JPH0365153B2 - - Google Patents

Info

Publication number
JPH0365153B2
JPH0365153B2 JP19872182A JP19872182A JPH0365153B2 JP H0365153 B2 JPH0365153 B2 JP H0365153B2 JP 19872182 A JP19872182 A JP 19872182A JP 19872182 A JP19872182 A JP 19872182A JP H0365153 B2 JPH0365153 B2 JP H0365153B2
Authority
JP
Japan
Prior art keywords
fermentation
acetone
butanol
medium
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19872182A
Other languages
Japanese (ja)
Other versions
JPS5988093A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19872182A priority Critical patent/JPS5988093A/en
Publication of JPS5988093A publication Critical patent/JPS5988093A/en
Publication of JPH0365153B2 publication Critical patent/JPH0365153B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアセトン・ブタノール生産菌の固定化
菌体を用いてアセトンおよびブタノールを連続的
に発酵生産する方法に関する。 アセトン・ブタノール発酵は回分式で行われた
時代があつた。しかし、この方法で得られるアセ
トンおよびブタノールの収量はソルベントとして
0.4g/hr程度にすぎず、その後アセトンおよ
びブタノールの生産は石油化学で行われるに至つ
ている。 最近、固定化菌体による各種発酵生産物の製造
が検討されるに至り、アセトン・ブタノール発酵
もこの点から検討がなされている
〔Biotechnology Letters vol.2(No.5)、241−246
(1980)〕。 上記文献で採用されている発酵方式は回分操作
を繰り返す方式(repeated use in a batch
process)である。 本発明者らはアセトン・ブタノール生産菌の固
定化菌体を用いてアセトンおよびブタノールを連
続的に発酵生産する方法を検討した結果、アルコ
ール発酵の固定化酵母の場合と異なり、固定化後
直ちに連続発酵を行う場合には正常発酵の開始の
指標となる湧付現象(アセトンおよびブタノール
の生成に伴つて生成する水素、炭素ガス等の発酵
ガスによる発泡)がみられるまでにかなりの時
間、日数を要することが判明した。そこで本発明
者らは湧付時間を短縮すべくさらに検討したとこ
ろ、連続発酵に先立ち、一旦回分式に培地中で固
定化菌体を培養する場合には湧付時間を著しく短
縮できることを見い出し、本発明を完成した。 湧付時間を短縮できることにより、総発酵時間
を短かくすることができるメリツトもあるが、も
つと大きなメリツトは雑菌汚染のおそれを大巾に
滅ずることができることである。すなわち、連続
発酵では一旦正常発酵が開始された後は発酵ガス
によつて装置内部が陽圧に保たれ雑菌混入の虞れ
が少ないが、正常発酵開始に至るまでは雑菌汚染
に十分注意しなければならない。したがつて湧付
時間を短かくできることは雑菌汚染のおそれを滅
ずることにつながるのである。 以下本発明をさらに詳しく説明する。 本発明に使用するアセトン・ブタノール生産菌
としては公知のものが使用できる。 例えばクロストリデイウム(Clostridium)属
に属する種々の菌、すなわちクロストリデイウ
ム・アセプチリクム(acetobutylicum)、クロス
トリデイウム・サツカロペルプチアセトニクム
(saccharoperbutyacetonicum)、クロストリデイ
ウム・サツカロプチリクム
(saccharobutylicum)、クロストリデイウム・サ
ツカロプチルアセトニクム
(saccharobutylacetonicum)、クロストリデイウ
ム・サツカロアセトプチリクム
(saccharoacetobutylicum)などに属するアセト
ン・ブタノール生産菌が用いられる。具体的には
クロストリデイウム・アセトプチリクム
ATCC824、4259、10132、IFO3854、クロストリ
デイウム・サツカロペルプチアセトニクム
ATCC27122などがあげられる。 アセトン・ブタノール生産菌の固定化は一般的
手法によつて行うことができる。 例えば担体結合法、架橋法、ゲル包括法などを
適用できる。 これらのうち、固定化が容易で安定した活性が
得られるゲル包括法が好適に使用される。ゲル包
括法にはアルギン酸カルシウムゲル、ポリアクリ
ルアミドゲル、コラーゲン、フイプリン、寒天、
カラギーナン、セルロース等による方法がある。 これらのゲルによる包括の操作は公知の操作に
よればよいが具体的な例を示せば次の通りであ
る。 すなわち、アルギン酸ナトリウム水溶液中に包
括しようとする生菌体又は培養液を加え混合物を
つくり、ゲル化剤の塩化カルシウムなどの水溶液
中に該混合物を滴下すると固定化菌体が得られ
る。前記第3成分を加える場合は上記混合物中に
さらに第3成分を包含させればよい。 ポリアクリルアミドゲルによる包括は、アクリ
ルアミドモノマー、架橋剤としてのN,N1−メ
チレンビスアクリルアミドおよび生菌体(培養液
としてでもよい)を緩衝液に懸濁し、該懸濁液に
重合開始剤としての過硫酸アンモニウムおよび重
合促進剤としてのN,N,N1,N1−テトラメチ
ルエチレンジアミンを加えて15〜23℃で10分程度
重合反応を行わせると固定化菌体が得られる。 本発明によれば上記のごとくして調製された固
定化菌体をまず培地中で回分式で培養し、ついで
培地を連続的に供給してアセトン・ブタノール発
酵を行わしめる。 この連続発酵は固定化菌体を反応塔に充填して
培地(発酵培地)を連続的に供給することにより
行うが、回分式培養は反応塔外で別の装置を用い
て行つてもよく、又該反応塔で行つてもよい。 操作の手間を考えれば該反応塔で回分式培養を
行い、そのまま連続発酵に切り換える方が好まし
い。 回分式培養の培地及び連続発酵の培地として
は、同様のものを用いることができる。 すなわち、主炭素源のほか窒素源、無機物その
他の栄養物を程よく含有する培地ならば、合成培
地または、天然培地の何れも使用可能である。炭
素源としては、グルコース、シユークロース、フ
ラクトース、マンノース、澱粉、澱粉加水分解
物、廃糖蜜など種々の炭水化物が使用できる。窒
素源としては、アンモニア、塩化アンモニウム、
硫酸アンモニウム、炭酸アンモニウム、酢酸アン
モニウムなど各種の無機および有機のアンモニウ
ム塩類あるいは尿素および他の窒素含有化合物、
並びにペプトン、肉エキス、イーストエキス、コ
ーン・スチープ・リカー、カゼイン加水分解物、
フイツシユミールあるいはその消化物、脱脂大豆
粕あるいはその消化物、蛹加水分解物など種々の
天然物が使用可能である。更に無機物としては、
リン酸カリウム、硫酸マグネシウム、塩化ナトリ
ウム、硫酸第一鉄、硫酸マンガン、炭酸カルシウ
ムなどを使用できる。 培地としては、ハイオマスなどから製造される
浮遊物をかなり含んだ液も使用できる。かかる液
の例は特開昭53−136585にある。 回分式培養及び連続培養の温度、PH、炭素源濃
度等は菌の増殖、アセトンおよびブタノールの生
成がほどよく行われる限り特に限定なないが、28
〜38℃、PH6.5前後、炭素源濃度4〜10%(w/
v)(グルコース換算)が好適である。 回分式培養の終了又は連続式発酵への切り換え
は湧付が始まつた時点かややその後に行うのが通
常である。 連続式発酵は上昇流方式でも下降流方式でも行
うことができる。 倍地供給速度は特に限定はないが充填固定化菌
体1当り0.1〜0.4/hrが適当である。 又供給倍地の利用率を高めるため、反応塔を複
数直列にしてもよい。 次に本発明の実施例を示す。 実施例 1 (1) 固定化菌体の調製 クロストリデリウム・サツカロペルプチアセ
トニクムATCC27022のソイルストツクの小量
を試験管中の下記組成の活性化倍地10mlに入れ
て沸騰湯煎中で1分間熱処理)いわゆるheat
shock)した。次に冷却して30℃で24時間嫌気
培養した。ついで得られた活性化培養液を250
ml容三角フラスコ中の下記組成の種培養培地
150mlに加え、30℃で24時間嫌気培養した。 一方、3%アルギン酸ナトリウム水溶液を
110℃で10分間殺菌し、冷却後上記種培養液の
一定量を加え、混合物を1%塩化カルシウム水
溶液中に滴下して固定化菌体を得た。 活性化培地: 馬鈴薯150g、ブドウ糖3g、硫酸アンモニ
ウム0.6g、炭酸カルシウム1.2gおよび水420
mlよりなる。 種培養培地: 糖蜜6g/dl(グルコースとして)、硫酸ア
ンモニウム0.5g/dl、炭酸カルシウム0.3g/
dl、過リン酸石灰0.03g/dl (2) 直ちに連続発酵を行う場合の湧付期間 固定化菌体調製時の3%アルギン酸ナトリウ
ム水溶液に対する種培養液の添加割合(v/
v)は1%、5%、10%、20%とした。 固定化菌体60mlを第1図に示すごとき反応塔
に充填し、下記発酵培地を充填固定化菌体1
当り0.2/hrの供給速度で連続的に供給して
反応塔内の湧付状態肉眼で調べた。発酵温度は
は32℃とし、培地の供給は上昇方式とした。結
果を第1表に示す。
The present invention relates to a method for continuously fermentatively producing acetone and butanol using immobilized acetone/butanol producing bacteria. There was a time when acetone-butanol fermentation was carried out batchwise. However, the yield of acetone and butanol obtained by this method is
The production rate of acetone and butanol was only about 0.4g/hr, and after that, the production of acetone and butanol was carried out by petrochemicals. Recently, the production of various fermentation products using immobilized bacterial cells has been studied, and acetone-butanol fermentation is also being considered from this point of view [Biotechnology Letters vol. 2 (No. 5), 241-246
(1980)]. The fermentation method adopted in the above literature is a repeated use in a batch operation.
process). The present inventors investigated a method for continuous fermentation production of acetone and butanol using immobilized acetone/butanol-producing bacteria, and found that, unlike the case of immobilized yeast for alcohol fermentation, continuous fermentation production was performed immediately after immobilization. When carrying out fermentation, it may take a considerable amount of time or days before the bubbling phenomenon (foaming caused by fermentation gases such as hydrogen and carbon gas produced with the production of acetone and butanol), which is an indicator of the start of normal fermentation, is observed. It turned out that it was necessary. Therefore, the present inventors conducted further studies to shorten the fermentation time, and found that the fermentation time could be significantly shortened if the immobilized bacterial cells were once cultured in a medium in a batch manner prior to continuous fermentation. The invention has been completed. By shortening the fermentation time, there is the advantage of shortening the total fermentation time, but the biggest advantage is that the risk of bacterial contamination can be completely eliminated. In other words, in continuous fermentation, once normal fermentation has started, the inside of the device is maintained at positive pressure by the fermentation gas, and there is little risk of contamination with bacteria, but until normal fermentation has started, sufficient care must be taken to avoid contamination with bacteria. Must be. Therefore, shortening the springing time will lead to eliminating the risk of bacterial contamination. The present invention will be explained in more detail below. Known acetone/butanol producing bacteria can be used in the present invention. For example, various fungi belonging to the genus Clostridium, namely Clostridium acetobutylicum, Clostridium saccharoperbutyacetonicum, Clostridium saccharoperbutyacetonicum, and Clostridium saccharoperbutyacetonicum. Acetone-butanol-producing bacteria belonging to C. cum (saccharobutylicum), Clostridium saccharobutylacetonicum, Clostridium saccharoacetobutylicum, etc. are used. Specifically, Clostridium acetoptylicum
ATCC824, 4259, 10132, IFO3854, Clostridium satucaloperptiacetonicum
Examples include ATCC27122. Immobilization of acetone-butanol-producing bacteria can be performed by a general method. For example, a carrier binding method, a crosslinking method, a gel entrapment method, etc. can be applied. Among these, the gel entrapment method is preferably used because it facilitates immobilization and provides stable activity. Calcium alginate gel, polyacrylamide gel, collagen, fipurin, agar,
There are methods using carrageenan, cellulose, etc. The operation of entrapping with these gels may be carried out by known operations, but specific examples are as follows. That is, by adding live microbial cells or a culture solution to be included in a sodium alginate aqueous solution to prepare a mixture, and dropping the mixture dropwise into an aqueous solution of a gelling agent such as calcium chloride, immobilized microbial cells can be obtained. When the third component is added, the third component may be further included in the mixture. Encapsulation by polyacrylamide gel involves suspending acrylamide monomer, N,N 1 -methylenebisacrylamide as a crosslinking agent, and live bacterial cells (which may be used as a culture medium) in a buffer solution, and adding a polymerization initiator to the suspension. Immobilized bacterial cells are obtained by adding ammonium persulfate and N,N,N 1 ,N 1 -tetramethylethylenediamine as a polymerization accelerator and carrying out a polymerization reaction at 15 to 23°C for about 10 minutes. According to the present invention, the immobilized bacterial cells prepared as described above are first cultured in a medium in a batch manner, and then the medium is continuously supplied to carry out acetone-butanol fermentation. This continuous fermentation is performed by filling a reaction tower with immobilized bacterial cells and continuously supplying a medium (fermentation medium), but batch culture may be performed using a separate device outside the reaction tower. Alternatively, the reaction may be carried out in the reaction tower. Considering the operational effort, it is preferable to perform batch culture in the reaction tower and then switch to continuous fermentation. As the medium for batch culture and the medium for continuous fermentation, the same ones can be used. That is, either a synthetic medium or a natural medium can be used as long as it contains a suitable amount of a nitrogen source, inorganic substances, and other nutrients in addition to the main carbon source. As the carbon source, various carbohydrates such as glucose, sucrose, fructose, mannose, starch, starch hydrolyzate, and blackstrap molasses can be used. Nitrogen sources include ammonia, ammonium chloride,
various inorganic and organic ammonium salts such as ammonium sulfate, ammonium carbonate, ammonium acetate or urea and other nitrogen-containing compounds;
Also peptone, meat extract, yeast extract, corn steep liquor, casein hydrolyzate,
Various natural products can be used, such as fish meal or its digested product, defatted soybean meal or its digested product, and pupa hydrolyzate. Furthermore, as an inorganic substance,
Potassium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, calcium carbonate, etc. can be used. As the culture medium, a solution containing a considerable amount of suspended matter produced from Hiomas etc. can also be used. An example of such a liquid is found in JP-A-53-136585. The temperature, pH, carbon source concentration, etc. of batch culture and continuous culture are not particularly limited as long as the growth of bacteria and the production of acetone and butanol are carried out appropriately.
~38℃, pH around 6.5, carbon source concentration 4~10% (w/
v) (in terms of glucose) is preferred. The termination of batch culture or the switch to continuous fermentation is usually carried out at or slightly after the start of fermentation. Continuous fermentation can be carried out in upflow or downflow mode. There are no particular limitations on the medium supply rate, but a suitable rate is 0.1 to 0.4/hr per 1 packed and immobilized bacterial cell. Furthermore, in order to increase the utilization rate of the supply base, a plurality of reaction towers may be connected in series. Next, examples of the present invention will be shown. Example 1 (1) Preparation of immobilized bacterial cells A small amount of soil stock of Clostriderium satucaloperptiacetonicum ATCC 27022 was placed in 10 ml of an activation medium having the following composition in a test tube and heated in boiling water for 1 hour. minute heat treatment) so-called heat treatment
I was shocked. Next, it was cooled and cultured anaerobically at 30°C for 24 hours. Then, the obtained activated culture solution was
Seed culture medium with the following composition in a ml Erlenmeyer flask
The mixture was added to 150 ml and cultured anaerobically at 30°C for 24 hours. On the other hand, add 3% sodium alginate aqueous solution.
The mixture was sterilized at 110°C for 10 minutes, and after cooling, a certain amount of the above seed culture solution was added, and the mixture was dropped into a 1% calcium chloride aqueous solution to obtain immobilized bacterial cells. Activation medium: 150g potato, 3g glucose, 0.6g ammonium sulfate, 1.2g calcium carbonate and 420g water
Consists of ml. Seed culture medium: Molasses 6g/dl (as glucose), ammonium sulfate 0.5g/dl, calcium carbonate 0.3g/dl
dl, lime superphosphate 0.03 g/dl (2) Brewing period when continuous fermentation is performed immediately Addition ratio of seed culture solution to 3% sodium alginate aqueous solution at the time of immobilized bacterial cell preparation (v/
v) was set to 1%, 5%, 10%, and 20%. Fill 60ml of immobilized bacterial cells into a reaction tower as shown in Figure 1, and fill with the following fermentation medium.Immobilized bacterial cells 1
The water was continuously fed at a feed rate of 0.2/hr per hour, and the welling up state in the reaction tower was visually examined. The fermentation temperature was 32°C, and the medium was supplied in an ascending manner. The results are shown in Table 1.

【表】 発酵培地: 糖蜜6g/dl(グルコースとして)、炭酸ア
ンモニウム0.5g/dl、炭酸カルシウム0.3g/
dl、過リン酸石灰0.03g/dl (3) 回分式培養を行つた場合 上記(2)の固定化菌体60mlを第1図に示すごと
き100ml容反応塔に充填し、上記(2)と同じ組成
の発酵培地を供給して100mlとし、32℃で回分
式培養を行つた。 湧付時間は第2表の通りであつた。
[Table] Fermentation medium: Molasses 6g/dl (as glucose), ammonium carbonate 0.5g/dl, calcium carbonate 0.3g/dl
dl, superphosphate lime 0.03 g/dl (3) When performing batch culture 60 ml of the immobilized bacterial cells from (2) above are filled into a 100 ml reaction tower as shown in Figure 1, and the above (2) is carried out. A fermentation medium with the same composition was supplied to make the total volume 100 ml, and batch culture was carried out at 32°C. The springing time was as shown in Table 2.

【表】 第1表と第2表の比較から直ちに連続発酵を
行う場合に比べ回分式培養を行う方が湧付時間
が早いことが分る。 (4) 回分式培養の後に連続発酵を行つた場合上記
で種培養液添加割合10%で得られる固定化菌体
60mlを100ml容反応塔に充填し、前記発酵培地
を供給して反応塔内容量を100mlにして32℃で
回分培養を行つた。培養開始後20時間目から前
記発酵培地を固定化菌体1当り0.2/hrの
速度で上昇流方式で連続供給し、連続発酵を開
始した。発酵温度は32℃とした。21日間連続発
酵を実施した場合のソルベント(アセトン・プ
タノールおよび小量のエタノール)収量および
残糖(グルコースとして)を第2図に示す。
[Table] From a comparison of Tables 1 and 2, it can be seen that the fermentation time is faster when batch culture is carried out than when continuous fermentation is carried out immediately. (4) When continuous fermentation is performed after batch culture, the immobilized bacterial cells obtained by adding the seed culture solution at a rate of 10% as described above
60 ml was filled into a 100 ml reaction tower, and the fermentation medium was supplied to bring the internal volume of the reaction tower to 100 ml, and batch culture was performed at 32°C. From 20 hours after the start of culture, the fermentation medium was continuously supplied in an upward flow manner at a rate of 0.2/hr per immobilized bacterial cell to start continuous fermentation. The fermentation temperature was 32°C. Figure 2 shows the yield of solvent (acetone, putanol and a small amount of ethanol) and residual sugar (as glucose) when continuous fermentation was carried out for 21 days.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に使用する発酵装置の一
例を示す。図中各番号は次の意味を示す。 1:供給糖液、2:定量ポンプ、3:反応塔、
4:固定化菌体、5:受器 第2図は本発明によつて連続発酵を行つた場合
の発酵日数とソルベント(アセトン・ブタノール
および少量のエタノール)収量および残糖との関
係を示す。
FIG. 1 shows an example of a fermentation apparatus used in carrying out the present invention. Each number in the figure has the following meaning. 1: Supply sugar solution, 2: Metering pump, 3: Reaction tower,
4: Immobilized bacterial cells, 5: Receiver Figure 2 shows the relationship between the number of fermentation days, yield of solvent (acetone/butanol and a small amount of ethanol), and residual sugar when continuous fermentation is performed according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 担体に固定化したアセトン・ブタノール生産
菌を用いてアセトンおよびブタノールを製造する
方法において、固定化菌体をまず回分式で培養
し、ついで倍地を連続的に供給して発酵を行うこ
とを特徴とするアセトンおよびブタノールの製造
法。
1. In a method for producing acetone and butanol using acetone/butanol producing bacteria immobilized on a carrier, the immobilized bacteria are first cultured in a batch manner, and then fermentation is carried out by continuously supplying a medium. Characteristic methods for producing acetone and butanol.
JP19872182A 1982-11-12 1982-11-12 Production of acetone and butanol Granted JPS5988093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19872182A JPS5988093A (en) 1982-11-12 1982-11-12 Production of acetone and butanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19872182A JPS5988093A (en) 1982-11-12 1982-11-12 Production of acetone and butanol

Publications (2)

Publication Number Publication Date
JPS5988093A JPS5988093A (en) 1984-05-21
JPH0365153B2 true JPH0365153B2 (en) 1991-10-09

Family

ID=16395891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19872182A Granted JPS5988093A (en) 1982-11-12 1982-11-12 Production of acetone and butanol

Country Status (1)

Country Link
JP (1) JPS5988093A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678663B2 (en) * 2008-12-17 2015-03-04 国立大学法人九州工業大学 Method for producing 2-hydroxyisobutyric acid polymer and depolymerization method

Also Published As

Publication number Publication date
JPS5988093A (en) 1984-05-21

Similar Documents

Publication Publication Date Title
CA1143307A (en) Method for producing ethanol in high concentration by using immobilized microorganism
US5766907A (en) Method for immobilization of whole microbial cells in calcium alginate capsules
JPS6022897B2 (en) Seasoning liquid manufacturing method
JPS5923791B2 (en) Method for producing immobilized microorganisms
JPS61209590A (en) Novel immobilized cell and method for fermentative production utilizing same
US3251749A (en) Fermentation process for preparing polysaccharides
Margaritis et al. Repeated batch production of ethanol from Jerusalem artichoke tubers using recycled immobilized cells of Kluyveromyces fragilis
Bravo et al. Continuous ethanol fermentation by immobilized yeast cells in a fluidized‐bed reactor
SU1181555A3 (en) Method of producing ethanol ethanol
JPH0365153B2 (en)
JPS6244914B2 (en)
Nampoothiri et al. Immobilization of Brevibacterium cells for the production of L-glutamic acid
JPH0363352B2 (en)
US4562154A (en) Continuous alcohol manufacturing process using yeast
KR840000126B1 (en) Process for preparing high concentration ethanol with immobilized microorganism
JPS6013675B2 (en) Production method of high concentration ethanol using immobilized bacteria
JP2537355B2 (en) Method for producing sugar alcohol
US4752584A (en) Process for the production of inoculum for anaerobic fermentation of coenzyme B12
GB2104914A (en) Process for manufacturing alcohol by fermentation
SU1157057A1 (en) Method of obtaining proteolytic ferment
JPH0198500A (en) Method for refining sucrose solution
GB1138452A (en) Improvements in or relating to continuous phased culturing of cells
JPS606195A (en) Immobilized microbial gel and production of alcohol using the same
JPS6043957B2 (en) Method for producing gluconic acid using immobilized microorganisms
CN117904224A (en) Method for producing L-alanine by continuous fermentation