a structure in which a coloring film and a dielectric material such as tantalum oxide are combined is known. However, since these methods rely on vacuum techniques such as vapor deposition and sputtering to form thin films such as color-forming films, there is a problem in that the product price is high. Therefore, a method of forming a color-forming film of ECD by an inexpensive wet coating method using vanadium oxide was disclosed in the proceedings of the 56th Annual Conference of the Electrochemical Society, 2DO4 (1989). This method uses condensed vanadate containing peroxo or peroxide ions synthesized by the reaction of vanadium and hydrogen peroxide as a coloring film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記過酸化縮合酸系の無機レジストは、プロセス中の温
度や湿度の変化に伴い塗膜の現像液に対する溶解度が経
時的に変化しやすいため、パターン形成プロセスの再現
性が低いという問題があった。
The peroxycondensed acid-based inorganic resists have the problem of low reproducibility in the pattern formation process because the solubility of the coating film in the developer tends to change over time due to changes in temperature and humidity during the process. .

また、上記電気化学協会第56回予稿集に記載の従来技
術は、過酸化縮合バナジン酸に含まれるペロキソ又は過
酸化物イオンが分解しやすく、脱水縮合が容易に進行し
てゲルを形成し固形化するので、発色膜を形成するため
の塗布液が調製後短時間で使えなくなるという問題があ
った。
In addition, in the conventional technology described in the Proceedings of the 56th Electrochemical Society of Japan, peroxo or peroxide ions contained in peroxide-condensed vanadate are easily decomposed, and dehydration condensation easily progresses to form a gel and solid. Therefore, there was a problem that the coating solution for forming the coloring film became unusable within a short time after its preparation.

本発明の第1の目的は、上記放射線感応性組成物、EC
D用嬢料組成物、その他の用途に用いられる過酸化縮合
酸の安定化剤を提4J(することにある。
A first object of the present invention is to provide the radiation-sensitive composition, EC
Our objective is to provide a stabilizer for peroxycondensed acids used in D-former compositions and other applications.

本発明の第2の目的は、過酸化縮合酸を含む安定な組成
物及びその製法を提供することにある。
A second object of the present invention is to provide a stable composition containing a peroxycondensed acid and a method for producing the same.

本発明の第3の目的は、安定な放射線感応性組成物及び
それを用いたパターン形成方法を提供することにある。
A third object of the present invention is to provide a stable radiation-sensitive composition and a pattern forming method using the same.

本発明の第4の目的は、ECDを製造するための安定な
塗料組成物及びそれを用いて製造したECDを提供する
ことにある。
A fourth object of the present invention is to provide a stable coating composition for producing ECD and ECD produced using the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1の目的は、(1)水溶性含窒素有機物からなる
過酸化縮合酸の安定化剤、(2)上記水溶性含窒素有機
物がニトリル、アミン及びアミドからなる群から選ばれ
た少なくとも一つの有機物を含むことを特徴とする上記
1記載の過酸化縮合酸の安定化剤、(3)上記過酸化縮
合酸は、少なくともタングステンを含むことを特徴とす
る上記l記載の過酸化縮合酸の安定化剤、(4)上記過
酸化縮合酸は、少なくともバナジウムを含むことを特徴
とする上記1記載の過酸化縮合酸の安定化剤により達成
される。
The first object is to provide (1) a stabilizer for peroxycondensed condensed acid made of a water-soluble nitrogen-containing organic substance; (2) the water-soluble nitrogen-containing organic substance to be at least one selected from the group consisting of nitriles, amines, and amides; (3) the stabilizer for peroxylated condensed acids as described in 1 above, characterized in that the peroxidized condensed acid contains at least tungsten; Stabilizer (4) The above-mentioned peroxide condensed acid is achieved by the stabilizer for peroxide condensed acid described in 1 above, which is characterized in that it contains at least vanadium.

上記第2の目的は、(5)水溶性含窒素有機物と過酸化
縮合酸の水溶液とからなる組成物、(6)上記水溶性含
窒素有機物がニトリル、アミン及びアミドからなる群か
ら選ばれた少なくとも一つの有機物を含むことを特徴と
する上記5記載の組成物、(7〉上記過酸化縮合酸は、
少なくともタングステンを含むことを特徴とする上記5
記載の組成物、(8)上記過酸化縮合酸は、少なくとも
バナジウムを含むことを特徴とする上記5記載の組成物
、(9)過酸化縮合酸の水溶液に水溶性含窒素有機物を
加えることを特徴とする過酸化縮合酸を含む組成物の製
法により達成される。
The second object is to provide a composition comprising (5) a water-soluble nitrogen-containing organic substance and an aqueous solution of a peroxycondensed acid; (6) the water-soluble nitrogen-containing organic substance is selected from the group consisting of nitriles, amines, and amides; The composition according to 5 above, characterized in that it contains at least one organic substance, (7) the peroxide condensed acid is
5 above, characterized in that it contains at least tungsten.
(8) The composition as described in (9) above, wherein the peroxide condensed acid contains at least vanadium; This is achieved by a method for producing a composition containing a characteristic peroxide condensed acid.

上記第3の目的は、(10)タングステンを含む過酸化
縮合酸の水溶液と水溶性含窒素有機物とからなる放射線
感応性組成物、(11)上記過酸化縮合酸は、タングス
テンと共にニオブ、タンタル及びチタンからなる群から
選ばれた少なくとも一つの元素を含むことを特徴とする
上記1o記載の放射線感応性組成物、(12)上記水溶
性含窒素有機物がニトリル、アミン及びアミドからなる
群から選ばれた少なくとも−っの有機物を含むことを特
徴とする上記10記載の放射線感応性組成物、(工3)
上記水溶性含窒素有機物が上記過酸化縮合酸に対して1
重量%以上の濃度で含まれていることを特徴とする上記
10記載の放射線感応性組成物、(14)一般式 (1
−x−y−z)WO,・x/2Nb、0s−y/2Ta
20.−ZTiO2−QH,02・mH2O・nC02
(1−x、y、z、1、m、nはそれぞれ O≦x+y
+z<1.0<Q≦l、0.16<m、nはそれぞれ0
.025の範囲の値である)で表わされる過酸化縮合酸
の水溶液と水溶性含窒素有機物からなる放射線感応性組
成物。
The third object is to provide a radiation-sensitive composition comprising (10) an aqueous solution of a peroxycondensed acid containing tungsten and a water-soluble nitrogen-containing organic substance; (11) the peroxycondensate contains niobium, tantalum and The radiation-sensitive composition according to 1o above, characterized in that it contains at least one element selected from the group consisting of titanium; (12) the water-soluble nitrogen-containing organic substance is selected from the group consisting of nitriles, amines and amides; The radiation-sensitive composition as described in 10 above, characterized in that it contains at least one organic substance.
The water-soluble nitrogen-containing organic substance is 1% relative to the peroxidized condensed acid.
The radiation-sensitive composition according to 10 above, characterized in that the radiation-sensitive composition is contained in a concentration of % by weight or more, (14) general formula (1
-x-y-z) WO, x/2Nb, 0s-y/2Ta
20. -ZTiO2-QH,02・mH2O・nC02
(1-x, y, z, 1, m, n are each O≦x+y
+z<1.0<Q≦l, 0.16<m, n is 0 respectively
.. 025) and a water-soluble nitrogen-containing organic substance.

(15)上記水溶性含窒素有機物がニトリル、アミン及
びアミドからなる群から選ばれた少なくとも一つの有機
物を含むことを特徴とする上記14記載の放射線感応性
組成物、(16)上記10から↓5までのいずれかに記
載の放射線感応性組成物を基板上に塗布して塗膜を基板
上に塗布して塗膜に所望のパターンの放射線を照射し、
現像することを特徴とするパターン形成方法により達成
される。
(15) The radiation-sensitive composition as described in 14 above, wherein the water-soluble nitrogen-containing organic substance contains at least one organic substance selected from the group consisting of nitriles, amines, and amides; (16) from 10 above↓ Applying the radiation-sensitive composition according to any one of items 5 to 5 on a substrate, applying a coating film onto the substrate, and irradiating the coating film with radiation in a desired pattern,
This is achieved by a pattern forming method characterized by development.

上記第3の目的は、(17)バナジウムを含む過酸化縮
合酸の水溶液と水溶性含窒素有機物からなるエレクトロ
クロミンク表示素子の発色膜用組成物、(18)上記水
溶性含窒素有機物がニトリル、アミン及びアミドからな
る群から選ばれた少なくとも一つの有機物を含むことを
特徴とする上記17記載のエレクトロクロミツ、り表示
素子の発色膜用組成物、(19)一般式 2QWO,・
2mMoo、・(1−Q−m)V20sj xH,0,
・yH20(ただし悲、m、x、yはそれぞれO≦Q 
十m<1.0.05≦X≦1.1.5≦y≦3の範囲の
値である)で表わされる過酸化縮合酸の水溶液と水溶性
含窒素有機物からなることを特徴とするエレクトロクロ
ミック表示素子の発色膜用組成物、(20)上記水溶性
含窒素有機物がニトリル、アミン及びアミドからなる群
から選ばれた少なくとも一つの有機物を含むことを特徴
とする上記19記載のエレクトロクロミンク表示素子の
発色膜用組成物、(21)導電膜が形成された基板上に
、上記1721、導電膜が形成された基板上に記載のエ
レクトロクロミック表示素子の発色膜用組成物を塗布し
、加熱してなる発色膜、対向電極及び両者の間に保持さ
れた電解質とを少なくとも有するエレクトロクロミック
表示素子により達成される。
The third object is to provide (17) a composition for a coloring film of an electrochromic display element comprising an aqueous solution of a peroxycondensed acid containing vanadium and a water-soluble nitrogen-containing organic substance; (18) the water-soluble nitrogen-containing organic substance is a nitrile , the composition for a coloring film of an electrochromic display element as described in 17 above, which is characterized by containing at least one organic substance selected from the group consisting of amines and amides, (19) general formula 2QWO,
2mMoo, ・(1-Q-m)V20sj xH,0,
・yH20 (however, sad, m, x, y are each O≦Q
1.0.05≦X≦1.1.5≦y≦3) and a water-soluble nitrogen-containing organic substance. Composition for a coloring film of a chromic display element, (20) the electrochromic as described in 19 above, wherein the water-soluble nitrogen-containing organic substance contains at least one organic substance selected from the group consisting of nitrile, amine, and amide. Composition for a coloring film of an electrochromic display element (21) Applying the composition for a coloring film of an electrochromic display element described in 1721 above on a substrate on which a conductive film is formed, This is achieved by an electrochromic display element having at least a color-forming film formed by heating, a counter electrode, and an electrolyte held between the two.

含窒素有機物として、一般にニトリル、アミン、アミド
等の物質が知られているが、本発明に用いられるために
は、この有機物が過酸化縮合酸水溶液中に溶解し得るこ
とが必要である。このような物質の例を示すなら、アセ
トニトリル、ペンチルアミン、シクロヘキシルアミン、
エチレンジアミン、ピペリジン、ピリジン、ピコリン、
ルチジン、各種アミド系有機物等が挙げられ、これらを
二種以上混合して用いることもできる。このような有機
物中で特にアミド系が好ましい、アミド系有機物の例を
示すなら、ホルムアミド、N−メチルホルムアミド、N
、N−ジメチルホルムアミド、アセトアミド、N−メチ
ルアセトアミド、N、N−ジメチルアセトアミド、N−
メチルプロピオンアミド、1,1,3,3−テトラメチ
ルウレア、ピロリジノン、カプロラクタム、ヘキサメチ
ルホスホルトリアミド等が挙げられ、これらを二種以上
混合して用いることもできる。これらの有機物は少量で
も過酸化縮合酸の溶解度の経時変化を抑える効果がある
が、水溶液中で過酸化縮合酸に対し1重量%以上の濃度
添加することが好ましく、3重量%以上の濃度添加する
ことがより好ましく、10重量%以上の濃度添加するこ
とが最も好ましい。
Substances such as nitriles, amines, and amides are generally known as nitrogen-containing organic substances, but in order to be used in the present invention, it is necessary that this organic substance can be dissolved in an aqueous solution of peroxidized condensed acid. Examples of such substances are acetonitrile, pentylamine, cyclohexylamine,
Ethylenediamine, piperidine, pyridine, picoline,
Examples include lutidine and various amide-based organic substances, and two or more of these may be used as a mixture. Among such organic substances, amide-based organic substances are particularly preferable. Examples of amide-based organic substances include formamide, N-methylformamide, N-methylformamide, and N-methylformamide.
, N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-
Examples include methylpropionamide, 1,1,3,3-tetramethylurea, pyrrolidinone, caprolactam, and hexamethylphosphortriamide, and two or more of these can also be used as a mixture. Even in small amounts, these organic substances have the effect of suppressing changes in the solubility of the peroxide-condensed acid over time, but it is preferable to add them at a concentration of 1% by weight or more, and preferably at a concentration of 3% by weight or more relative to the peroxide-condensed acid in an aqueous solution. It is more preferable to add it, and it is most preferable to add it in a concentration of 10% by weight or more.

本発明の放射線感応性組成物は、塗膜としたとき、酸素
プラズマに対して強い耐性を有する。そのため、例えば
表面に段差を有する構造の素子に微細パターンを形成す
る場合、まず有機高分子樹脂の塗膜を形成して表面をほ
ぼ平坦とし、ついで本発明の放射線感応性組成物を用い
て上層の塗膜を形成し、この上層の塗膜を所望のパター
ンとし、このパターンをマスクとして有機高分子樹脂の
塗1漠を処理して所望のパターンとすることができる。
The radiation-sensitive composition of the present invention has strong resistance to oxygen plasma when formed into a coating film. Therefore, for example, when forming a fine pattern on an element having a structure with steps on the surface, first a coating film of organic polymer resin is formed to make the surface almost flat, and then the radiation-sensitive composition of the present invention is used to form an upper layer. A coating film of the organic polymer resin is formed, this upper coating film is formed into a desired pattern, and the coating area of the organic polymer resin is processed using this pattern as a mask to form the desired pattern.

本発明のECDの発色膜用組成物は、例えばバナジウム
と過酸化水素との反応により、又は五酸化バナジウムと
過酸化水素との反応により得た水溶液に水溶性含窒素有
機物を加えて合成することができ、塗布法という極めて
簡便かつ安価な方法で均一な薄膜を形成することができ
る。この過酸化縮合バナジン酸は、実験式 %式% (ただしx、yはそれぞれ0.05≦X≦1、(,5≦
y≦3の範囲の値である)で表わされる。
The composition for a colored film of ECD of the present invention can be synthesized by adding a water-soluble nitrogen-containing organic substance to an aqueous solution obtained by, for example, a reaction between vanadium and hydrogen peroxide, or a reaction between vanadium pentoxide and hydrogen peroxide. A uniform thin film can be formed using a coating method, which is an extremely simple and inexpensive method. This peroxidized condensed vanadate has the empirical formula % formula % (where x and y are respectively 0.05≦X≦1, (,5≦
(a value in the range of y≦3).

この塗布膜は加熱処理により溶媒に溶解し難くなる。こ
の性質はECD発色材料として重要な性質である。特に
、過塩素酸リチウムのプロピレンカーボネート溶液のよ
うな電解液を用いる素子には不可欠な性質である。また
、この塗布膜はコロイド溶液から作成した膜に比べ含水
量が少なく緻密なため、加熱処理しても剥離することが
ない。
This coating film becomes difficult to dissolve in a solvent by heat treatment. This property is an important property as an ECD coloring material. In particular, this property is essential for devices that use an electrolytic solution such as a propylene carbonate solution of lithium perchlorate. Furthermore, this coated film has a lower water content and is denser than a film made from a colloidal solution, so it does not peel off even after heat treatment.

さらに、バナジウムにタングステンやモリブデンを混合
して過酸化水素に溶解させることによりタングステンや
モリブデンを含有する過酸化縮合バナジン酸を合成する
ことが可能である。この物質は、実験式 %式% (1−Q、m、x、yはそれぞれO<怠+m<1.0.
05≦X≦1.1.5≦y≦3の範囲の値である)で表
わされ、これを塗布することによりタングステン酸化物
やモリブデン酸化物が混合したバナジン酸化物系ECD
を容易に作成できる。
Furthermore, it is possible to synthesize peroxide condensed vanadate containing tungsten and molybdenum by mixing vanadium with tungsten and molybdenum and dissolving the mixture in hydrogen peroxide. This substance has the empirical formula % (1-Q, m, x, y are each O<lack+m<1.0.
05 ≦
can be easily created.

この方法は種々の色、例えば青色以外の黄色や緑色を表
示できるECDの作成法として有用である。
This method is useful as a method for creating an ECD that can display various colors, such as yellow and green other than blue.

〔作用〕[Effect]

十 過酸化縮合酸中にはプロトン(Hあるいは寸 H,O)が陽イオンとして含まれるが、上記有機物を添
加することによりプロトンの一部が、窒素原子を有する
有機官能基で置換される。これにより過酸化縮合酸のポ
リアニオン構造が安定化し、プロセス中の温度や湿度の
変化による溶解度の経時変化を抑えることができる。
The ten peroxide condensed acid contains protons (H or dimensions H, O) as cations, but by adding the above-mentioned organic substance, some of the protons are replaced with organic functional groups having nitrogen atoms. This stabilizes the polyanion structure of the peroxidized condensed acid, making it possible to suppress changes in solubility over time due to changes in temperature and humidity during the process.

このような置換した構造として1例えば過酸化縮合タン
グステンの場合は、少なくとも一部にR−N−0−W− (Rは有機基を表わす)なる構造が、また過酸化縮合バ
ナジン酸の場合は、少なくとも一部にR−N−0−V− (Rは有機基を表わす)なる構造が生じていると思われ
る。
Examples of such substituted structures include (1) For example, in the case of peroxide-condensed tungsten, at least a portion has the structure R-N-0-W- (R represents an organic group), and in the case of peroxide-condensed vanadate, , it is thought that a structure R-N-0-V- (R represents an organic group) is formed at least in part.

〔実施例〕〔Example〕

以下、本発明の詳細を実施例により具体的に示す。 Hereinafter, the details of the present invention will be specifically illustrated by examples.

実施例1 過酸化縮合ニオブ・タングステン酸を以下の方法で合成
した。金属タングステン粉末10.1gと炭化ニオブ粉
末0.50 gを秤量し、これらを混合した後反応容器
に移し、これに15%過酸化水素水溶液50 m Qを
加えた。激しい発泡を伴う溶解反応がほぼ終息したとこ
ろで30%過酸化水素水溶液20 m Qを加えて、室
温に放置した。l〜2日でほとんどすべての内容物は溶
解し、淡黄色の酸性溶液が得られた。不溶又は未溶成分
を濾過し白金触媒により未反応の過酸化水素を分解した
後、室温で乾燥して過酸化縮合ニオブ・タングステン酸
の非晶質粉末を得た。本物質は元素分析及び熱重量分析
の結果、 0.92WO3・0.04Nb205・QH202・m
H2O−nC02(1−O<Q≦1.0.16<m<4
、O≦n≦0.025) なる実験式で示されることが分かった。ここで、a、m
、nが一定値ではなく範囲で示したのは各合成過程の保
持時間、乾燥条件、保存雰囲気中の温度、湿度等、制御
の困難な条件によって12.m、nの値が変化しやすい
ためである。こうして得られた過酸化縮合ニオブ・タン
グステン酸1gを純水igに溶解し、過酸化縮合ニオブ
・タングステン酸水溶液を作成した。この水溶液にN、
N−ジメチルホルムアミド5gを添加した。この溶液を
シリコンウェーハ上に回転塗布して膜厚約0.1μmの
塗膜(以下塗膜Aという)を形成した。
Example 1 Peroxide condensed niobium-tungstic acid was synthesized by the following method. 10.1 g of metal tungsten powder and 0.50 g of niobium carbide powder were weighed and mixed, then transferred to a reaction vessel, and 50 mQ of 15% hydrogen peroxide aqueous solution was added thereto. When the dissolution reaction accompanied by intense bubbling had almost come to an end, 20 mQ of a 30% aqueous hydrogen peroxide solution was added, and the mixture was allowed to stand at room temperature. Almost all the contents were dissolved in 1 to 2 days, and a pale yellow acidic solution was obtained. Insoluble or undissolved components were filtered and unreacted hydrogen peroxide was decomposed using a platinum catalyst, followed by drying at room temperature to obtain an amorphous powder of peroxide condensed niobium-tungstic acid. As a result of elemental analysis and thermogravimetric analysis, this substance was found to be 0.92WO3・0.04Nb205・QH202・m
H2O-nC02 (1-O<Q≦1.0.16<m<4
, O≦n≦0.025). Here, a, m
, n is shown as a range rather than a fixed value because of conditions that are difficult to control, such as the holding time of each synthesis process, drying conditions, temperature and humidity in the storage atmosphere, etc. This is because the values of m and n change easily. 1 g of peroxide-condensed niobium-tungstic acid thus obtained was dissolved in pure water ig to prepare a peroxide-condensed niobium-tungstic acid aqueous solution. In this aqueous solution, N,
5 g of N-dimethylformamide was added. This solution was spin-coated onto a silicon wafer to form a coating film (hereinafter referred to as coating film A) having a thickness of about 0.1 μm.

80℃で30分加熱処理した後、25℃、相対湿度50
%の空気中に10時間保持した。この間、一定時間ごと
にPH2に調製した硫酸水溶液に対する現像必要時間を
測定し、溶解度の経時的変化を調べた。一方、比較のた
めN、N−ジメチルホルムアミドを添加しない過酸化縮
合ニオブ・タングステン酸についても膜厚約0.1μm
の塗膜(以下塗膜Bという)を作成し溶解度の経時変化
を調べた。塗膜A及びBについて現像必要時間の変化を
比較した結果を第を表に示した。
After heat treatment at 80℃ for 30 minutes, 25℃, relative humidity 50
% air for 10 hours. During this period, the required development time for an aqueous sulfuric acid solution adjusted to pH 2 was measured at regular intervals to examine changes in solubility over time. On the other hand, for comparison, the film thickness of peroxide condensed niobium tungstic acid without adding N,N-dimethylformamide was about 0.1 μm.
A coating film (hereinafter referred to as coating film B) was prepared and the change in solubility over time was investigated. The results of comparing changes in the required development time for coating films A and B are shown in Table 1.

この結果より明らかなようにN、N−ジメチルホルムア
ミドの添加により、過酸化縮合ニオブ・タングステン酸
の不溶化速度(現像時間の増加率)が1710に低減さ
れ、N、N−ジメチルホルムアミドが過酸化縮合ニオブ
・タングステン酸の溶解性の経時変化を低減させる効果
を有することが示された。
As is clear from this result, by adding N,N-dimethylformamide, the insolubilization rate (increase rate of development time) of peroxycondensed niobium tungstic acid was reduced to 1710, and N,N-dimethylformamide was It was shown that it has the effect of reducing the change in solubility of niobium tungstic acid over time.

さらに塗膜A及びBに、600Wのキセノン−水銀ラン
プの光を、パターン形成したり、ロムマスクを介して、
ランプより35cmの距離で1秒間照射した。その後、
pH2の硫酸水溶液で現像し未露光部を溶解除去した結
果、どちらの試料でも0.5μm輔のラインと0.5μ
m幅のスペースの繰返しパターンが形成された。
Furthermore, coating films A and B are patterned with light from a 600W xenon-mercury lamp or through a ROM mask.
Irradiation was performed for 1 second at a distance of 35 cm from the lamp. after that,
As a result of developing with a pH 2 sulfuric acid aqueous solution and dissolving and removing the unexposed areas, both samples had a 0.5 μm line and a 0.5 μm line.
A repeating pattern of m wide spaces was formed.

以上示したようにN、N−ジメチルホルムアミドを過酸
化縮合ニオブ・タングステン酸に添加することにより溶
解度の経時的変化を低減することができるが、同時に塗
布液の塗れ性を向上できる利点もある。すなわち、水の
表面張力は室温で70dyn/c+++と大きいため、
水のみを溶媒として用いた過酸化縮合ニオブ・タングス
テン酸溶液は、塗布時に基板上に均一に広げることが困
難で塗れ性が悪い。しかシ、N、N−ジメチルホルムア
ミドは室温の表面張力が32dyn/Cmと水より小さ
いため、これを添加した過酸化縮合ニオブ・タングステ
ン酸溶液は塗れ性が良く、通常のスピン塗布法により均
質な塗膜を容易に作成することができる。
As shown above, by adding N,N-dimethylformamide to peroxidized condensed niobium-tungstic acid, it is possible to reduce the change in solubility over time, but at the same time, it has the advantage of improving the coating properties of the coating liquid. In other words, since the surface tension of water is as large as 70 dyn/c+++ at room temperature,
A peroxidized condensed niobium/tungstic acid solution using only water as a solvent has poor paintability because it is difficult to spread it uniformly on a substrate during coating. However, since the surface tension of N,N-dimethylformamide at room temperature is 32 dyn/Cm, which is lower than that of water, a peroxide-condensed niobium-tungstic acid solution containing it has good coating properties, and can be coated homogeneously using the normal spin coating method. A coating film can be easily created.

実施例2 塗布液中のN、N−ジメチルホルムアミドの添加濃度を
種々変化させた過酸化縮合ニオブ・タングステン酸溶液
を実施例1と同様の方法により作成した。これらの溶液
を基板上にそれぞれ等しい膜厚となるように塗布し、そ
の膜を25℃、相対湿度50%中に10時間保持した。
Example 2 A peroxide condensed niobium-tungstic acid solution was prepared in the same manner as in Example 1, with various concentrations of N,N-dimethylformamide added in the coating solution. These solutions were applied onto the substrate to the same thickness, and the films were kept at 25° C. and 50% relative humidity for 10 hours.

保持後の溶解度(現像必要時間)を測定した結果を第2
表に示す。N、N−ジメチルホルムアミド添加濃度は、
過酸化縮合ニオブ・タングステン酸に対する重量%であ
る。
The results of measuring the solubility (necessary development time) after holding are
Shown in the table. The concentration of N,N-dimethylformamide added is
Weight percent based on peroxide condensed niobium-tungstic acid.

第2表 実施例3〜2O N、N−ジメチルホルムアミド以外の、窒素原子を含む
種々の水溶性含窒素有機物を50%添加した過酸化縮合
ニオブ・タングステン酸について塗布膜を形成した。実
施例2と同様にこれらの膜を25℃、相対湿度50%中
にIO時間保持した。
Table 2 Examples 3 to 2O Coating films were formed using peroxidized condensed niobium-tungstic acid to which 50% of various water-soluble nitrogen-containing organic substances containing nitrogen atoms other than N,N-dimethylformamide were added. As in Example 2, these membranes were kept at 25° C. and 50% relative humidity for IO hours.

各添加有機物に対して塗布膜の溶解度(現像必要時間)
を測定した結果を第3表に示した。
Solubility of coating film for each additive organic substance (required development time)
The results of the measurements are shown in Table 3.

第3表 これの結果より過酸化縮合ニオブ・タングステン酸に対
し1tyt%のN、N−ジメチルホルムアミド添加でも
現像時間の経時変化は大幅に低減されるが、10wt%
以上添加することがより好ましいことが分かる。
The results in Table 3 show that even when 1 tyt% of N,N-dimethylformamide is added to peroxide condensed niobium-tungstic acid, the change in development time over time is significantly reduced, but 10 wt%
It can be seen that it is more preferable to add the above amount.

これらの結果より、水溶性含窒素有機物を過酸化縮合酸
水溶液に添加することにより現像時間の経時変化は大幅
に低減することが示された。また、有機物の稲類により
現像時間は変化するが、特にアミド基を有する有機物が
現像時間の経時変化を低減させる効果が大きいことがわ
かる。
These results indicate that the change in development time over time can be significantly reduced by adding a water-soluble nitrogen-containing organic substance to an aqueous peroxide condensed acid solution. Further, although the development time varies depending on the type of organic material, it is found that organic materials having an amide group are particularly effective in reducing changes in development time over time.

実施例21 タンタルを含む過酸化縮合タングステン酸を以下に示す
方法で合成した。金属タングステン粉末L O,1gに
15%過酸化水素水溶液50mQを加えた。発泡を伴う
激しい溶解反応がほぼ終息したところで30%過酸化水
素水溶液30 m Qを加えて室温に放置した。1〜2
時間ですべての内容物は溶解し淡黄色の酸性溶液が得ら
れた。この溶液に、ペンタエトキシタンタル2gをエタ
ノールに溶解した液を滴下した。液中のエタノールを除
去した後、ジエチルエーテルと共に振温しエステル等の
不純物を除去した。白金触媒により未反応の過酸化水素
を分解したのち、室温で乾燥してタンタルを含む過酸化
縮合タングステン酸の非晶質粉末を得た。本物質は元素
分析及び熱重量分析の結果、 0.92W03・0.04Ta20.・QH202・m
H2O・nC○2(1−0〈悲≦1.0.16<m<4
、O≦n≦0.025) なる実験式で示されることが分かった。ここで。
Example 21 Peroxidized condensed tungstic acid containing tantalum was synthesized by the method shown below. 50 mQ of 15% hydrogen peroxide aqueous solution was added to 1 g of metallic tungsten powder L 2 O. When the intense dissolution reaction accompanied by foaming had almost ceased, 30 mQ of a 30% aqueous hydrogen peroxide solution was added and the mixture was allowed to stand at room temperature. 1-2
In time, all the contents dissolved and a pale yellow acidic solution was obtained. A solution prepared by dissolving 2 g of pentaethoxy tantalum in ethanol was added dropwise to this solution. After removing ethanol from the liquid, it was shaken with diethyl ether to remove impurities such as esters. After decomposing unreacted hydrogen peroxide with a platinum catalyst, it was dried at room temperature to obtain an amorphous powder of peroxidized condensed tungstic acid containing tantalum. As a result of elemental analysis and thermogravimetric analysis, this substance has the following properties: 0.92W03・0.04Ta20.・QH202・m
H2O・nC○2(1-0<sad≦1.0.16<m<4
, O≦n≦0.025). here.

危、m、nが一定値でなく範囲で示したのは各合成過程
の保持時間、乾燥条件、保存雰囲気中の温度、湿度等、
制御の困難な条件によってα、m、nの値が変化しやす
いためである。こうして得られた、タンタルを含む過酸
化縮合タングステン酸1gを純水1gに溶解した。この
水溶液にN、 N−ジメチルホルムアミド5gを添加し
た。この溶液をシリコンウェーハ上に回転塗布して膜厚
約0.1μmの塗膜(以下塗膜Cという)を形成した。
The reason why m, n and m are not fixed values but are shown as ranges is due to the holding time of each synthesis process, drying conditions, temperature and humidity in the storage atmosphere, etc.
This is because the values of α, m, and n are likely to change due to conditions that are difficult to control. 1 g of peroxidized condensed tungstic acid containing tantalum thus obtained was dissolved in 1 g of pure water. 5 g of N,N-dimethylformamide was added to this aqueous solution. This solution was spin-coated onto a silicon wafer to form a coating film (hereinafter referred to as coating film C) having a thickness of about 0.1 μm.

80℃で5分加熱処理した後、25℃、相対湿度50%
の空気中に10時間保持した。この間、−定時間ごとに
pH2に調製した硫酸水容液に対する現像必要時間を測
定し、溶解度の経時的変化を調べた。一方、比較のため
N、N−ジメチルホルムアミドを添加しないタンタルを
含む過酸化縮合タングステン酸についても膜厚約0.1
μmの塗膜(以下塗膜りという)を作成し溶解度の経時
変化を調べた。塗膜C及びDについて現像必要時間の変
化を比較した結果を第4表に示した。
After heat treatment at 80℃ for 5 minutes, 25℃, relative humidity 50%
It was kept in the air for 10 hours. During this period, the required development time for an aqueous sulfuric acid solution adjusted to pH 2 was measured at regular intervals to examine changes in solubility over time. On the other hand, for comparison, a film thickness of about 0.1
A coating film (hereinafter referred to as coating film) with a thickness of μm was prepared and the change in solubility over time was investigated. Table 4 shows the results of comparing changes in required development time for coatings C and D.

第4表 この結果より明らかなように、N、N−ジメチルホルム
アミドの添加により、タンタルを含む過酸化縮合タング
ステン酸の不溶化速度(現像時間の増加率)が1710
に低減され、N、N−ジメチルホルムアミドがタンタル
を含む過酸化縮合タングステン酸の溶解性の経時変化を
低減させる効果を有することが示された。
Table 4 As is clear from the results, the insolubilization rate (rate of increase in development time) of peroxidized condensed tungstic acid containing tantalum increased by 1710 by adding N,N-dimethylformamide.
It was shown that N,N-dimethylformamide has the effect of reducing the change in solubility over time of peroxidized condensed tungstic acid containing tantalum.

さらに塗膜C及びDに、狭帯域化したKrFエキシマレ
ーザを、パターン形成したクロムマスクとNA値0.3
5の石英製レンズを介して照射した。その後、pH2の
硫酸水溶液で現像し未露光部を溶解除去した結果、どち
らの試料でも0.4μm幅のラインと0.4μm幅のス
ペースの綴返しパターンが形成された。
Furthermore, coating films C and D are coated with a narrow-band KrF excimer laser using a patterned chrome mask with an NA value of 0.3.
The light was irradiated through a No. 5 quartz lens. Thereafter, as a result of developing with an aqueous sulfuric acid solution of pH 2 and dissolving and removing the unexposed areas, a folded pattern of 0.4 μm wide lines and 0.4 μm wide spaces was formed in both samples.

実施例22 チタニウムを含む過酸化縮合タングステン酸を以下に示
す方法で合成した。金属タングステン粉末10.1gと
炭化チタン粉末0.29 Kを秤量し、これらを混合し
た後反応容器に移し、これに15%過酸化水素水溶液5
0mAを加えた。激しい溶解反応がほぼ終息したところ
で30%過酸化水素水溶液20mQを加えて、室温に放
置した。l〜2日でほとんどすべての内容物は溶解し、
赤色の酸性溶液が得られた。不溶又は未溶成分を濾過し
白金触媒により未反応の過酸化水素を分解した後、室温
で乾燥してタングステンの一部がチタニウムで置換され
た過酸化縮合タングステン酸の非晶質粉末を得た。本物
質は元素分析及び熱重量分析の結果。
Example 22 Peroxide condensed tungstic acid containing titanium was synthesized by the method shown below. Weighed 10.1 g of metallic tungsten powder and 0.29 K of titanium carbide powder, mixed them, and then transferred them to a reaction vessel, and added 5% of a 15% hydrogen peroxide aqueous solution to this.
0mA was applied. When the violent dissolution reaction had almost finished, 20 mQ of a 30% aqueous hydrogen peroxide solution was added, and the mixture was left at room temperature. Almost all the contents dissolve in 1 to 2 days,
A red acidic solution was obtained. After filtering out insoluble or undissolved components and decomposing unreacted hydrogen peroxide with a platinum catalyst, drying at room temperature yielded an amorphous powder of peroxidized condensed tungstic acid in which part of the tungsten was replaced with titanium. . This substance is the result of elemental analysis and thermogravimetric analysis.

0.92WO,’ 0.08TiO2” D H,02
” mH2O・nCO□(1−0くα≦王、0 、16
 < m < 4、O≦n≦0.025) なる実験式で示されることが分かった。ここで、悲、m
、nが一定値ではなく範囲で示したのは各合成過程の保
持時間、乾燥条件、保存雰囲気中の温度、湿度等、制御
の困難な条件によってQ、m、nの値が変化しやすいた
めである。
0.92WO,' 0.08TiO2”D H,02
” mH2O・nCO□(1-0kuα≦K, 0, 16
< m < 4, O≦n≦0.025). Here, sad, m
, n are shown as ranges rather than fixed values because the values of Q, m, and n are likely to change depending on conditions that are difficult to control, such as the holding time of each synthesis process, drying conditions, temperature and humidity in the storage atmosphere, etc. It is.

こうして得られたチタンを含む過酸化縮合タングステン
酸1gを純水1gに溶解し過酸化縮合チタン・タングス
テン酸水溶液を作成した。この水溶液にN、N−ジメチ
ルホルムアミド5gを添加した。この溶液をシリコンウ
ェーハ上に回転塗布して膜厚約0.1μmの塗膜(以下
室11IEという)を形成した。80℃で3分加熱処理
した後、25℃、相対湿度50%の空気中に10時間保
持した。
1 g of peroxide condensed tungstic acid containing titanium thus obtained was dissolved in 1 g of pure water to prepare a peroxide condensed titanium/tungstic acid aqueous solution. 5 g of N,N-dimethylformamide was added to this aqueous solution. This solution was spin-coated onto a silicon wafer to form a coating film (hereinafter referred to as chamber 11IE) having a thickness of about 0.1 μm. After heat treatment at 80°C for 3 minutes, it was kept in air at 25°C and 50% relative humidity for 10 hours.

この間、一定時間ごとにpH2に調製した硫酸水容液に
対する現像終了時間を測定し、溶解性の経時的変化を調
べた。一方比較のため、N、N−ジメチルホルムアミド
を添加しない過酸化縮合チタン・タングステン酸につい
ても膜厚約0.1μmの塗膜(以下塗膜Fという)を作
成し溶解度の経時変化を調べた。塗膜E及びFについて
現像必要時間の変化を比較した結果を第5表に示した。
During this period, the completion time of development in an aqueous sulfuric acid solution adjusted to pH 2 was measured at regular intervals to examine changes in solubility over time. On the other hand, for comparison, a coating film having a thickness of about 0.1 μm (hereinafter referred to as coating film F) was prepared using peroxide condensed titanium/tungstic acid without the addition of N,N-dimethylformamide, and the change in solubility over time was investigated. Table 5 shows the results of comparing changes in the required development time for coatings E and F.

第5表 この結果より明らかなように、N、N−ジメチルホルム
アミドの添加により、チタンを含む過酸化縮合タングス
テン酸の不溶化速度(現像時間の増加率)が171Oに
低減され、N、N−ジメチルホルムアミドが過酸化縮合
チタン・タングステン酸の溶解性の経時変化を低減させ
る効果を有することが示された。
Table 5 As is clear from the results, by adding N,N-dimethylformamide, the insolubilization rate (rate of increase in development time) of peroxidized condensed tungstic acid containing titanium was reduced to 171O, and N,N-dimethyl It has been shown that formamide has the effect of reducing the change in solubility of peroxidized condensed titanium/tungstic acid over time.

塗膜E及びFに、収束したガリウムイオンビームを加速
電圧50kV、ドーズ量工μC/c1で照射した。その
後、pH2の硫酸水溶液で現像し未露光部を溶解した結
果、どちらの試料共、0.3μm幅のラインと0.3μ
m幅のスペースの繰返しパターンが形成された。
Coatings E and F were irradiated with a focused gallium ion beam at an acceleration voltage of 50 kV and a dose of μC/c1. After that, as a result of developing with a pH 2 sulfuric acid aqueous solution and dissolving the unexposed areas, both samples showed a line with a width of 0.3 μm and a 0.3 μm wide line.
A repeating pattern of m wide spaces was formed.

実施例23 第1図(a)に示すように、表面に段差を有するシリコ
ン基板l上に被加工膜であるアルミニウム膜2を形成し
た。その上に前記段差が平坦化されるようにポリイミド
系の耐熱性高分子樹脂(日立化或株式会社製、商品名P
IQ)を回転塗布し、200℃で30分、350℃窒素
中で60分加熱し、有機高分子膜の下層3を形成した。
Example 23 As shown in FIG. 1(a), an aluminum film 2, which is a film to be processed, was formed on a silicon substrate l having a step on its surface. On top of that, a polyimide-based heat-resistant polymer resin (manufactured by Hitachi Chemical Co., Ltd., trade name: P) is applied so that the step is flattened.
IQ) was spin-coated and heated at 200° C. for 30 minutes and at 350° C. in nitrogen for 60 minutes to form the lower layer 3 of the organic polymer film.

さらに、下WI3上に、実施例1と同様にして作成した
、N、N−ジメチルホルムアミド添加の過酸化縮合ニオ
ブ・タングステン酸水溶液を回転塗布し、厚さ0.tμ
mの縮合タングステン酸塗膜の上層4を形成した。しか
る後、上層4に40μC/am”の照射量で電子線(加
速電圧30kV)を所定パターンにしたがって照射した
。照射後、pH2の硫酸水溶液と、1悲中に12gの酢
酸と15gの酢酸ナトリウムを溶解した水溶液を、9:
1の比率で混合した液を用いて現像した。未照射部が溶
解し、0.3μm幅の上層パターン4′が形成された(
第1図(b)〉。続いて酸素圧力2.5mT orrで
酸素イオンエツチングを1時間行ったところ、上層パタ
ーン4′が下層3に転写され、幅0.3μmの下層パタ
ーン3′が得られた(第を図(C))。
Furthermore, on the lower WI3, a peroxide condensed niobium-tungstic acid aqueous solution prepared in the same manner as in Example 1 and added with N,N-dimethylformamide was spin-coated to a thickness of 0. tμ
An upper layer 4 of a condensed tungstic acid coating of m was formed. Thereafter, the upper layer 4 was irradiated with an electron beam (acceleration voltage 30 kV) at an irradiation dose of 40 μC/am'' according to a predetermined pattern. After irradiation, a sulfuric acid aqueous solution of pH 2, 12 g of acetic acid and 15 g of sodium acetate were added to the upper layer 4 at a dose of 40 μC/am". An aqueous solution containing 9:
Developing was performed using a solution mixed at a ratio of 1:1. The unirradiated area was dissolved, and an upper layer pattern 4' with a width of 0.3 μm was formed (
Figure 1(b)〉. Subsequently, oxygen ion etching was performed for 1 hour at an oxygen pressure of 2.5 mTorr, and the upper layer pattern 4' was transferred to the lower layer 3, resulting in a lower layer pattern 3' with a width of 0.3 μm (see Figure (C)). ).

実施例24 1.2gの五酸化バナジウムを氷水で冷却しながら30
%過酸化水素水5mQ中に溶解した。不溶及び未溶成分
を濾過により取り除き褐色の過酸化縮合バナジン酸水溶
液(以下水溶液Aという)を得た。この水容液は調製後
25℃、30分でゲル化し塗布が不可能となった。ここ
でゲル化とは液体が固形化することを意味する。一方、
水溶液Aを調製直後にN、N−ジメチルホルムアミドを
0.05 g添加した。この水溶液(以下水溶液Bとい
う)では25℃、5時間でゲル化が始まった。
Example 24 While cooling 1.2 g of vanadium pentoxide with ice water,
% hydrogen peroxide solution (5 mQ). Insoluble and undissolved components were removed by filtration to obtain a brown peroxide condensed vanadate aqueous solution (hereinafter referred to as aqueous solution A). This aqueous solution gelled at 25° C. for 30 minutes after preparation, making it impossible to apply. Gelation here means that a liquid becomes solid. on the other hand,
Immediately after preparing aqueous solution A, 0.05 g of N,N-dimethylformamide was added. In this aqueous solution (hereinafter referred to as aqueous solution B), gelation began at 25° C. for 5 hours.

この結果より明らかなようにN、N−ジメチルホルムア
ミドの添加により、過酸化縮合バナジン酸のゲル化速度
が1/10に低下し、N、N−ジメチルホルムアミドが
過酸化縮合バナジン酸のゲル化を抑制する効果を有する
ことが示された。
As is clear from these results, the addition of N,N-dimethylformamide lowers the gelation rate of peroxide-condensed vanadate to 1/10, and N,N-dimethylformamide reduces the gelation rate of peroxide-condensed vanadate. It was shown to have a suppressive effect.

ゲル化する前の水溶液Bを、導電膜をコートしたガラス
上にスピン塗布した。塗布時の回転速度は毎分2000
回転数で、塗布膜の膜厚は0.4μmであった。この膜
中の過酸化縮合バナジン酸は組成分析、酸化還元滴定お
よび熱重量分析によって実験式 %式% ることが分かった。x、yの値に幅が見られるのは、褐
色溶液を作成するときの過酸化水素の加え方や大気中の
湿度の変化等により組成が変化しやすいためである。こ
の塗布膜を空気中、60℃で1時間加熱した。この加熱
処理により、上記実験式中のXの値は変わらないが、y
の値は約2になることが熱重量分析で調べられた。この
加熱処理後の塗布膜の溶解性は加熱前に比べ低くなって
いた。この塗布膜を発色膜とし、その一部をアルカリ性
水溶性で溶解して発色電極の集電部を形成した。電解液
として過塩素酸リチウムを含むプロピレンカーボネート
を用い、電流0.2mA/Cm”、電気量10 m C
/cn+”で発色膜を還元した。その結果、黄色の膜が
濃い緑色に、さらに灰黒色に変化した。また、逆の電圧
を印加して酸化すると、元の黄色に変化することが確認
できた。上記酸化還元処理を繰り返しても発色膜の電解
液中への溶解は認められず、良好な可逆性を示した。
Aqueous solution B before gelation was spin-coated onto glass coated with a conductive film. Rotation speed during coating is 2000 per minute
The thickness of the coating film was 0.4 μm based on the rotation speed. The peroxidized condensed vanadate in this film was found to have an empirical formula of % by compositional analysis, redox titration, and thermogravimetric analysis. The reason why there is a wide range in the values of x and y is that the composition tends to change depending on how hydrogen peroxide is added when creating the brown solution, changes in atmospheric humidity, etc. This coating film was heated in air at 60° C. for 1 hour. This heat treatment does not change the value of X in the above empirical formula, but y
It was determined by thermogravimetric analysis that the value of is approximately 2. The solubility of the coating film after this heat treatment was lower than that before heating. This coating film was used as a coloring film, and part of it was dissolved in alkaline water to form a current collecting part of a coloring electrode. Using propylene carbonate containing lithium perchlorate as the electrolyte, current 0.2 mA/Cm", electricity amount 10 m C
/cn+". As a result, the yellow film changed to dark green and then to gray-black. Also, when the opposite voltage was applied and oxidized, it was confirmed that it changed to its original yellow color. Even after repeating the above redox treatment, no dissolution of the colored film into the electrolytic solution was observed, indicating good reversibility.

実施例25 N、N−ジメチルホルムアミドの添加濃度を種々変化さ
せた過酸化縮合バナジン酸溶液を実施例24と同様の方
法により作成した。これらの溶液の25℃におけるゲル
化開始時間を測定した結果を第6表に示す。N、N−ジ
メチルホルムアミド添加濃度は、過酸化縮合バナジン酸
に対する重量%である。
Example 25 Peroxidized condensed vanadate solutions were prepared in the same manner as in Example 24, with various concentrations of N,N-dimethylformamide added. Table 6 shows the results of measuring the gelation initiation time of these solutions at 25°C. The concentration of N,N-dimethylformamide added is weight % relative to peroxidized condensed vanadate.

第6表 た結果を第7表に示す。Table 6 The results are shown in Table 7.

第7表 この結果よりN、N−ジメチルホルムアミドの添加濃度
は1wt%でもゲル化が抑制されるが、より好ましくは
3νt%以上であることが示された。
Table 7 The results show that gelation is suppressed even when the concentration of N,N-dimethylformamide added is 1wt%, but it is more preferably 3vt% or more.

実施例26〜43 N、N−ジメチルホルムアミド以外の、窒素原子を有す
る種々の水溶性有機物を過酸化縮合バナジン酸に対し3
wt%添加した過酸化縮合バナジン酸水溶液を実施例2
4と同様に調製した。これらの溶液の25℃におけるゲ
ル化開始時間を測定しこれらの結果より、水溶性含窒素
有機物を添加することによりゲル化が抑制されることが
示された。また、有機物の種類によりゲル化開始時間は
変化するが、特にアミド基を有する有機物がゲル化を抑
制する効果が大きい。
Examples 26 to 43 Various water-soluble organic substances having a nitrogen atom other than N,N-dimethylformamide were reacted with peroxidized condensed vanadate to 3
Example 2 A peroxidized condensed vanadate aqueous solution containing wt%
It was prepared in the same manner as 4. The gelation initiation times of these solutions at 25° C. were measured, and the results showed that gelation was suppressed by adding the water-soluble nitrogen-containing organic substance. Further, although the gelation start time varies depending on the type of organic substance, organic substances having an amide group are particularly effective in suppressing gelation.

実施例44 金属バナジウム1.2gを15%過酸化水素水に溶解す
ることにより過酸化縮合バナジン酸を合成した。合成の
詳細は実施例24と同様である。
Example 44 Peroxide condensed vanadate was synthesized by dissolving 1.2 g of metal vanadium in 15% hydrogen peroxide solution. The details of the synthesis are the same as in Example 24.

得られた溶液にN、N−ジメチルホルムアミドを0.0
5 gti加した。この水溶液は25℃、5時間でゲル
化が始まった。ゲル化する前の水溶液を実施例24と同
様に導電膜をコートしたガラス上にスピン塗布し、40
℃で1時間加熱処理した。
Add 0.0 of N,N-dimethylformamide to the resulting solution.
5 gti was added. This aqueous solution started to gel in 5 hours at 25°C. The aqueous solution before gelation was spin-coated onto glass coated with a conductive film in the same manner as in Example 24, and
Heat treatment was performed at ℃ for 1 hour.

電解還元酸化による発消色を調べたところ実施例24と
同様の特性を示すことがわかった。
When coloring and fading due to electrolytic reduction and oxidation was investigated, it was found that the same characteristics as in Example 24 were exhibited.

実施例45 過酸化縮合バナジウム・タングステン酸を以下の方法で
合成した。0.3gの金属バナジウムを氷水で冷却しな
がら15%過酸化水素水4mflに溶解した。不溶及び
未溶成分を濾過により取り除き褐色の溶液を得た(水溶
液C)。次に、金属タングステン粉末11gを15%過
酸化水素水溶液50 m Qに溶解した。激しい発泡を
伴う溶解反応がほぼ終息したところで30%過酸化水素
水溶液20mQを加えて、室温に放置した。1〜2時間
でほとんどすべての内容物は溶解し、淡黄色の酸性溶液
が得られた。不溶又は未溶成分を濾過し白金触媒により
未反応の過酸化水素を分解した後。
Example 45 Peroxide condensed vanadium-tungstic acid was synthesized by the following method. 0.3 g of metal vanadium was dissolved in 4 mfl of 15% hydrogen peroxide while cooling with ice water. Insoluble and undissolved components were removed by filtration to obtain a brown solution (aqueous solution C). Next, 11 g of metallic tungsten powder was dissolved in 50 mQ of a 15% hydrogen peroxide aqueous solution. When the dissolution reaction accompanied by intense bubbling had almost come to an end, 20 mQ of a 30% aqueous hydrogen peroxide solution was added, and the mixture was allowed to stand at room temperature. Almost all the contents were dissolved in 1-2 hours and a pale yellow acidic solution was obtained. After filtering out insoluble or undissolved components and decomposing unreacted hydrogen peroxide with a platinum catalyst.

室温で乾燥して過酸化縮合タングステン酸の非晶質粉末
を得た。この過酸化縮合タングステン酸4゜8gを純水
2.5gに溶解した(水溶液D)。得られた水溶液Cと
水溶液りを混合した。この混合溶液にN、N−ジメチル
ホルムアミドを0.05 g添加した。この溶液を導電
膜コートしたガラス上にスピン塗布した。塗布時の回転
速度は毎分2000回転数で、塗布膜の膜厚は0.4μ
mであった。この膜中の過酸化縮合酸は組成分析、酸化
還元滴定及び熱重量分析によって実験式 %式% x、yの値に幅が見られるのは、縮合酸溶液を作成する
ときの過酸化水素の加え方や大気中の湿度の変化等によ
り組成が変わりやすいためである。
It was dried at room temperature to obtain an amorphous powder of peroxidized condensed tungstic acid. 4.8 g of this peroxidized condensed tungstic acid was dissolved in 2.5 g of pure water (aqueous solution D). The obtained aqueous solution C and the aqueous solution were mixed. 0.05 g of N,N-dimethylformamide was added to this mixed solution. This solution was spin-coated onto glass coated with a conductive film. The rotation speed during coating was 2000 revolutions per minute, and the thickness of the coating film was 0.4μ.
It was m. The peroxide condensed acid in this film is determined by compositional analysis, redox titration, and thermogravimetric analysis. This is because the composition tends to change depending on how it is added, changes in atmospheric humidity, etc.

この塗布膜を空気中100℃で1時間加熱した。This coating film was heated in air at 100° C. for 1 hour.

この加熱処理により、上記実験式中のXの値は変わらな
いがyの値は約2になることが熱重量分析で調べられた
。この加熱処理後の発色膜の溶解性は加熱前に比へ低く
なっていた。発色膜の一部をアルカリ性水溶液で溶解し
て発色電極の集電部を形成した。電解液として過塩素酸
リチウムを含むプロピレンカーボネートを用い、電流0
 、2 m A/cm2、電気量↓Om C/ cm2
で発色膜を還元した。
It was determined by thermogravimetric analysis that this heat treatment did not change the value of X in the above experimental formula, but the value of y increased to about 2. The solubility of the colored film after this heat treatment was lower than that before heating. A part of the coloring film was dissolved in an alkaline aqueous solution to form a current collecting part of the coloring electrode. Propylene carbonate containing lithium perchlorate was used as the electrolyte, and the current was 0.
, 2 mA/cm2, electricity ↓Om C/cm2
The coloring film was reduced with

その結果、無色の膜が黒青色に変化した。また、逆の電
圧を印加して酸化すると脱色することが確認された。
As a result, the colorless film turned black-blue. It was also confirmed that oxidation by applying a reverse voltage causes decolorization.

実施例46 酸化インジウム(■n20.)を主成分とする、シート
抵抗10Ω/cm2の透明導電膜をコートしたガラス基
板上に、実施例24と同様の塗布法により膜厚0.4μ
mの発色膜を形成した。ついで、通常のホトレジスト処
理により発色膜をパターン形成し、第2図に示したEC
Dセルを作成した。
Example 46 A transparent conductive film containing indium oxide (■n20.) as the main component and having a sheet resistance of 10 Ω/cm2 was coated on a glass substrate to a film thickness of 0.4 μ by the same coating method as in Example 24.
A colored film of m was formed. Next, a coloring film was patterned by ordinary photoresist processing, and the EC shown in Fig. 2 was formed.
I created a D cell.

図において、21は表示極側のガラス基板、22は透明
導電膜、23は発色膜、24は保護膜、25は電解液、
26は対向電極、28はスペーサ29は背景材である。
In the figure, 21 is a glass substrate on the display electrode side, 22 is a transparent conductive film, 23 is a coloring film, 24 is a protective film, 25 is an electrolytic solution,
26 is a counter electrode, and 28 is a spacer 29 which is a background material.

セル電解液には、1M/Qの過塩素酸リチウムのプロピ
レンカーボネート溶液を用い、透明導電膜22の保護膜
24には二酸化ケイ素、背景材29には白色顔料である
二酸化チタンを含有する多孔性テフロンシートを用いた
。また、対向電極26はシート抵抗10Ω/can2の
透明導電膜26′上に繊維状カーボン26#を接着した
ものを用いた。
A 1M/Q propylene carbonate solution of lithium perchlorate is used as the cell electrolyte, silicon dioxide is used as the protective film 24 of the transparent conductive film 22, and a porous material containing titanium dioxide, which is a white pigment, is used as the background material 29. A Teflon sheet was used. Further, the counter electrode 26 used was one in which fibrous carbon 26# was bonded onto a transparent conductive film 26' having a sheet resistance of 10 Ω/can2.

このセルに発色時の印加電圧を1.OV (発色膜側を
負、対向電極側を正)、消色時の印加電圧を1.5V 
(発色膜側を正、対向電極側を負)とし、方形波を連続
的に印加し、エレク1〜ロクロミンク特性を調べた。そ
の結果、黄色、緑色、灰色の色調変化が見られた。また
波長800nmにおける光学密度変化(Δ○、D、)0
.5を得るために必要な注入電荷量は約30 m C/
 cm”であった。これらの特性は従来の酸化バナジウ
ムを発色膜とする素子と比較し、遜色のない性能である
The voltage applied to this cell during color development is 1. OV (negative on the coloring film side, positive on the counter electrode side), applied voltage when decoloring is 1.5V
(The coloring film side was positive and the counter electrode side was negative), a square wave was continuously applied, and the characteristics of Elec 1 to Rochromink were investigated. As a result, color changes of yellow, green, and gray were observed. Also, the optical density change (Δ○, D,) 0 at a wavelength of 800 nm
.. The amount of injected charge required to obtain 5 is approximately 30 mC/
cm". These characteristics are comparable in performance to conventional elements using vanadium oxide as a coloring film.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば、水溶性含窒素有
機物により過酸化縮合酸が安定に保持できる。
As described in detail above, according to the present invention, a peroxidized condensed acid can be stably retained by the water-soluble nitrogen-containing organic substance.

また、水溶性含窒素有機物と過酸化縮合酸水溶液による
組成物は、安定に保持することができる。
Furthermore, a composition containing a water-soluble nitrogen-containing organic substance and an aqueous peroxide condensed acid solution can be stably maintained.

さらにまた、水溶性含窒素有機物を含むことにより、無
機系の放射線感応性組成物の温度や湿度等の変化による
溶解度の経時変化を低減させることができるので、再現
性のあるリソグラフィプロセスを確立できる。
Furthermore, by including a water-soluble nitrogen-containing organic substance, it is possible to reduce changes in solubility over time due to changes in temperature, humidity, etc. of the inorganic radiation-sensitive composition, making it possible to establish a reproducible lithography process. .

さらにまた、水溶性含窒素有機物を含む塗料組成物を用
いることにより、簡便かつ安定な湿式塗布法によりEC
Dを安定に製造できる。
Furthermore, by using a coating composition containing a water-soluble nitrogen-containing organic substance, EC can be applied using a simple and stable wet coating method.
D can be stably produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のパターン形成方法の一実施例のプロセ
スを説明するための工程図、第2図は本発明のECDの
一実施例の模式的構造を示す断面図である。 1・・・シリコン基板   2・・・アルミニウム腸3
・・・下層       3′・・・下層パターン4・
・・上層       4′・・・上層パターン21・
・・基板      22・・・透明導電膜23・・・
発色膜     24・・・保護膜25・・・電解液 
    26・・・対向電極26′・・・透明導電膜 
 26″・・・繊維状カーボン27・・・基板    
  28・・・スペーサー29・・・背景材
FIG. 1 is a process diagram for explaining the process of an embodiment of the pattern forming method of the present invention, and FIG. 2 is a sectional view showing a schematic structure of an embodiment of the ECD of the present invention. 1... Silicon substrate 2... Aluminum intestine 3
...lower layer 3'...lower layer pattern 4.
... Upper layer 4'... Upper layer pattern 21.
...Substrate 22...Transparent conductive film 23...
Coloring film 24...Protective film 25...Electrolyte solution
26... Counter electrode 26'... Transparent conductive film
26″...Fibrous carbon 27...Substrate
28... Spacer 29... Background material

Claims (1)

【特許請求の範囲】 1、水溶性含窒素有機物からなる過酸化縮合酸の安定化
剤。 2、上記水溶性含窒素有機物がニトリル、アミン及びア
ミドからなる群から選ばれた少なくとも一つの有機物を
含むことを特徴とする請求項1記載の過酸化縮合酸の安
定化剤。 3、上記過酸化縮合酸は、少なくともタングステンを含
むことを特徴とする請求項1記載の過酸化縮合酸の安定
化剤。 4、上記過酸化縮合酸は、少なくともバナジウムを含む
ことを特徴とする請求項1記載の過酸化縮合酸の安定化
剤。 5、水溶性含窒素有機物と過酸化縮合酸の水溶液とから
なる組成物。 6、上記水溶性含窒素有機物がニトリル、アミン及びア
ミドからなる群から選ばれた少なくとも一つの有機物を
含むことを特徴とする請求項5記載の組成物。 7、上記過酸化縮合酸は、少なくともタングステンを含
むことを特徴とする請求項5記載の組成物。 8、上記過酸化縮合酸は、少なくともバナジウムを含む
ことを特徴とする請求項5記載の組成物。 9、過酸化縮合酸の水溶液に水溶性含窒素有機物を加え
ることを特徴とする過酸化縮合酸を含む組成物の製法。 10、タングステンを含む過酸化縮合酸の水溶液と水溶
性含窒素有機物とからなる放射線感応性組成物。 11、上記過酸化縮合酸は、タングステンと共にニオブ
、タンタル及びチタンからなる群から選ばれた少なくと
も一つの元素を含むことを特徴とする請求項10記載の
放射線感応性組成物。 12、上記水溶性含窒素有機物がニトリル、アミン及び
アミドからなる群から選ばれた少なくとも一つの有機物
を含むことを特徴とする請求項10記載の放射線感応性
組成物。 13、上記水溶性含窒素有機物が上記過酸化縮合酸に対
して1重量%以上の濃度で含まれていることを特徴とす
る請求項10記載の放射線感応性組成物。 14、一般式 (1−x−y−z)WO_3・x/2Nb_2O_5・
y/2Ta_2O_5・zTiO_2・lH_2O_2
・mH_2O・nCO_2(ただし、x、y、z、l、
m、nはそれぞれ0≦x+y+z<1、0<l≦1、0
.16<m<4、0≦n≦0.025の範囲の値である
)で表わされる過酸化縮合酸の水溶液と水溶性含窒素有
機物からなる放射線感応性組成物。 15、上記水溶性含窒素有機物がニトリル、アミン及び
アミドからなる群から選ばれた少なくとも一つの有機物
を含むことを特徴とする請求項14記載の放射線感応性
組成物。 16、請求項10から15までのいずれかに記載の放射
線感応性組成物を基板上に塗布して塗膜を形成し、該塗
膜に所望のパターンの放射線を照射し、現像することを
特徴とするパターン形成方法。 17、バナジウムを含む過酸化縮合酸の水溶液と水溶性
含窒素有機物からなるエレクトロクロミック表示素子の
発色膜用組成物。 18、上記水溶性含窒素有機物がニトリル、アミン及び
アミドからなる群から選ばれた少なくとも一つの有機物
を含むことを特徴とする請求項17記載のエレクトロク
ロミック表示素子の発色膜用組成物。 19、一般式 2lWO_3・2mMoO_3・(1−l−m)V_2
O_5・xH_2O_2・yH_2O(ただしl、m、
x、yはそれぞれ0≦l+m<1、0.05≦x≦1、
1.5≦y≦3の範囲の値である)で表わされる過酸化
縮合酸の水溶液と水溶性含窒素有機物からなることを特
徴とするエレクトロクロミック表示素子の発色膜用組成
物。 20、上記水溶性含窒素有機物がニトリル、アミン及び
アミドからなる群から選ばれた少なくとも一つの有機物
を含むことを特徴とする請求項19記載のエレクトロク
ロミック表示素子の発色膜用組成物。 21、導電膜が形成された基板上に、請求項17から2
0までのいずれかに記載のエレクトロクロミック表示素
子の発色膜用組成物を塗布し、加熱してなる発色膜、対
向電極及び両者の間に保持された電解質とを少なくとも
有するエレクトロクロミック表示素子。
[Claims] 1. A stabilizer for peroxidized condensed acid comprising a water-soluble nitrogen-containing organic substance. 2. The stabilizer for peroxycondensed acid according to claim 1, wherein the water-soluble nitrogen-containing organic substance contains at least one organic substance selected from the group consisting of nitriles, amines, and amides. 3. The peroxide condensed acid stabilizer according to claim 1, wherein the peroxide condensed acid contains at least tungsten. 4. The peroxide condensed acid stabilizer according to claim 1, wherein the peroxide condensed acid contains at least vanadium. 5. A composition comprising a water-soluble nitrogen-containing organic substance and an aqueous solution of peroxycondensed acid. 6. The composition according to claim 5, wherein the water-soluble nitrogen-containing organic substance contains at least one organic substance selected from the group consisting of nitriles, amines, and amides. 7. The composition according to claim 5, wherein the peroxide condensed acid contains at least tungsten. 8. The composition according to claim 5, wherein the peroxide condensed acid contains at least vanadium. 9. A method for producing a composition containing peroxycondensed acid, which comprises adding a water-soluble nitrogen-containing organic substance to an aqueous solution of peroxycondensed acid. 10. A radiation-sensitive composition comprising an aqueous solution of peroxycondensed acid containing tungsten and a water-soluble nitrogen-containing organic substance. 11. The radiation-sensitive composition according to claim 10, wherein the peroxide condensed acid contains tungsten and at least one element selected from the group consisting of niobium, tantalum, and titanium. 12. The radiation-sensitive composition according to claim 10, wherein the water-soluble nitrogen-containing organic substance contains at least one organic substance selected from the group consisting of nitriles, amines, and amides. 13. The radiation-sensitive composition according to claim 10, wherein the water-soluble nitrogen-containing organic substance is contained in a concentration of 1% by weight or more based on the peroxide condensed acid. 14, General formula (1-x-y-z)WO_3・x/2Nb_2O_5・
y/2Ta_2O_5・zTiO_2・lH_2O_2
・mH_2O・nCO_2 (However, x, y, z, l,
m and n are 0≦x+y+z<1, 0<l≦1, 0, respectively
.. 16<m<4, 0≦n≦0.025) A radiation-sensitive composition comprising an aqueous solution of peroxycondensed acid and a water-soluble nitrogen-containing organic substance. 15. The radiation-sensitive composition according to claim 14, wherein the water-soluble nitrogen-containing organic substance contains at least one organic substance selected from the group consisting of nitriles, amines, and amides. 16. The radiation-sensitive composition according to any one of claims 10 to 15 is applied onto a substrate to form a coating film, and the coating film is irradiated with radiation in a desired pattern and developed. A pattern forming method. 17. A composition for a coloring film of an electrochromic display element, comprising an aqueous solution of a peroxide condensed acid containing vanadium and a water-soluble nitrogen-containing organic substance. 18. The composition for a coloring film of an electrochromic display element according to claim 17, wherein the water-soluble nitrogen-containing organic substance contains at least one organic substance selected from the group consisting of nitriles, amines, and amides. 19, General formula 2lWO_3・2mMoO_3・(1-l-m)V_2
O_5・xH_2O_2・yH_2O (however, l, m,
x and y are respectively 0≦l+m<1, 0.05≦x≦1,
1. A composition for a coloring film of an electrochromic display element, comprising an aqueous solution of a peroxycondensed acid represented by the following formula (1.5≦y≦3) and a water-soluble nitrogen-containing organic substance. 20. The composition for a coloring film of an electrochromic display element according to claim 19, wherein the water-soluble nitrogen-containing organic substance contains at least one organic substance selected from the group consisting of nitriles, amines, and amides. 21. Claims 17 to 2 on the substrate on which the conductive film is formed.
An electrochromic display element comprising at least a coloring film formed by coating and heating the composition for a coloring film of an electrochromic display element according to any one of items 1 to 0 above, a counter electrode, and an electrolyte held between the two.
JP19945689A 1989-08-02 1989-08-02 Stabilizer for peroxy poly-acid, composition containing the same, radiation-sensitive composition and electrochromic display element Pending JPH0365503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19945689A JPH0365503A (en) 1989-08-02 1989-08-02 Stabilizer for peroxy poly-acid, composition containing the same, radiation-sensitive composition and electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19945689A JPH0365503A (en) 1989-08-02 1989-08-02 Stabilizer for peroxy poly-acid, composition containing the same, radiation-sensitive composition and electrochromic display element

Publications (1)

Publication Number Publication Date
JPH0365503A true JPH0365503A (en) 1991-03-20

Family

ID=16408115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19945689A Pending JPH0365503A (en) 1989-08-02 1989-08-02 Stabilizer for peroxy poly-acid, composition containing the same, radiation-sensitive composition and electrochromic display element

Country Status (1)

Country Link
JP (1) JPH0365503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025470A1 (en) * 2004-08-31 2006-03-09 Sumitomo Metal Mining Co., Ltd. Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
US11105959B2 (en) 2004-08-31 2021-08-31 Sumitomo Metal Mining Co., Ltd. Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025470A1 (en) * 2004-08-31 2006-03-09 Sumitomo Metal Mining Co., Ltd. Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
US8980135B2 (en) 2004-08-31 2015-03-17 Sumitomo Metal Mining Co., Ltd. Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article
US11105959B2 (en) 2004-08-31 2021-08-31 Sumitomo Metal Mining Co., Ltd. Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article

Similar Documents

Publication Publication Date Title
JP2012522895A (en) Etchant composition and method
EP0000702A1 (en) Process for forming a flow-resistant resist mask of radioation-sensitive material
US5772978A (en) Process for producing tungsten oxide
JPS63243298A (en) Production of organic thin film
KR101039320B1 (en) Manufacturing method of lithum tungsten oxide coating material and manufacturing method of electrochromic device
JPH0365503A (en) Stabilizer for peroxy poly-acid, composition containing the same, radiation-sensitive composition and electrochromic display element
DE69814694T2 (en) METHOD FOR PRODUCING LITHIUM-CONTAINING VANADIUM OXYD LAYERS WITH OPTICAL QUALITY
JPS6236008A (en) Polytungstic acid having peroxo structure and method for synthesizing said acid
JP3353066B2 (en) Thin film formation method
JPH02173622A (en) Production of superfine particle/polymer composite composition
DE3617945C2 (en) Process for producing relief images using a radiation-sensitive material containing a poly-tungstic acid with peroxo groups and optionally heterocarbon atoms
JPS63215723A (en) Production of fibrillar polyaniline
JP2000007943A (en) Solution for forming tungsten oxide membrane
JPS61143727A (en) Electrochromic display element
JP2644843B2 (en) Photochemical production method of polymer composite membrane
JPS62297824A (en) Light transmission variable element
JPH0383023A (en) Metallic thin film, metal oxide thin film and production thereof and electrochromic display element
US5961891A (en) Method for preparing coloring layer composition for chromatic device
JPS61275376A (en) Electrochromic display element
JP2849525B2 (en) Gel composite membrane coated sheet
JPH036217A (en) Production of solid electrolytic capacitor
JPS63100448A (en) Radiation sensitive material
Gillet et al. New electrochromic thin-film materials
KR20140137471A (en) Electrochemical method of graphene oxide deposition, graphene oxide deposited substrate made by the same, and electric device including the same
JPH03212416A (en) Solid polyelectrolyte