JPH0365401B2 - - Google Patents
Info
- Publication number
- JPH0365401B2 JPH0365401B2 JP58222883A JP22288383A JPH0365401B2 JP H0365401 B2 JPH0365401 B2 JP H0365401B2 JP 58222883 A JP58222883 A JP 58222883A JP 22288383 A JP22288383 A JP 22288383A JP H0365401 B2 JPH0365401 B2 JP H0365401B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- conductive
- electrical resistance
- sample
- plastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 42
- 239000011231 conductive filler Substances 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 16
- 239000004033 plastic Substances 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Powder Metallurgy (AREA)
- Chemically Coating (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Conductive Materials (AREA)
Description
【発明の詳細な説明】
本発明は、主として電磁波シールド用に使用さ
れる塗料、プラスチツクに、導電性を与えるため
に添加されるニツケル粉末に係り、該粉末の表面
の接触抵抗を低減させた高導電性のニツケル粉末
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nickel powder that is added to paints and plastics used mainly for electromagnetic shielding in order to impart electrical conductivity. It concerns conductive nickel powder.
近年、プラスチツク筺体を用いたエレクトロニ
クス機器の電磁波障害が問題になり、種々の対策
がとられている。 In recent years, electromagnetic interference in electronic equipment using plastic housings has become a problem, and various countermeasures have been taken.
従来、電磁波シールドのためのプラスチツクの
導電化法としては、プラスチツク筺体の内面に、
(1)亜鉛を溶射する。(2)例えば塗料にニツケル、
銀、銅等の粉末を混合した導電性塗料を塗布す
る。(3)金属メツキをする等の所謂表面処理方法が
一般に行なわれている。 Conventional methods for making plastic conductive for electromagnetic shielding include (1) spraying zinc onto the inner surface of a plastic housing; (2) For example, nickel in paint,
Apply conductive paint mixed with powders of silver, copper, etc. (3) So-called surface treatment methods such as metal plating are commonly used.
しかしながら上記(1)の方法は、溶射した亜鉛が
脱落し易く、そのためエレクトロニクス機器内で
配線がシヨートする危険がある。(2)の方法の場合
には、銀粉を使用するのが好ましい高価であり、
その他銅、ニツケル粉末等は、その表面が酸化さ
れ易いので、比較的多量に使用する必要がある
が、何れにしても金属粉末の粒径に制約される
(細粒すぎると電気抵抗が大きくなり、粗粒では
塗面がざらつき効率的ではない)。また(3)の方法
は量産性、コスト面から好ましくない等何れも問
題点の多いものであつた。 However, in the method (1) above, the sprayed zinc is likely to fall off, and there is therefore a risk that the wiring within the electronic equipment may be shot. In the case of method (2), it is preferable to use silver powder, which is expensive;
Other materials, such as copper and nickel powder, need to be used in relatively large amounts because their surfaces are easily oxidized, but in any case, they are limited by the particle size of the metal powder (if the particles are too fine, the electrical resistance will increase). (If the coating is coarse, the coating surface will be rough and it will not be efficient). In addition, method (3) has many problems, such as being unfavorable in terms of mass production and cost.
尚別法として、最近ではプラスチツク粉末に、
金属や炭素等の導電性フイラー(充填剤)を混合
し、所望の形状に成形する方法も注目され始めて
いる。このようにして導電化されたプラスチツク
をエレクトロニクス機器に使用することにより、
電磁波の浸入、放射防止が可能となる。この場合
導電性フイラーは、プラスチツク中で相互に接触
していないと、プラスチツクに導電性が得られず
電磁波のシールド効果が行われるため、フイラー
同志が十分なリンクを形成し、電気的な接触をし
ている必要がある。 As another method, recently plastic powder,
A method of mixing a conductive filler such as metal or carbon and molding it into a desired shape is also beginning to attract attention. By using plastics made conductive in this way in electronic equipment,
It becomes possible to prevent electromagnetic waves from entering and radiating. In this case, if the conductive fillers are not in contact with each other in the plastic, the plastic will not have conductivity and will have an electromagnetic wave shielding effect, so the fillers will form a sufficient link and make electrical contact. Must be.
そのために、プラスチツク中に混入するフイラ
ーの量を増やせば、接触固体が増えて電磁シール
ド効果は上がるが、プラスチツクの機械的強度が
低下したり射出成型がスムーズに行なわれず、コ
ストアツプになるなどの難点がある。 For this reason, increasing the amount of filler mixed into the plastic increases the number of solids in contact and improves the electromagnetic shielding effect, but it also has drawbacks such as decreasing the mechanical strength of the plastic, making injection molding difficult to perform smoothly, and increasing costs. There is.
そこで導電性フイラーとしては、少量の混入量
で電磁シールド効果を持たせるため、出来るだけ
電気抵抗が低いものが望まれる。 Therefore, it is desired that the conductive filler has as low electrical resistance as possible in order to provide an electromagnetic shielding effect with a small amount of mixture.
現在、導電性フイラーとして使用されているも
のにはNi粉末がある。この場合、Ni粉末の表面
は通常酸化膜で覆われており、酸化膜の導電率が
低いため、粉末の電気抵抗を減少させるには限度
がある。その対策として、酸化が進行して酸化膜
が厚くなることを防止するために、表現をステア
リン酸等の皮膜で覆つたり、フイラーの接触性を
向上させるためにその形状をフレーク状、繊維状
にしてアスペクト比(最長寸法と最短寸法の比)
を大きくする方法がとられている。 Ni powder is currently used as a conductive filler. In this case, the surface of the Ni powder is usually covered with an oxide film, and since the oxide film has low conductivity, there is a limit to reducing the electrical resistance of the powder. As a countermeasure, in order to prevent oxidation from progressing and the oxide film becoming thicker, we cover the surface with a film made of stearic acid, etc., and change the shape to flakes or fibers to improve contact with the filler. Aspect ratio (ratio of longest dimension to shortest dimension)
A method is being used to increase the .
しかし、上記の方法ではニツケル粉末の導電率
に経時変化が認められるので酸化進行の抑制方法
としては、いまだ不充分という欠点があつた。 However, the method described above has the disadvantage that it is still insufficient as a method of suppressing the progress of oxidation, since the electrical conductivity of the nickel powder changes over time.
本発明の目的は、上記の欠点を解消し従来法の
(2)導電性塗料用の金属粉末として、また最近研究
中の導電性プラスチツクフイラー用としても優れ
た性能を有する導電性フイラー用ニツケル金属粉
末を提供することにある。 The purpose of the present invention is to eliminate the above-mentioned drawbacks and to overcome the problems of the conventional method.
(2) The object of the present invention is to provide a nickel metal powder for conductive fillers that has excellent performance as a metal powder for conductive paints and also for conductive plastic fillers, which are currently under research.
この目的を達成するため本願発明者は、鋭意研
究の結果、適切な粒径のNi粉末の表面に、微量
の錫を付着させると、顕著に電気抵抗を減少させ
得ることを実験的に見出し、本発明に到達したも
のである。 In order to achieve this objective, the inventor of the present application has conducted extensive research and has experimentally discovered that by attaching a small amount of tin to the surface of Ni powder with an appropriate particle size, the electrical resistance can be significantly reduced. This has led to the present invention.
即ち、本発明の製品は好ましくは粒径1〜
500μmのNi粉末の表面に、外割りで0.01〜10重
量%の範囲の錫を付着させたNi粉末である。 That is, the product of the present invention preferably has a particle size of 1 to
This is a Ni powder in which tin in an amount of 0.01 to 10% by weight is adhered to the surface of a 500 μm Ni powder.
該ニツケル粉末の表面に付着させるSnの量を、
Ni粉末に対し外割りで0.01〜10重量%の範囲とす
る理由は、これ以下では電気抵抗を低減させる効
果が得られず、これ以上付着させても特に効果の
向上は見られないからである。 The amount of Sn attached to the surface of the nickel powder is
The reason why the Ni powder should be in the range of 0.01 to 10% by weight is that if it is less than this, the effect of reducing electrical resistance cannot be obtained, and even if it is attached more than this, no particular improvement in the effect will be seen. .
本発明になるNi粉末の導電性の評価方法は、
特に日本工業規格に規定されていないので、図に
示したように、孔の断面積1cm2のアクリル製シリ
ンダー8を、金メツキしたステンレス板2の上に
置き、アクリル製シリンダー8内にNi粉末を入
れ、Ni粉末の上に金メツキしたステンレス板2
とアクリル製ピストン3を介して1Kgの分銅をの
せ、分銅4で圧搾した状態とし、Ni粉の上下の
金メツキしたステンレス板2を金メツキ銅線5を
用いてデジタルマルチメーター6と接続して、そ
の電気抵抗を測定するという方法によつた。 The method for evaluating the conductivity of Ni powder according to the present invention is as follows:
Since this is not specified in the Japanese Industrial Standards, as shown in the figure, an acrylic cylinder 8 with a hole cross-sectional area of 1 cm 2 is placed on a gold-plated stainless steel plate 2, and Ni powder is placed inside the acrylic cylinder 8. and gold-plated stainless steel plate 2 on top of Ni powder.
A weight of 1 kg was placed on the plate through an acrylic piston 3 and compressed with a weight 4, and the gold-plated stainless steel plate 2 above and below the Ni powder was connected to a digital multimeter 6 using a gold-plated copper wire 5. , by measuring its electrical resistance.
本発明製品を得る方法については、特定されな
いが、推奨する方法としては、例えば、
1(濃塩酸)+1(水)〜1(濃塩酸)+9(水)の稀
塩酸を用いてSnCl2・2H2Oの所定量(Snとして
0.1〜20g/程度)を溶解した水溶液を、常温
あるいは80℃以下程度の温水とし、これに所望の
粒度のNi粉末の適当量を入れ、軽い撹拌を数分
ないし30分程度行ないNiとSnのセメンテーシヨ
ン反応を行なわせ、Ni粉末をSnで被覆する方法
である。 Although the method for obtaining the product of the present invention is not specified, a recommended method is, for example, using dilute hydrochloric acid of 1 (concentrated hydrochloric acid) + 1 (water) to 1 (concentrated hydrochloric acid) + 9 (water) to obtain SnCl 2.2H . 2 A predetermined amount of O (as Sn
Prepare an aqueous solution in which Ni powder (about 0.1 to 20 g/approx. This method involves a cementation reaction to coat Ni powder with Sn.
湿式法による処理を避けたい場合には、乾式被
覆法によつても同様の製品を得ることができる。 If it is desired to avoid processing by wet methods, similar products can also be obtained by dry coating methods.
本発明による製品が極く少量のSn被覆のみに
よつて、何故著しく電気抵抗が低下するのか、そ
の理由については明確ではないが、Ni粉末の表
面を被覆したSnが軟かいために、粉末同志接触
する際に微妙に変形して、その接触面積が増える
ことや、Niの酸化被膜の成長抑制の作用をする
等が想像される。 Although it is not clear why the electrical resistance of the product according to the present invention is significantly reduced by only a very small amount of Sn coating, the reason is that the Sn coated on the surface of the Ni powder is soft, so It is conceivable that it deforms slightly upon contact, increasing the contact area, and that it acts to inhibit the growth of the Ni oxide film.
本発明のNi粉末は、従来のNi粉末(市販品粒
径3〜5μm)を1Kgの重量で圧搾した状態の比
抵抗値が0.2Ωcm以上であるのに対し、0.008〜
0.01Ωcmと極めて導電性に優れている。 The Ni powder of the present invention has a specific resistance value of 0.2Ωcm or more when conventional Ni powder (commercially available particle size 3-5μm) is compressed with a weight of 1Kg, whereas it is 0.008-0.008Ωcm or more.
It has extremely good conductivity of 0.01Ωcm.
従つて前述した導電性塗料用Ni粉末として、
あるいは導電性プラスチツク添加用Ni粉末とし
て、従来品よりも極く少量添加して優れた効果を
発揮することが期待される。 Therefore, as the Ni powder for conductive paint mentioned above,
Alternatively, it is expected that Ni powder for use in conductive plastics can be added in a much smaller amount than conventional products to achieve superior effects.
以下実施例について説明する。 Examples will be described below.
実施例 1
イオン水40mlに濃HCl10mlを加えた稀塩酸に
0.6gのSnCl2・2H2Oを溶解し、これに更に温水
を加えて100mlとし、70℃に保持した水溶液に、
粒径3〜5μmの市販のNi粉末15gを入れガラス
棒で5分間軽く撹拌したのち、1回に100mlのイ
オン水でデカンテーシヨン法により5回洗浄を行
ない、更にエチルアルコールで1回洗浄したの
ち、50℃の恒温乾燥器で5時間乾燥を行なつた。Example 1 Add dilute hydrochloric acid to 40 ml of ionized water and 10 ml of concentrated HCl.
Dissolve 0.6 g of SnCl 2 2H 2 O, add warm water to make 100 ml, and maintain the aqueous solution at 70°C.
After adding 15 g of commercially available Ni powder with a particle size of 3 to 5 μm and stirring lightly with a glass rod for 5 minutes, the mixture was washed five times with 100 ml of ionized water each time using the decantation method, and further washed once with ethyl alcohol. Afterwards, it was dried for 5 hours in a constant temperature dryer at 50°C.
このようにして得られた処理済みのNi粉末2
gを採取し図に示した装置(デジタルマルチメー
ターはタケダ理研工業製、商品名TR−6856)を
用いて、1Kgの荷重を掛けた試料の高さは15.5mm
であり、電気抵抗を測定したところ、0.0154Ω
(比抵抗0.0099Ωcm)であつた。粉末の表面はSn
で覆われていた。 Treated Ni powder 2 obtained in this way
Using the device shown in the figure (digital multimeter manufactured by Takeda Riken Kogyo, trade name TR-6856), the height of the sample with a load of 1 kg was 15.5 mm.
When I measured the electrical resistance, it was 0.0154Ω
(specific resistance 0.0099Ωcm). The surface of the powder is Sn
It was covered with
次にこの粉末を取り出し再び50℃に設定した恒
温乾燥器内に30日間放置したのち、同様にして測
定したところ、試料の高さは15.5mmで、電気抵抗
は0.0156Ω(比抵抗0.0100Ωcm)であり、経時変化
は見られなかつた。 Next, this powder was taken out and left in a constant temperature dryer set at 50℃ for 30 days, and then measured in the same way.The height of the sample was 15.5mm, and the electrical resistance was 0.0156Ω (specific resistance 0.0100Ωcm). , and no change over time was observed.
該Ni粉末に付着したSnを化学分析で定量した
ところ0.35重量%であり極めて薄い被覆であるこ
とが判つた。 When the amount of Sn attached to the Ni powder was determined by chemical analysis, it was found to be 0.35% by weight, indicating an extremely thin coating.
尚同じ市販のNi粉末を、そのまゝ上記と同様
にして電気抵抗を測定したところ、表面が酸化さ
れていることもあるが0.8336Ω、比抵抗0.5738Ω
cm(測定時の試料高さは15.5mm)と非常に高かつ
た。 Furthermore, when we measured the electrical resistance of the same commercially available Ni powder in the same manner as above, we found that although the surface may have been oxidized, the resistivity was 0.8336Ω and the specific resistance was 0.5738Ω.
cm (sample height at the time of measurement was 15.5 mm), which was extremely high.
実施例 2
1中に濃HCl50ml、Sn0.15gを含有する水溶
液1を2ビーカーに入れ50℃に保持し、これ
に平均粒径100μmのNi粉末50gを入れ、10分間
軽くガラス棒で撹拌し、以下実施例1と同様に処
理し、同様に試料2gを秤取してその電気抵抗を
測定したところ比抵抗0.0113Ωcmと低い値を示
し、更に50℃の恒温乾燥器に30日間放置して測定
した比抵抗は0.012Ωcmと、殆んど経時変化は認
められなかつた。測定時に試料の高さは何れも
15.5mmであつた。Example 2 Aqueous solution 1 containing 50 ml of concentrated HCl and 0.15 g of Sn was placed in a beaker and maintained at 50°C. 50 g of Ni powder with an average particle size of 100 μm was added to this and stirred lightly with a glass rod for 10 minutes. The following treatment was carried out in the same manner as in Example 1, and 2g of the sample was similarly weighed and its electrical resistance was measured. It showed a low specific resistance of 0.0113Ωcm, and was further left in a constant temperature dryer at 50°C for 30 days. The specific resistance was 0.012Ωcm, with almost no change over time observed. The height of the sample during measurement is
It was 15.5mm.
尚処理後のNi粉末中にはSn0.08重量%が含ま
れていた。 The treated Ni powder contained 0.08% by weight of Sn.
実施例 3
1中に濃HCl30ml、Sn15gを含む水溶液500
mlを1のビーカーに入れ、室温(25℃)で平均
粒径200μmのNi粉末を入れ、20分間軽くガラス
棒で撹拌し、以下実施例1と同様にして処理後、
その比抵抗を測定したところ、0.0094Ωcmと実施
例1とほぼ同等の低い値を示した。測定時の試料
高さは15.7mmであつた。処理済みのNi粉末のSn
は1.13重量%と実施例1及び2より多かつたが、
比抵抗は若干低目であつた。Example 3 Aqueous solution containing 30 ml of concentrated HCl and 15 g of Sn in 1
ml of Ni powder with an average particle size of 200 μm was placed in a beaker at room temperature (25°C), stirred lightly with a glass rod for 20 minutes, and then treated in the same manner as in Example 1.
When its specific resistance was measured, it showed a low value of 0.0094 Ωcm, which is almost the same as in Example 1. The sample height at the time of measurement was 15.7 mm. Sn in treated Ni powder
was 1.13% by weight, which was higher than in Examples 1 and 2, but
The specific resistance was slightly low.
比較例
濃HCl10mlを含む水溶液100mlを50℃に保持し、
これに実施例1で使用したNi粉末3gを入れ、
5分間軽くガラス棒で撹拌し、以後は実施例1と
同様に処理したのち、実施例1と同様に試料2g
を秤取して比抵抗を測定したところ、0.0821Ωcm
であつた。比抵抗測定時の試料の高さは15.5mmと
実施例1と同じであつた。Ni粉末の表面酸化皮
膜が除去されたので、酸処理しないもの(実施例
1の参考値)よりは低下したが、本発明品とは比
較にならない位高かつた。Comparative example: 100 ml of an aqueous solution containing 10 ml of concentrated HCl was kept at 50°C.
Add 3g of Ni powder used in Example 1 to this,
Stir gently for 5 minutes with a glass rod, then process in the same manner as in Example 1, and then add 2 g of sample in the same manner as in Example 1.
When we weighed and measured the specific resistance, it was 0.0821Ωcm.
It was hot. The height of the sample at the time of resistivity measurement was 15.5 mm, which was the same as in Example 1. Since the surface oxide film of the Ni powder was removed, the value was lower than that of the non-acid treated product (reference value of Example 1), but it was much higher than that of the product of the present invention.
尚酸処理したNi粉末を、50℃の恒温乾燥器内
に30日間放置したのち、同様にして比抵抗を測定
したところ試料高さ15.6mmで、比抵抗0.2405Ωcm
と上昇した。これはNi粉末表面の酸化が進行し
たものと見られる。 After leaving the acid-treated Ni powder in a constant temperature dryer at 50°C for 30 days, the resistivity was measured in the same way, and the resistivity was 0.2405Ωcm at a sample height of 15.6mm.
and rose. This appears to be due to the progress of oxidation on the surface of the Ni powder.
以上説明したように、Ni粉末の表面を微量の
Snで被覆することによつて高導電性とし、且つ
経時変化による、その劣化をもほぼ完全に抑える
ことができる。 As explained above, the surface of Ni powder is
Coating with Sn makes it highly conductive and can almost completely suppress its deterioration due to changes over time.
図は、本発明製品の電気抵抗を測定する治具の
説明図である。
1……試料、2……金メツキステンレス板、3
……アクリル製ピストン、4……1Kg分銅、5…
…金メツキ銅線、6……デジタルマルチメータ
ー、8……アクリル製シリンダー。
The figure is an explanatory diagram of a jig for measuring the electrical resistance of the product of the present invention. 1...Sample, 2...Gold-plated stainless steel plate, 3
...Acrylic piston, 4...1Kg weight, 5...
...Gold plated copper wire, 6...Digital multimeter, 8...Acrylic cylinder.
Claims (1)
%の錫を付着させて成る導電性フイラー用ニツケ
ル粉末。1 Nickel powder for conductive filler, made by adhering 0.01 to 10% by weight of tin on the surface of nickel powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58222883A JPS60114501A (en) | 1983-11-25 | 1983-11-25 | Nickel powder for electrically conductive filler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58222883A JPS60114501A (en) | 1983-11-25 | 1983-11-25 | Nickel powder for electrically conductive filler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60114501A JPS60114501A (en) | 1985-06-21 |
JPH0365401B2 true JPH0365401B2 (en) | 1991-10-11 |
Family
ID=16789374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58222883A Granted JPS60114501A (en) | 1983-11-25 | 1983-11-25 | Nickel powder for electrically conductive filler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60114501A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5415547A (en) * | 1977-07-06 | 1979-02-05 | Tokyo Sanreishiya Kk | Hotgas defrosting method and apparatus |
-
1983
- 1983-11-25 JP JP58222883A patent/JPS60114501A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5415547A (en) * | 1977-07-06 | 1979-02-05 | Tokyo Sanreishiya Kk | Hotgas defrosting method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS60114501A (en) | 1985-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4652465A (en) | Process for the production of a silver coated copper powder and conductive coating composition | |
US4624865A (en) | Electrically conductive microballoons and compositions incorporating same | |
EP0424977B1 (en) | A method of treating particles for use in the manufacture of electromagnetic shielding material | |
JP3643128B2 (en) | Composition for EMI shielding material or electrostatic charge dissipation material and method for providing EMI shielding | |
US4434541A (en) | Electromagnetic shielding | |
EP0326737B1 (en) | Copper powder for electroconductive paints and electroconductive paint compositions | |
US4711814A (en) | Nickel particle plating system | |
US4833033A (en) | Resin coated copper powder for electroconductive paints | |
EP0354131A2 (en) | Ferrite particle plating system and electromagnetic shielding | |
US4769280A (en) | Electromagnetic shielding | |
JPH0365401B2 (en) | ||
CN111531168A (en) | Preparation method of silver-coated aluminum material for electromagnetic shielding | |
KR100243800B1 (en) | Emi shielding pigments, a process for their preparation | |
JPS6241238A (en) | Electroconductive filler | |
JP4583147B2 (en) | Conductive composite powder and method for producing the same | |
JPS5986637A (en) | Electrically conductive inorganic powder | |
CN112521790A (en) | Modified zinc powder and preparation method and application thereof | |
JPS61258875A (en) | Electrically conductive paint | |
JP2567432B2 (en) | Conductive resin composition | |
EP0337596A2 (en) | Electroconductive magnesia powder and process for preparation thereof | |
JPH0370322B2 (en) | ||
JPH05190240A (en) | Manufacture of electric brush and copper powder material for manufacturing electric brush | |
JPS60226570A (en) | Copper powder for electrically-conductive coating compound and its preparation | |
JPH05314813A (en) | Copper paste for conductor circuit and manufacture thereof | |
JPH0368702A (en) | Method for treating surface of copper powder |