JPH0365400B2 - - Google Patents

Info

Publication number
JPH0365400B2
JPH0365400B2 JP57119984A JP11998482A JPH0365400B2 JP H0365400 B2 JPH0365400 B2 JP H0365400B2 JP 57119984 A JP57119984 A JP 57119984A JP 11998482 A JP11998482 A JP 11998482A JP H0365400 B2 JPH0365400 B2 JP H0365400B2
Authority
JP
Japan
Prior art keywords
soap
temperature
molten
floating
swelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57119984A
Other languages
Japanese (ja)
Other versions
JPS5912999A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11998482A priority Critical patent/JPS5912999A/en
Publication of JPS5912999A publication Critical patent/JPS5912999A/en
Publication of JPH0365400B2 publication Critical patent/JPH0365400B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は膨潤性と融解性の少ない浮き石けん
棒、その製造方法に関するものである。 従来の公知の方法により製造された浮き石けん
は使用の際に膨潤性と融解性が高い欠点がある。
従つてこのような難点の解決が消費者及びその業
界から強く要望されて来た。 本発明者は継続的な研究の結果、水分含量14%
乃至24%である熔融状態の石けんを空気又は適当
な気体を添加して、冷却しながら撹拌を行つて、
温度51℃乃至65℃の半熔融状態にしてそれを72℃
乃至80℃に加熱して圧出する場合、公知の方法で
製造した浮き石けん又は化粧用石けんより膨潤性
と融解性が少ない改良された浮き石けんを得る事
が出来ることの知見を得て本発明を完成した。 従来の公知の浮き石けんの製造方法では、水分
含量が約20%の濃縮された液体状石けんから直接
固体状石けんを製造していた。その例をあげると
次の如くである。 ヂヤケツト内部の冷却水に依り冷却されるコン
バーターに液体状の石けんと空気等の気体、香
料、色素又はその他の混合組成物を入れる。此の
混合物を撹拌して混合すると気泡が発生するが、
排出バルブを通じてこれを連続的に他の容器に移
して適切な形態に固体化させる。 又流動状の石けんから適当な石けん塊の形態に
なるよう、圧出する方法に次のような例がある。 普通の石けんに比べて水分が少なく気泡が多く
beta相の石けん含量が大きい棒状浮き石けんの製
造工程に於いて炭素数16乃至22の飽和脂肪酸ナト
リウムを少なくとも15%含有する流動状石けん気
体を混合して撹拌を行ないペースト状にする。そ
して温度を71℃から51.7℃迄冷却しながら石けん
を撹拌して石けんの大部分をbeta相に変換させる
事に依り浮き石けんを製造する公知方法である。 公知の浮き石けんの製造方法のもう一つの例を
次にあげる。 梛子油20%、牛脂80%よりなる混合油を石けん
化して水分30%を含有するナトリウム石けんを製
造して17.58Kg/cm2以上の高圧蒸気を供給しなが
ら200℃迄加熱する。そしてスプレイノズルを通
じてフラツシング室に送り水分含量約20%になる
よう水分を蒸発させるが此の時の温度は106℃で
ある。このように生成された流動状石けんは冷却
装置で60℃迄冷却される。此の温度では石けんは
ペースト状として粘着性がある。そして石けんが
切断機に至つた時の比重が0.80になるよう石けん
に空気を入れて浮き石けんを製造する。 上記の従来の公知方法で製造された浮き石けん
は使用の際に膨潤性と融解性が高い欠点を有して
いる。 本発明は膨潤性と融解性が少ない浮き石けん棒
とその製造方法に関したものである。本発明によ
れば、水分含量が14%乃至24%である熔融状態の
石けんを空気又は適切な気体を添加して冷却しな
がら撹拌を行ない温度51℃乃至65℃の半熔融状態
を作りそれを72℃乃至80℃に加熱して圧出するこ
とに依り膨潤性と融解性が少ない浮き石けんを製
造することが出来るのである。 本発明の目的は膨潤性と融解性が少ない浮き石
けんを提供することにある。 本発明の方法により製造された石けんは、従来
の公知された方法で製造される石けんが有する幾
つかの欠点を除去した。 本発明の他の目的は膨潤性と融解性が少ない浮
き石けんの製造方法を提供することである。 本発明の方法では水分含量が14%乃至24%であ
る熔融状態の石けんを断熱下で継続撹拌を行つて
温度を51℃乃至65℃に維持することにより従来の
欠点を解決した。 本発明は膨潤性と融解性が少ない浮き石けんに
関するものである。水分含量が14%乃至24%であ
る熔融状態の石けんを空気又は適当な気体を添加
して冷却しながら撹拌を行い温度51℃乃至65℃の
半熔融状態にしてそれを72℃乃至80℃に加熱して
圧出することにより、膨潤性と融解性が少ない浮
き石けんを製造する事が出来る。一度の冷却後撹
拌してすぐに圧出をせずに、冷却をしながら継続
して機械的撹拌を充分に行うことにより機械的エ
ネルギーの一部は熱エネルギーに転換されて半熔
融状の石けんに伝わり石けん塊の温度を51℃から
65℃に上昇させ、機械的撹拌により剪断、混和、
均質化及び分散作用が行なわれる。充分なる機械
的撹拌の後、石けん塊を圧出する時にその温度が
72℃乃至80℃になつてはじめて膨潤性と融解性が
少ない均質化された石けんに結晶転換されるので
ある。 これに比べて従来の方法では71℃から51.7℃迄
冷却しながら撹拌して棒状に形成させることに依
り、得られる石けんの膨潤性と融解性が高かつ
た。このように一度の半熔融状態に冷却して撹拌
して圧出した石けんにはbeta相石けんの含量が多
いのである。本発明の方法では、このように石け
んを一度の冷却と撹拌を行ないそのまま圧出する
のとは違い、継続的断熱下で半熔融状態の石けん
塊を機械的撹拌に依り剪断、混和、均質化及び分
散の作用をもたらし、同時に機械的エネルギーの
一部は熱エネルギーに転換されて半熔融状態であ
る石けん塊の温度を51℃から65℃に上昇させ、石
けんの温度を72℃乃至80℃にして石けん結晶を転
換させながら圧出して改良された浮き石けんを製
造するのである。尚、単純に冷却と撹拌をする場
合72℃乃至80℃の温度で圧出すれば生成された石
けん棒はその形状の維持性が弱く石けん棒の連続
的圧出工程に支障をもたらす。然し、本発明の方
法で72℃乃至80℃の圧出温度で石けんの結晶転換
工程を経るとその形状の維持性が高く、従つて膨
潤性と融解性が少ない石けん棒の連続的圧出工程
作用が可能である。 本発明の製造工程を詳細に説明すると次の如く
である。通常の方法に依り製造した水分含有量29
%乃至33%の脂肪酸アルカリ金属塩、一般的には
脂肪酸ナトリウム塩又は脂肪酸カリウム塩と脂肪
酸ナトリウム塩の混合物を150℃乃至180℃に加熱
して温度約103℃乃至106℃でフラツシング乾燥を
行い水分含有量約14%乃至24%の液体状石けんを
製造する。浮き石けんを希望する時はこれに空気
又は石けんと混合し得る他の気体を含有させて比
重を0.85乃至0.98にする。それから必要であれば
酸化防止剤、金属イオン封鎖剤、酸化チタン、香
料或いは他の添加剤を加える。上記の液体状石け
んを冷却工程で51℃乃至65℃迄の半熔融状態の石
けんになるよう撹拌を行い、そして半熔融状態の
石けんを圧出しながらその結晶を転換させる。 ここで重要な事は圧出時の温度が72℃乃至80℃
になるよう冷却工程で冷却の温度、水量、撹拌速
度、及び石けんの供給速度をコントロールする事
である。万一、機械的撹拌工程中に石けんの温度
が51℃未満であれば最終製品の膨潤性と融解性が
高くなり、温度が65℃を超えれば最終製品の粘着
性が不足して流動性があり表面に亀裂状があらわ
れるようになる。それで圧出時の温度が72℃乃至
80℃である時にのみ膨潤性と融解性が少なくなる
ので特にこの温度に注意しなければならない。 結論的に浮き石けんの膨潤性と融解性を低下さ
せるためには石けんの水分含量が重要な事ではな
く機械的撹拌の時の液体状の石けんの温度が51℃
乃至65℃に上昇し圧出時の石けん温度が72℃乃至
80℃にコントロールされなければならないという
事である。 添附した図面により本発明方法を実施するため
の装置の一例を詳細に説明すると次の如くであ
る。 空気又は他の気体及び香料、色素、酸化防止剤
等を添加した水分14%乃至24%の熔融状態の石け
んを注入口に入れて、内部円筒5と外部円筒6そ
してローター12からなる熱交換器で冷却する。
内部円筒5は回転延長軸11に依り駆動される回
転ローター12が設備されて居り、ローター12
にはブレード13がセツトピン14で取りつけら
れている。ローター12が予定された方向に回転
するとブレード13は遠心力と石けんの抵抗に依
りブレード13のナイフエツヂ15が内部円筒5
の内壁面に附着する石けんの薄く固い境膜をかき
とりそのかきとられた固着層はブレード13の回
転に依り混和、撹拌、均質化の作用が行なわれ
る。熱交換器1を通過する間に上記濃縮された石
けんは65℃乃至51℃まで冷却された連結管2を通
じて石けん結晶転換器3に送られる。そしてブレ
ード13の回転で強力な混和、撹拌及び均質化作
用が効果的に行なわれるよう穴があけられてい
る。外部円筒6の外部は保温材17で包まれてい
る。連結管2は保温のために外部筒18に包まれ
て居り温度計19が附着されている。 石けん結晶転換器3は、その上部に入口21が
あり円筒22内壁面に一列以上の数個の櫛模様の
固定ピン23が取り付けられて居り回転軸24に
も数個のニーダーピン25が附着されている。固
定ピン23とニーダーピン25は回転の時相互交
叉して回転する。そして円筒22の出口側には回
転軸24の一端27を支える軸受け28があり、
軸受け28は円筒22の内壁面に固定された支持
材29に依り支持されて居り圧出口が圧出部32
に連結されている。 円筒22は保温のため保温筒33で包まれてい
る。圧出部32は圧出を容易にするために温水が
循環する温水筒34で包まれている。 以上の冷却工程と石けん結晶転換工程を経て圧
出部32の先端にある圧出口20で圧出された石
けんの温度は72℃乃至80℃である。このようにし
て得られた浮き石けん棒を切断、成型して比重
0.85乃至0.98の浮き石けん製品を作るのである。 更にまた本発明方法の実施例を詳述する。然し
本発明の範囲は次の実施例にのみ限定されるもの
ではない。 実施例 1〜9 牛脂脂肪酸70%、梛子脂肪酸30%の混合物を通
常の方法に依つて水分含量31%のナトリウム石け
んを製造し160℃乃至175℃に加熱する。これを大
気圧中にノズルで噴射して水分含量15.8%乃至
23.7%の熔融状石けんを造る。このような熔融状
石けんに最終製品の比重が約0.93になるよう空気
を含有させ香料0.1%EQTA−4Na塩を0.03%配
合してポンプで冷却工程に送りローターを約
200r.p.m速度で回転させ9℃乃至18℃の冷却水を
毎分300乃至500の速度で供給して49℃乃至60℃
に冷却する。そして冷却された半熔融状態の石け
んを連結管を通じて石けん結晶転換工程に送る。
回転軸を200r.p.m.、300r.p.m.、420r.p.m.の回転
速度で各々回転させて半熔融状態の石けんを撹拌
する。圧出部先端の圧出口より圧出された石けん
棒をテストした結果を第1表に示す。
The present invention relates to a floating soap bar with low swelling and melting properties, and a method for manufacturing the same. Floating soaps manufactured by conventionally known methods have the disadvantage of high swelling and melting properties during use.
Therefore, there has been a strong demand from consumers and the industry for a solution to these difficulties. As a result of continuous research, the inventor found that the moisture content was 14%.
Add air or a suitable gas to molten soap containing 24% to 24%, stir while cooling,
Bring it to a semi-molten state at a temperature of 51°C to 65°C and heat it to 72°C.
The present invention was based on the knowledge that when extruded by heating to 80°C, it is possible to obtain an improved floating soap that has less swelling and melting properties than floating soaps or cosmetic soaps produced by known methods. completed. In the conventional method for producing floating soap, solid soap is produced directly from concentrated liquid soap having a water content of about 20%. An example of this is as follows. A liquid soap, a gas such as air, a fragrance, a color, or other mixed composition are placed in a converter that is cooled by cooling water inside the jacket. When this mixture is stirred and mixed, air bubbles are generated,
It is continuously transferred to another container through a discharge valve and allowed to solidify into a suitable form. The following examples are examples of methods for extruding fluid soap into appropriate soap lumps. It has less moisture and more bubbles than regular soap.
In the process of manufacturing bar-shaped floating soap with a large beta phase soap content, a fluid soap gas containing at least 15% sodium saturated fatty acid having 16 to 22 carbon atoms is mixed and stirred to form a paste. This is a known method for producing floating soap by stirring the soap while cooling the temperature from 71°C to 51.7°C to convert most of the soap into the beta phase. Another example of a known method for producing floating soap is given below. Sodium soap containing 30% water is produced by soaping a mixed oil consisting of 20% castor oil and 80% beef tallow, and heated to 200°C while supplying high pressure steam of 17.58 kg/cm 2 or more. The water is then sent to a flushing chamber through a spray nozzle and evaporated to a water content of approximately 20%, at a temperature of 106°C. The fluid soap thus produced is cooled to 60°C in a cooling device. At this temperature, soap becomes sticky as a paste. Air is then pumped into the soap to produce floating soap so that when it reaches the cutting machine, the specific gravity is 0.80. The floating soap produced by the conventional known method described above has the disadvantage of high swelling and melting properties during use. The present invention relates to a floating soap bar with low swelling and melting properties and a method for manufacturing the same. According to the present invention, soap in a molten state with a water content of 14% to 24% is stirred while cooling by adding air or an appropriate gas to create a semi-molten state at a temperature of 51°C to 65°C. By heating the soap to 72°C to 80°C and extruding it, floating soap with low swelling and melting properties can be produced. An object of the present invention is to provide a floating soap with low swelling and melting properties. The soap produced by the method of the present invention eliminates some of the drawbacks of soaps produced by conventional known methods. Another object of the present invention is to provide a method for producing floating soap with low swelling and melting properties. The method of the present invention solves the conventional drawbacks by continuously stirring a molten soap having a moisture content of 14% to 24% under heat insulation to maintain the temperature at 51°C to 65°C. The present invention relates to a floating soap with low swelling and melting properties. Molten soap with a moisture content of 14% to 24% is stirred while cooling by adding air or a suitable gas to a semi-molten state at a temperature of 51°C to 65°C, and then heated to a temperature of 72°C to 80°C. By heating and extruding, it is possible to produce floating soap with low swelling and melting properties. After cooling, a portion of the mechanical energy is converted into thermal energy, and a part of the mechanical energy is converted into thermal energy, resulting in a semi-molten soap. The temperature of the soap block was changed from 51℃ to
Raised to 65 °C, sheared, mixed, and mixed by mechanical stirring.
A homogenizing and dispersing action takes place. After sufficient mechanical stirring, the temperature when extruding the soap mass is
It is not until the temperature reaches 72°C to 80°C that the crystals transform into a homogenized soap with less swelling and melting properties. In contrast, in the conventional method, the resulting soap had high swelling and melting properties by forming the soap into a rod shape by stirring while cooling it from 71°C to 51.7°C. In this way, soap that has been cooled to a semi-molten state, stirred, and then pressed has a high content of beta phase soap. Unlike the method of the present invention, which cools and stirs the soap once and then presses it out as is, the method of the present invention uses mechanical stirring to shear, mix, and homogenize the semi-molten soap mass under continuous heat insulation. At the same time, part of the mechanical energy is converted into thermal energy to raise the temperature of the semi-molten soap mass from 51°C to 65°C, and the temperature of the soap is from 72°C to 80°C. The soap crystals are transformed and extruded to produce improved floating soap. In addition, if the soap bar is simply cooled and stirred and extruded at a temperature of 72°C to 80°C, the resulting soap bar will have a poor ability to maintain its shape, causing problems in the continuous extrusion process of the soap bar. However, when the soap undergoes a crystal conversion process at an extrusion temperature of 72°C to 80°C using the method of the present invention, its shape is highly maintained, and therefore, the continuous extrusion process of the soap bar has low swelling and melting properties. action is possible. The manufacturing process of the present invention will be explained in detail as follows. Moisture content29 manufactured by conventional methods
% to 33% of a fatty acid alkali metal salt, generally a fatty acid sodium salt or a mixture of a fatty acid potassium salt and a fatty acid sodium salt, is heated to 150°C to 180°C and flash-dried at a temperature of about 103°C to 106°C to remove moisture. Produces liquid soap with a content of approximately 14% to 24%. When a floating soap is desired, it is enriched with air or other gas that can be mixed with the soap to give a specific gravity of 0.85 to 0.98. Then add antioxidants, sequestrants, titanium oxide, fragrances or other additives if necessary. The above-mentioned liquid soap is stirred in the cooling process to become a semi-molten soap at a temperature of 51°C to 65°C, and the semi-molten soap is squeezed out to convert its crystals. The important thing here is that the temperature during extrusion is between 72℃ and 80℃.
It is necessary to control the cooling temperature, water amount, stirring speed, and soap supply speed in the cooling process so that the amount of soap is maintained. If the temperature of the soap is less than 51℃ during the mechanical stirring process, the swelling and melting properties of the final product will be high, and if the temperature exceeds 65℃, the final product will lack stickiness and flowability. Cracks begin to appear on the surface. Therefore, the temperature during extrusion is 72℃~
Particular attention must be paid to this temperature, as swelling and melting properties decrease only at 80°C. In conclusion, in order to reduce the swelling and melting properties of floating soap, it is not the water content of the soap that is important, but the temperature of the liquid soap at 51℃ during mechanical stirring.
The temperature of the soap during extrusion increases to 72℃ to 65℃.
This means that the temperature must be controlled at 80℃. An example of an apparatus for carrying out the method of the present invention will be described in detail with reference to the accompanying drawings. A heat exchanger consisting of an inner cylinder 5, an outer cylinder 6, and a rotor 12, in which molten soap with a water content of 14% to 24% to which air or other gases and fragrances, pigments, antioxidants, etc. have been added is introduced into an inlet. Cool it down.
The inner cylinder 5 is equipped with a rotating rotor 12 driven by a rotating extension shaft 11;
A blade 13 is attached to the blade 13 with a set pin 14. When the rotor 12 rotates in a predetermined direction, the knife edge 15 of the blade 13 moves into the inner cylinder 5 due to the centrifugal force and the resistance of the soap.
The thin, hard film of soap adhering to the inner wall surface of the soap is scraped off, and the scraped fixed layer is mixed, stirred, and homogenized by the rotation of the blade 13. While passing through the heat exchanger 1, the concentrated soap is sent to the soap crystal converter 3 through the connecting pipe 2, which is cooled to 65°C to 51°C. Holes are formed so that powerful mixing, stirring, and homogenizing effects can be effectively performed by the rotation of the blade 13. The outside of the external cylinder 6 is wrapped with a heat insulating material 17. The connecting pipe 2 is enclosed in an outer cylinder 18 for heat retention, and a thermometer 19 is attached. The soap crystal converter 3 has an inlet 21 at its upper part, a cylinder 22 with several fixing pins 23 in a row or more in a comb pattern attached to the inner wall surface, and several kneader pins 25 attached to the rotating shaft 24. ing. When the fixing pin 23 and the kneader pin 25 rotate, they cross each other and rotate. There is a bearing 28 on the exit side of the cylinder 22 that supports one end 27 of the rotating shaft 24.
The bearing 28 is supported by a support member 29 fixed to the inner wall surface of the cylinder 22, and the pressure outlet is connected to the pressure-pressing portion 32.
is connected to. The cylinder 22 is wrapped in a heat-retaining cylinder 33 to keep it warm. The extrusion section 32 is surrounded by a hot water cylinder 34 through which hot water circulates to facilitate extrusion. The temperature of the soap extruded through the extrusion port 20 at the tip of the extrusion section 32 after the above cooling process and soap crystal conversion process is 72°C to 80°C. The floating soap bar obtained in this way is cut and molded to determine its specific gravity.
They make floating soap products with a weight of 0.85 to 0.98. Furthermore, examples of the method of the present invention will be described in detail. However, the scope of the present invention is not limited only to the following examples. Examples 1 to 9 Sodium soap having a moisture content of 31% is prepared by a conventional method using a mixture of 70% beef tallow fatty acid and 30% sludge fatty acid and heated to 160°C to 175°C. This is sprayed with a nozzle into atmospheric pressure to reduce the moisture content to 15.8%.
Produces 23.7% molten soap. Air is added to the molten soap so that the specific gravity of the final product is about 0.93, 0.1% fragrance and 0.03% EQTA-4Na salt are added to the molten soap, and the mixture is sent to the cooling process using a pump and the rotor is heated to about 0.93%.
49℃ to 60℃ by rotating at a speed of 200r.pm and supplying cooling water of 9℃ to 18℃ at a rate of 300 to 500 degrees per minute.
Cool to The cooled semi-molten soap is then sent to a soap crystal conversion process through a connecting pipe.
The rotating shafts are rotated at rotational speeds of 200 r.pm, 300 r.pm, and 420 r.pm to stir the semi-molten soap. Table 1 shows the results of testing the soap bars extruded from the extrusion port at the tip of the extrusion section.

【表】【table】

【表】 第1表に示された試験結果は半熔融状態の石け
んが石けん結晶転換工程中に機械的撹拌作用に依
り熱エネルギーを得て51℃乃至65℃に温度が上昇
し、石けん棒圧出時の温度を72℃乃至80℃にコン
トロールして膨潤性と融解性が少ない浮き石けん
を得た事を示している。 石けんの膨潤性と融解性は次の方法で測定し
た。高さ30mm横55mm縦95mmに成型された石けんを
12℃の水中に深さ40mmの中に垂直にして4時間を
浸してからその膨潤性に依る重量増加を測定し膨
潤度を比較した。そして更に20時間計24時間を水
中に浸した後に石けんを水より出して水分を含ん
だ軟弱な部分を柔かいガーゼで拭いて部屋の中の
常温での時間経過に依る重量を測つた。その重量
が平衡状態になつたとみえる時点での重量と水に
浸す以前の当初の重量の差を以つて融解度を表示
した。従つてその数値が大きい程高い程膨潤性と
融解性を現わすのである。
[Table] The test results shown in Table 1 show that during the soap crystal conversion process, the soap in a semi-molten state gains thermal energy through mechanical stirring and its temperature rises from 51°C to 65°C. The results show that floating soap with low swelling and melting properties was obtained by controlling the temperature at 72°C to 80°C. The swelling and melting properties of soap were measured by the following method. A soap molded to a height of 30 mm, a width of 55 mm, and a length of 95 mm.
After immersing it vertically in water at 12°C to a depth of 40 mm for 4 hours, the weight increase due to swelling was measured and the degree of swelling was compared. After immersing it in water for an additional 20 hours, for a total of 24 hours, the soap was removed from the water, and the soft, moist areas were wiped with soft gauze, and the weight was measured over time at room temperature. The degree of melting was expressed as the difference between the weight at the time when the weight seemed to reach an equilibrium state and the initial weight before immersion in water. Therefore, the larger the value, the higher the swelling and melting properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の概
略的断面、第2図は第1図で4−4方向に切断し
た上記装置の横断面である。 1……熱交換器、3……石けん結晶転換器、5
……内部円筒、12……回転ローター、13……
ブレード、22……円筒、23……固定ピン、2
4……回転軸、25……ニーダーピン。
FIG. 1 is a schematic cross-section of an apparatus for carrying out the method of the invention, and FIG. 2 is a cross-section of the apparatus taken along the 4--4 direction in FIG. 1... Heat exchanger, 3... Soap crystal converter, 5
...Inner cylinder, 12...Rotating rotor, 13...
Blade, 22...Cylinder, 23...Fixing pin, 2
4... Rotating shaft, 25... Kneader pin.

Claims (1)

【特許請求の範囲】[Claims] 1 水分含量が14%乃至24%である溶融状態の脂
肪酸ナトリウム塩又は脂肪酸ナトリウム塩と脂肪
酸カリウム塩の混合物を空気又は石けんと混合可
能である気体を添加して冷却しながら撹拌を行な
い、51℃乃至65℃までの半溶融状態の石けんと
し、さらに生成した半溶融状態の石けんを200r.
p.m.乃至420r.p.m.の速度で機械的撹拌を行いな
がら72℃乃至80℃に加熱して圧出することを特徴
とする、浮き石けん棒の製造方法。
1 A molten fatty acid sodium salt or a mixture of fatty acid sodium salt and fatty acid potassium salt with a moisture content of 14% to 24% is stirred while cooling by adding air or a gas that is miscible with soap, and heated to 51°C. The soap is semi-molten at temperatures ranging from 65℃ to 65℃, and the resulting semi-molten soap is heated to 200r.
A method for producing a floating soap bar, characterized by heating and extruding at 72°C to 80°C while mechanically stirring at a speed of pm to 420 r.pm.
JP11998482A 1982-07-12 1982-07-12 Method and apparatus for producing improved float soap bar Granted JPS5912999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11998482A JPS5912999A (en) 1982-07-12 1982-07-12 Method and apparatus for producing improved float soap bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11998482A JPS5912999A (en) 1982-07-12 1982-07-12 Method and apparatus for producing improved float soap bar

Publications (2)

Publication Number Publication Date
JPS5912999A JPS5912999A (en) 1984-01-23
JPH0365400B2 true JPH0365400B2 (en) 1991-10-11

Family

ID=14775026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11998482A Granted JPS5912999A (en) 1982-07-12 1982-07-12 Method and apparatus for producing improved float soap bar

Country Status (1)

Country Link
JP (1) JPS5912999A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529865C2 (en) 1995-08-14 2002-02-28 Kaufmann R Dataprint Device for applying liquids to a base by means of an application element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865799A (en) * 1981-10-16 1983-04-19 アイデアル石鹸株式会社 Continuous floating soap manufacturing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865799A (en) * 1981-10-16 1983-04-19 アイデアル石鹸株式会社 Continuous floating soap manufacturing apparatus

Also Published As

Publication number Publication date
JPS5912999A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
AU764679B2 (en) Method of producing seed crystal suspensions based on melted fat
US4474683A (en) Soap making process
US4772434A (en) Soap making process
US2445226A (en) Coated granules of a dry watersoluble salt of carboxymethyl cellulose
US3089197A (en) Method for preparing detergent compositions
US3928646A (en) Method for blending temperature sensitive ingredients in the production of dough
US4104412A (en) Methods and systems for making aerated candy
JP4171175B2 (en) A new way to make popping candy
JPH0365400B2 (en)
US2720463A (en) Gelatin capsule casting composition preparation
US3993580A (en) Continuous production of hydrated lipids
USRE23823E (en) Detergent and method of making
KR860000426B1 (en) Manufacturing of soap of floating in water and apparatus therefor
JP6829712B2 (en) Methods and systems for producing low water activity fillings
HU210140B (en) Continuous process for producing low density bar soap
RU2281654C2 (en) Sparkling caramel article
US2295596A (en) Soap flake of novel phase composition and process for making the same
US3568463A (en) Apparatus for fatty materials
US2945819A (en) Process of drying soap
JPS5927796B2 (en) Continuous floating soap manufacturing equipment
US3455700A (en) Process for plasticizing fatty materials
CN220657511U (en) Reaction kettle and beta cyclodextrin synthesizing equipment
US20050049426A1 (en) Method of producing seed crystal suspensions based on melted fat
US2339883A (en) Method and apparatus for producing solid fatty food products
CA1064921A (en) Continuous production of hydrated lipids