JPH036511A - Variable density filter for infrared ray - Google Patents
Variable density filter for infrared rayInfo
- Publication number
- JPH036511A JPH036511A JP1141107A JP14110789A JPH036511A JP H036511 A JPH036511 A JP H036511A JP 1141107 A JP1141107 A JP 1141107A JP 14110789 A JP14110789 A JP 14110789A JP H036511 A JPH036511 A JP H036511A
- Authority
- JP
- Japan
- Prior art keywords
- filters
- filter
- pair
- optical system
- density filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 40
- 239000010409 thin film Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 9
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 7
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 210000001747 pupil Anatomy 0.000 claims description 6
- 239000010408 film Substances 0.000 abstract description 10
- 229910052984 zinc sulfide Inorganic materials 0.000 abstract description 5
- 239000005083 Zinc sulfide Substances 0.000 abstract description 4
- 238000007740 vapor deposition Methods 0.000 abstract description 2
- 230000003449 preventive effect Effects 0.000 abstract 1
- 230000005855 radiation Effects 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 7
- 241000234479 Narcissus Species 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Blocking Light For Cameras (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Filters (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、例えば赤外線カメラ等のように赤外線を扱う
撮影光学系において光量を調整するために用いられる可
変濃度フィルタに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable density filter used for adjusting the amount of light in a photographic optical system that handles infrared light, such as an infrared camera.
[従来の技術]
赤外線を扱う撮影光学系においては可視光領域で用いら
れるフィルタをそのまま用いることができないため(例
えば可視光領域でフィルタを構成する材料として通常使
用されるインコネルは赤外線のような長波長領域では透
過率が変わってしまう)、従来は撮影光学系に開口絞り
を設けてその大きさを変えることによって光量調整を行
なうのが一般的であった。[Prior art] Filters used in the visible light range cannot be used as they are in photographic optical systems that handle infrared light (for example, Inconel, which is commonly used as a material for filters in the visible light range, is (The transmittance changes in the wavelength range). Conventionally, it has been common practice to provide an aperture stop in the photographing optical system and adjust the light amount by changing the size of the aperture stop.
[発明が解決しようとする課題]
、しかしながら、上記のような従来の方法では、高温物
体を撮影対象とする場合には検知器に照射される赤外線
の光量が大きくなりすぎる(検知器の出力が飽和してし
まう)ため、開口絞りをかなり小さくせざるを得す、回
折の影響が避けられなかった。[Problem to be solved by the invention] However, in the conventional method as described above, when a high-temperature object is to be photographed, the amount of infrared light irradiated to the detector becomes too large (the output of the detector is saturation), so the aperture diaphragm had to be made quite small, and the effects of diffraction were unavoidable.
また、開口絞りの大きさを変えることによって光量を調
整する方法以外にも、分光選択吸収を示さないNDフィ
ルタを挿入する手段も採られているが、赤外線の波長領
域は可視光に比べて非常に広く撮影対象の温度範囲に依
存してNDフィルタを交換しなければならないという煩
雑さを免れなかった。加えて、個々のNDフィルタの濃
度は調節することができないため、フィルタ毎の濃度の
ばらつきを補正する必要もあった。In addition to adjusting the amount of light by changing the size of the aperture diaphragm, methods of inserting an ND filter that does not exhibit spectral selective absorption have also been adopted, but the infrared wavelength region is much smaller than visible light. However, the ND filter has to be replaced depending on the temperature range of the subject to be photographed, which is complicated. In addition, since the density of each ND filter cannot be adjusted, it is also necessary to correct variations in density from filter to filter.
この他、固体撮像素子を使用した赤外線カメラの場合は
シャッタ機能を使用することにより光量調整を行なうこ
とも考えられるが、撮像素子として例えばCCD (電
荷結合素子)を用いた場合には素子数が増加する程対処
できる光量レベルの変化率が小さくなる上、高温目標に
対しては素子自身の温度上昇が避けられないという問題
がある。In addition, in the case of an infrared camera that uses a solid-state image sensor, it is possible to adjust the light amount by using a shutter function, but if a CCD (charge-coupled device) is used as the image sensor, the number of elements increases. As the temperature increases, the rate of change in the light level that can be handled becomes smaller, and there is a problem in that the temperature of the element itself inevitably increases for high-temperature targets.
更に、従来のスキャン型の撮影光学系ではシャッタ機能
によって光量調整することはできない。Furthermore, in the conventional scanning type photographing optical system, it is not possible to adjust the amount of light using a shutter function.
本発明は上記のような従来の問題点に鑑みてなされたも
ので、赤外線を扱う撮影光学系において広い範囲で光量
を連続的に変えることができる赤外線用可変濃度フィル
タを提供することを目的とするものである。The present invention was made in view of the conventional problems as described above, and an object of the present invention is to provide an infrared variable density filter that can continuously change the amount of light over a wide range in a photographing optical system that handles infrared rays. It is something to do.
[課題を解決するための手段]
本発明の可変濃度フィルタは、中心から半径方向に濃度
が均一でかつ円周方向に濃度が変化した1対のフィルタ
であって、円周方向の濃度変化の向きが逆向きとなるよ
うに対向した状態で撮影光学系の光路中に挿入される1
対のフィルタと、該1対のフィルタを、前記撮影光学系
の光路から外れた軸を回転軸として逆方向に相対回転さ
せる回転駆動系とを有する可変濃度フィルタであり、前
記課題の達成のために、前記1対のフィルタがゲルマニ
ウム(Ge)基板上に中心から半径方向に厚さが等しく
かつ円周方向に厚さが変化したアンチモン(sb)の薄
膜が形成されたフィルタで構成された赤外線用可変濃度
フィルタである。[Means for Solving the Problems] The variable density filter of the present invention is a pair of filters in which the density is uniform in the radial direction from the center and the density changes in the circumferential direction. 1 inserted into the optical path of the photographing optical system with opposite directions facing each other.
A variable density filter having a pair of filters and a rotation drive system that relatively rotates the pair of filters in opposite directions about an axis that is out of the optical path of the photographing optical system, and in order to achieve the above object. In the infrared rays, the pair of filters is composed of a thin film of antimony (sb) formed on a germanium (Ge) substrate, the thickness being equal in the radial direction from the center and varying in the circumferential direction. variable density filter.
[作 用]
第3図を用いて本考案のフィルタにおける濃度変化の様
子を模式的に説明する。[Function] The state of density change in the filter of the present invention will be schematically explained using FIG. 3.
第3図(a) に示されたフィルタは濃度の異なる領域
が12区分(1区分22.5°)設けられており、濃度
が淡から濃へ段階的に変化(即ち、sbの膜厚が段階的
に増加)しており、最も濃度の低い区分と最も濃度の高
い区分の間にはsbを成膜していない部分(4区分(・
90°))が存在している。The filter shown in Fig. 3(a) has 12 regions with different densities (22.5 degrees per region), and the densities change stepwise from light to dark (i.e., the film thickness of sb There are four sections (4 sections) where sb is not deposited between the lowest concentration section and the highest concentration section.
90°)) exists.
本発明においては第3図(a)に示されたようなフィル
タ2枚(第1フイルタ、第2フイルタ)が円周方向の濃
度変化が逆向きとなるように対向した状態に配置され、
撮影光学系の有効光束4aがフィルタのsb成膜部分を
通過するように(好ましくは光軸がsb成膜部分の半径
方向及び円周方向の中間位置を通るように)光路中に挿
入される。In the present invention, two filters (a first filter and a second filter) as shown in FIG.
The effective light beam 4a of the photographing optical system is inserted into the optical path so as to pass through the sb film-formed part of the filter (preferably so that the optical axis passes through an intermediate position between the radial direction and the circumferential direction of the sb film-formed part). .
第2図(b)のA、Bは、このように配置された第1及
び第2フイルタの円周方向の角度に対する濃度変化を示
したもので(sb非成服部分O〜9G” 、 S b成
膜部分90〜360°)、本発明における1対のフィル
タは円周方向の濃度の傾斜がほぼ等しくなっている。フ
ィルタを相対回転させる前は2つのフィルタの最淡区分
と最淡区分が対応しており、2つのフィルタの濃度の和
は成膜部分全体にわたってほぼ一定の濃度となっている
。A and B in FIG. 2(b) show the density changes with respect to the angle in the circumferential direction of the first and second filters arranged in this way (sb non-conforming part O~9G'', S (b film forming portion 90 to 360°), the pair of filters in the present invention have almost equal concentration gradients in the circumferential direction.Before relative rotation of the filters, the lightest section and the lightest section of the two filters corresponds to each other, and the sum of the concentrations of the two filters is a substantially constant concentration over the entire film forming portion.
この状態から、第1フイルタをθ方向に一45°、第2
フイルタはθ方向に+45@回転させると(第3図(e
)に示される如く撮影光学系の光軸4から外れた軸を回
転軸3として回転させる)、2つのフィルタは相対的に
は90° (4区分)ずれることなり、2つのフィルタ
の濃度の和は第3図(C)の太線で示される濃度となる
。このとき撮影光学系の有効光束4aの直径は第3図(
C)の矢印の範囲となるから、光束は濃度が均一な領域
(イ)(図中(ロ)、(八)の領域は片方のフィルタが
非成膜部分となっているので濃度傾斜がある)を通過す
ることになる。From this state, move the first filter 45 degrees in the θ direction and the second filter
When the filter is rotated +45@ in the θ direction (Fig. 3 (e)
), the two filters are relatively shifted by 90° (4 divisions), and the sum of the densities of the two filters is becomes the concentration shown by the thick line in FIG. 3(C). At this time, the diameter of the effective light beam 4a of the photographing optical system is shown in Fig. 3 (
Since it falls within the range indicated by the arrow in C), the luminous flux has a uniform concentration in the area (A) (in the area (B) and (8) in the figure, one of the filters has a non-film-formed area, so there is a concentration gradient. ) will be passed through.
次に、2つのフィルタをそれぞれ第3図(C)の状態か
ら1区分22,5°の1/4回転だけ逆方向に戻した場
合(即ち、 1θ1=45°−22,5°/4)が第3
図(d)図の状態であり、濃度の和の段差を平均すれば
第3図(C)の状態より濃度が172ステップ高くなっ
ていることがわかる。この様に、本発明においてはフィ
ルタの回転角に比例して、2つのフィルタの濃度の和も
連続的に変化していくので、フィルタを相対的に逆回転
させることによりてフィルタを透過する赤外線の量を連
続的に変化させることができる。Next, when the two filters are each returned from the state shown in Fig. 3(C) by 1/4 rotation of 22.5° per section in the opposite direction (i.e., 1θ1 = 45° - 22,5°/4) is the third
This is the state shown in FIG. 3(d), and if the difference in the sum of the densities is averaged, it can be seen that the density is 172 steps higher than the state shown in FIG. 3(c). In this way, in the present invention, the sum of the densities of the two filters changes continuously in proportion to the rotation angle of the filters. The amount of can be changed continuously.
なお、第3図においては説明を容易にするためにそれぞ
れのフィルタの円周方向の濃度が段階的に変化している
場合を示したが、本発明におけるフィルタの円周方向の
濃度は第3図のように区分毎に変化している必要はない
。sbの膜厚を円周方向に連続的に変化させれば円周方
向に連続的に濃度が変化したフィルタを作製することが
できる。In addition, in order to facilitate the explanation, FIG. 3 shows a case where the density in the circumferential direction of each filter changes stepwise, but in the present invention, the density in the circumferential direction of the filter changes in stages. It is not necessary to change for each category as shown in the figure. By continuously changing the film thickness of sb in the circumferential direction, a filter in which the concentration changes continuously in the circumferential direction can be manufactured.
また、2つのフィルタの濃度傾斜及び回転角(回転速度
)は必ずしも厳密に同じである必要はない。濃度傾斜が
異なる場合には2つのフィルタの濃度の和が完全に一定
にならず濃度むらを生じるが、フィルタを撮影光学系の
瞳又は瞳と共役な位置に挿入すればフィルタの濃度むら
の像への影習を回避できる。Further, the concentration gradient and rotation angle (rotation speed) of the two filters do not necessarily have to be exactly the same. If the density gradients are different, the sum of the densities of the two filters will not be completely constant, causing density unevenness, but if the filter is inserted into the pupil of the photographing optical system or at a position conjugate to the pupil, the image of the density unevenness of the filter will be created. You can avoid being influenced by others.
[実施例]
第1図及び第2図を用いて本発明の第1実施例を説明す
る。図において1対のフィルタ(第1フィルタ1.第2
フイルタ2)は第2図の断面図に示されるようにゲルマ
ニウム(Ge)基板1a上に蒸着によってアンチモン(
sb)の1llildが形成されており、更にその上に
硫化亜鉛(ZnS)の反射防止膜1c(第1図ではsb
薄膜と反射防止膜の層を合せてIb、2bとして示す)
が形成されている。sb薄膜の厚さはフィルタ1.2の
半径方向には均一で、円周方向には連続的に変化するよ
うに形成(フィルタ1.2の下方90°分の領域はsb
非成膜領域)、されている。[Example] A first example of the present invention will be described using FIGS. 1 and 2. In the figure, a pair of filters (first filter 1, second filter
The filter 2) is made of antimony (Ge) by vapor deposition on a germanium (Ge) substrate 1a, as shown in the cross-sectional view of FIG.
sb) 1llild is formed on top of which an anti-reflection film 1c of zinc sulfide (ZnS) (sb
The thin film and anti-reflection coating layers are collectively shown as Ib, 2b)
is formed. The thickness of the sb thin film is uniform in the radial direction of the filter 1.2 and continuously changes in the circumferential direction (the 90° region below the filter 1.2 is the sb thin film).
(non-film-formed area).
第1表は第2図に示した積層構造のフィルタにおいて、
ZnSからなる反射防止膜ICの厚さを1.2 μmと
し、sb膜1dの膜厚をO〜1.8μmまで変化させた
場合のフィルタの透過率を波長毎に示したものである。Table 1 shows that in the filter with the laminated structure shown in Figure 2,
The transmittance of the filter is shown for each wavelength when the thickness of the antireflection film IC made of ZnS is 1.2 μm and the thickness of the sb film 1d is varied from 0 to 1.8 μm.
表に示されるように、Sb薄膜1dを形成しない場合は
赤外線の透過率は90零以上と高い値を示し、Sb薄膜
1dの膜厚が増すに従って透過率が低下し膜厚1.7〜
1.8μm程度で透過率はほぼ事に近い値となる。即ち
、第1表に示されたデータはGe基板la上に形成した
Sb薄膜1dの膜厚を0〜1.8μm程度の範囲で変化
させれば赤外線に対するフィルタの濃度を広い範囲で変
化させることができることを裏づけるものである。As shown in the table, when the Sb thin film 1d is not formed, the transmittance of infrared rays shows a high value of 90 or more, and as the thickness of the Sb thin film 1d increases, the transmittance decreases, and the transmittance decreases when the film thickness is 1.7 or more.
At about 1.8 μm, the transmittance reaches a value close to that of the actual value. In other words, the data shown in Table 1 shows that by changing the thickness of the Sb thin film 1d formed on the Ge substrate la in the range of about 0 to 1.8 μm, the concentration of the filter for infrared rays can be changed over a wide range. This proves that it can be done.
前述したような構造の第1及び第2フイルタ12は、s
b薄膜1dの円周方向の厚さの変化の向きが逆向きとな
るように薄膜形成面1b、2bを向きあわせて配置され
ており、第1図(b) 、 (c)に示されるように第
2フイルタ2側から見たそれぞれのフィルタの濃度は、
第1フイルタ1が左下端から右同りに濃から淡へ、第2
フイルタ2が右下端から左回りに濃から淡へ変化してい
る。そして、これら1対のフィルタ1.2はフィルタの
中心を回転軸として回転駆動手段(図示せず)によって
逆方向に相対回転可能になっており、相対回転の角度を
調節することによって第1及び第2フィルタ1.2の濃
度の和(赤外線の透過量)を連続的に変化させることが
できるようになっている。The first and second filters 12 having the structure described above are
The thin film forming surfaces 1b and 2b are arranged facing each other so that the direction of change in the thickness of the thin film 1d in the circumferential direction is opposite, as shown in FIGS. 1(b) and (c). The density of each filter as seen from the second filter 2 side is
The first filter 1 goes from dark to light from the lower left edge to the right, and the second
The filter 2 changes from dark to light counterclockwise from the lower right end. The pair of filters 1.2 can be relatively rotated in opposite directions by a rotation drive means (not shown) about the center of the filter as a rotation axis, and by adjusting the relative rotation angle, the first and second filters can be rotated in opposite directions. The sum of the densities (the amount of infrared rays transmitted) of the second filter 1.2 can be changed continuously.
このように構成された可変濃度フィルタは、撮影光学系
の光路中に光軸4と回転軸3が一致しないように挿入さ
れるが、本実施例ではいわゆるナルシサスの影響を回避
するために光軸3に対して所定の角度をなすように傾け
て挿入されている。The variable density filter configured in this manner is inserted into the optical path of the photographing optical system so that the optical axis 4 and the rotation axis 3 do not coincide, but in this embodiment, the optical axis is It is inserted at a predetermined angle with respect to 3.
即ち、金属薄膜を設けたフィルタの透過率の変化は本質
的に反射率の変化によるため、検知器自体からの熱輻射
がフィルタによって反射されて検知器に受光されるとい
う現象(ナルシサス現象)が起こるが、第1図に示され
た実施例のようにフィルタを傾けてフィルタでの反射光
が検知器に受光されないようにすればこのナルシサスの
影響を除去で診る。In other words, changes in transmittance of a filter provided with a metal thin film are essentially due to changes in reflectance, so a phenomenon in which thermal radiation from the detector itself is reflected by the filter and received by the detector (Narcissus phenomenon) occurs. However, if the filter is tilted as in the embodiment shown in FIG. 1 so that the light reflected by the filter is not received by the detector, the influence of Narcissus can be removed.
次に、第4図はナルシサス現象を積極的に利用した実施
例を示す光路図である。この実施例の撮影光学系は、対
物レンズ6と、この対物レンズ6による像を赤外線検知
器9の受光面に結像するリレーレンズ7を備えている。Next, FIG. 4 is an optical path diagram showing an embodiment in which the Narcissus phenomenon is actively utilized. The photographing optical system of this embodiment includes an objective lens 6 and a relay lens 7 that forms an image formed by the objective lens 6 on the light receiving surface of an infrared detector 9.
検知器9はリレーレンズ7からの光束が通過する開口部
を有し周囲からの熱輻射を遮蔽するコールドシールド8
によって囲まれており、検知器9及びコールドシールド
8は検知器出力の熱雑音の増加を避けるために80に程
度に冷却されている。The detector 9 has an opening through which the light beam from the relay lens 7 passes, and a cold shield 8 that blocks heat radiation from the surroundings.
The detector 9 and cold shield 8 are cooled to about 80°C to avoid increasing thermal noise in the detector output.
そして、かかる撮影光学系では、開口絞り5とコールド
シールド8の開口部が共役な関係となっており(即ち、
光学系の射出瞳とコールドシールド8の開口部が合致)
、第1図及び第2図で説明したと同様な構造の可変濃度
フィルタ(第1フィルタ1.第2フイルタ2)が開口絞
り5を挟持するようにして光軸に対して垂直に挿入され
ている。In such a photographing optical system, the aperture stop 5 and the aperture of the cold shield 8 have a conjugate relationship (i.e.,
The exit pupil of the optical system and the opening of the cold shield 8 match)
, variable density filters (first filter 1, second filter 2) having the same structure as explained in FIGS. 1 and 2 are inserted perpendicularly to the optical axis so as to sandwich the aperture stop 5. There is.
このような撮影光学系においては、射出瞳から物体側に
出される赤外線は冷却された検知器9自身の輻射のみと
なり、その輻射は可変濃度フィルタを構成する第1及び
第2フィルタ1,2で反射され検知器9受光面上の光軸
に対して線対称な位置に戻る。この為、撮影対象以外の
常温部分から検知器に入射する熱輻射が無くなり、その
分だけ検知器9のダイナミックレンジを大きくすること
ができる。即ち、撮影対象からの光束の強度が高くフィ
ルタを最大濃度としても更に検知器が飽和してしまうよ
うな場合に、ナルシサス現象を利用することによって検
知器9の出力信号のレベルを減じることができる。In such a photographing optical system, the infrared rays emitted from the exit pupil to the object side are only the radiation of the cooled detector 9 itself, and that radiation is transmitted by the first and second filters 1 and 2 that constitute the variable density filter. It is reflected and returns to a position symmetrical to the optical axis on the light receiving surface of the detector 9. For this reason, there is no thermal radiation that enters the detector from normal temperature areas other than the object to be photographed, and the dynamic range of the detector 9 can be increased by that amount. In other words, when the intensity of the luminous flux from the object to be photographed is so high that the detector is further saturated even when the filter is set to maximum density, the level of the output signal of the detector 9 can be reduced by utilizing the Narcissus phenomenon. .
また、第4図に示された撮影光学系においては、光軸3
に対して第1及び第2フイルタが垂直に挿入されて、常
に冷却された検知器9から輻射が検知器9に戻るように
なっているが、必要に応じてフィルタ1.2の光軸3に
対する角度を変えることができる構成としておけば、フ
ィルタ1゜2の角度を変えることによって検知器9のダ
イナミックレンジを変化させることができる。即ち、フ
ィルタ1.2を光軸に対して垂直にして約80にの検知
器9自体の輻射だけを検知器に戻す場合と、フィルタ1
.2を傾けて撮影対象以外の常温物体く約300K)か
らの輻射が検知器9に入射するようにした場合では、3
0(1−80Kに対応する分だけ検知器9のダイナミッ
クレンジが変わることになる。In addition, in the photographing optical system shown in FIG.
The first and second filters are inserted perpendicularly to the detector 9 so that the radiation from the constantly cooled detector 9 returns to the detector 9, but if necessary, the optical axis 3 of the filter 1.2 If the configuration is such that the angle relative to the filter 1.degree. 2 can be changed, the dynamic range of the detector 9 can be changed by changing the angle of the filter 1.degree. That is, there is a case where the filter 1.2 is set perpendicular to the optical axis and only the radiation of the detector 9 itself is returned to the detector at about 80°, and a case where the filter 1.
.. 2 is tilted so that radiation from a room-temperature object (approximately 300 K) other than the object to be photographed enters the detector 9, 3
The dynamic range of the detector 9 changes by the amount corresponding to 0 (1-80K).
更に、上記の実施例では赤外線の光量調整を可変濃度フ
ィルタだけで行なう場合について説明したが、本発明の
可変濃度フィルタと電子シャッタを組合せて用いれば検
知器のダイナミックレンジをより大きくすることができ
る。Further, in the above embodiment, the case where the amount of infrared rays is adjusted using only the variable density filter has been described, but if the variable density filter of the present invention and the electronic shutter are used in combination, the dynamic range of the detector can be further increased. .
[発明の効果]
以上のように本発明においては、ゲルマニウム基板上に
円周方向に厚さが変化したアンチモン薄膜を形成した1
対のフィルタを用いて可変濃度フィルタを構成したこと
によって、フィルタを透過する赤外線量を広い範囲で連
続的に変化させることができる。[Effects of the Invention] As described above, in the present invention, an antimony thin film having a thickness varying in the circumferential direction is formed on a germanium substrate.
By configuring the variable density filter using a pair of filters, the amount of infrared rays transmitted through the filter can be continuously changed over a wide range.
本発明の可変濃度フィルタを用いれば、撮影対象の温度
によってフィルタを交換する必要がなく、゛また個々の
フィルタ毎にsb薄膜の厚さのばらつきがあっても2つ
のフィルタの回転角を調節することによって所望の濃度
に調整することができるので、フィルタ毎の濃度のばら
つきを補正する必要もない。By using the variable density filter of the present invention, there is no need to replace the filter depending on the temperature of the object to be photographed, and even if there are variations in the thickness of the sb thin film for each individual filter, the rotation angle of the two filters can be adjusted. As a result, the density can be adjusted to a desired value, so there is no need to correct variations in density from filter to filter.
更に、かかる可変濃度フィルタは反射型のフィルタであ
るので、必要に応じてナルシサス現象を利用することに
よって赤外線検知器のダイナミックレンジをより広くす
ることが可能である。Furthermore, since such a variable density filter is a reflective filter, it is possible to further widen the dynamic range of the infrared detector by utilizing the Narcissus phenomenon as necessary.
第1図(a)は本発明第1実施例の構成を示す断面図、
第1図(b) 、 (c)は第1実施例におけるフィル
タの正面図、第2図は第1実施例におけるフィルタの断
面図、第3図(a) 、 (b) 、 (c) 、 (
d) 、 (e)は本発明における光量調整の原理を模
式的に示した説明図、第4図は本発明の第2実施例の構
成を示した光路図である。
[主要部分の符号の説明]
1・・・第1フイルタ
1a・・・ゲルマニウム基板
IC・・・反射防止膜
1d・・・アンチモン薄膜
2・・・第2フイルタ
3・・・回転軸
4・・・光軸
5・・・開口絞り
8・・・コールドシールド
9・・・検知器FIG. 1(a) is a sectional view showing the configuration of the first embodiment of the present invention,
FIGS. 1(b) and (c) are front views of the filter in the first embodiment, FIG. 2 is a sectional view of the filter in the first embodiment, and FIGS. 3(a), (b), (c), (
d) and (e) are explanatory diagrams schematically showing the principle of light amount adjustment in the present invention, and FIG. 4 is an optical path diagram showing the configuration of a second embodiment of the present invention. [Description of symbols of main parts] 1... First filter 1a... Germanium substrate IC... Anti-reflection film 1d... Antimony thin film 2... Second filter 3... Rotating shaft 4...・Optical axis 5...Aperture diaphragm 8...Cold shield 9...Detector
Claims (4)
濃度が変化した1対のフィルタであって、円周方向の濃
度変化の向きが逆向きとなるように対向した状態で撮影
光学系の光路中に挿入される1対のフィルタと、該1対
のフィルタを、前記撮影光学系の光路から外れた軸を回
転軸として逆方向に相対回転させる回転駆動系とを有す
る可変濃度フィルタにおいて、 前記1対のフィルタが、ゲルマニウム基板上に中心から
半径方向に厚さが等しくかつ円周方向に厚さが変化した
アンチモンの薄膜が形成されたフィルタであることを特
徴とした赤外線用可変濃度フィルタ。(1) A pair of filters whose density is uniform in the radial direction from the center and whose density changes in the circumferential direction, and which are used as photographic optics in a state where they face each other so that the direction of the density change in the circumferential direction is opposite. A variable density filter comprising: a pair of filters inserted into the optical path of the system; and a rotation drive system that relatively rotates the pair of filters in opposite directions about an axis that is out of the optical path of the photographing optical system. In the variable infrared rays filter, the pair of filters are filters in which a thin film of antimony is formed on a germanium substrate, the thickness being equal in the radial direction from the center and varying in the circumferential direction. Density filter.
いは瞳と共役な位置に挿入されたことを特徴とする前記
請求項1記載の赤外線用可変濃度フィルタ。(2) The variable density filter for infrared rays according to claim 1, wherein the pair of filters are inserted at the pupil of the photographing optical system or at a position conjugate with the pupil.
所定の角度をなすように挿入されたことを特徴とする前
記請求項1記載の赤外線用可変濃度フィルタ。(3) The variable density filter for infrared rays according to claim 1, wherein the pair of filters are inserted so as to form a predetermined angle with the optical axis of the photographing optical system.
が受光面に結像される赤外線検知器の周囲を囲むように
配置されたコールドシールドの開口部と共役な位置に、
前記撮影光学系の光軸に対して垂直に挿入されたことを
特徴とする前記請求項1記載の赤外線用可変濃度フィル
タ。(4) the pair of filters are located at a position conjugate with an opening of a cold shield arranged to surround an infrared detector on which an image by the photographing optical system is formed on a light receiving surface;
The infrared variable density filter according to claim 1, wherein the infrared variable density filter is inserted perpendicularly to the optical axis of the photographing optical system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141107A JPH036511A (en) | 1989-06-05 | 1989-06-05 | Variable density filter for infrared ray |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141107A JPH036511A (en) | 1989-06-05 | 1989-06-05 | Variable density filter for infrared ray |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH036511A true JPH036511A (en) | 1991-01-14 |
Family
ID=15284340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1141107A Pending JPH036511A (en) | 1989-06-05 | 1989-06-05 | Variable density filter for infrared ray |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH036511A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5319498A (en) * | 1992-01-30 | 1994-06-07 | Olympus Optical Co., Ltd. | Moving object extension controller |
WO2001081974A1 (en) * | 2000-04-20 | 2001-11-01 | Applied Physics Specialties Limited | Variable optical filter |
JP2002532748A (en) * | 1998-12-17 | 2002-10-02 | ライカ マイクロシステムス ヴェツラー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method of individually matching excitation intensity in multi-band fluorescence microscope, and multi-band fluorescence microscope for performing this method |
JP2007243928A (en) * | 2006-02-09 | 2007-09-20 | Nippon Hoso Kyokai <Nhk> | Gradation nd filter unit for television camera, nd adapter, and television camera |
JP2009109788A (en) * | 2007-10-31 | 2009-05-21 | Olympus Corp | Laser scanning microscope |
JP2011022529A (en) * | 2009-07-21 | 2011-02-03 | Mejiro Precision:Kk | Light source device and exposure device |
JP2013176018A (en) * | 2012-02-27 | 2013-09-05 | Canon Electronics Inc | Light quantity adjustment device |
-
1989
- 1989-06-05 JP JP1141107A patent/JPH036511A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5319498A (en) * | 1992-01-30 | 1994-06-07 | Olympus Optical Co., Ltd. | Moving object extension controller |
JP2002532748A (en) * | 1998-12-17 | 2002-10-02 | ライカ マイクロシステムス ヴェツラー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method of individually matching excitation intensity in multi-band fluorescence microscope, and multi-band fluorescence microscope for performing this method |
WO2001081974A1 (en) * | 2000-04-20 | 2001-11-01 | Applied Physics Specialties Limited | Variable optical filter |
JP2007243928A (en) * | 2006-02-09 | 2007-09-20 | Nippon Hoso Kyokai <Nhk> | Gradation nd filter unit for television camera, nd adapter, and television camera |
JP2009109788A (en) * | 2007-10-31 | 2009-05-21 | Olympus Corp | Laser scanning microscope |
JP2011022529A (en) * | 2009-07-21 | 2011-02-03 | Mejiro Precision:Kk | Light source device and exposure device |
JP2013176018A (en) * | 2012-02-27 | 2013-09-05 | Canon Electronics Inc | Light quantity adjustment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6184529B1 (en) | Methods and apparatus for performing scene based uniformity correction in imaging systems | |
EP0552648B1 (en) | Method of and apparatus for forming a multi-layer film | |
JP4801442B2 (en) | ND filter for diaphragm | |
JPH036511A (en) | Variable density filter for infrared ray | |
JP5058783B2 (en) | Optical element and method of manufacturing the optical element | |
JP2004205777A (en) | Method for manufacturing optical filter | |
US5585885A (en) | Camera photometer | |
JP4345962B2 (en) | Light amount diaphragm device and camera with ND filter | |
KR20060005393A (en) | Monolithic lens/reflector optical component | |
JP2007171542A (en) | Nd filter for optical diaphragm and optical diaphragm device provided with nd filter | |
JP2006330128A (en) | Nd filter with ir cut film, method for manufacturing same, and light quantity diaphragm device and camera having nd filter | |
US4716284A (en) | Photographic optical system having enhanced spectral transmittance characteristics | |
JP7093194B2 (en) | Light source angle measuring device and artificial satellite | |
JP3735091B2 (en) | Manufacturing method of ND filter, light quantity diaphragm device and camera having this ND filter | |
JP2006078519A (en) | Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device | |
JP2004061903A (en) | Method for manufacturing nd filter and nd filter, and light quantity reducing device and camera having such nd filter | |
JP3816048B2 (en) | Manufacturing method of ND filter, ND filter, light amount diaphragm device and camera having these ND filters | |
JP3701931B2 (en) | Manufacturing method of ND filter, ND filter, light quantity diaphragm device and camera having these ND filters | |
JP7027714B2 (en) | Wafer cap, far infrared sensor, far infrared detector, cap | |
JP4493411B2 (en) | Manufacturing method of ND filter | |
JP4623724B2 (en) | Manufacturing method of ND filter, ND filter, light quantity diaphragm device, and camera having the light quantity diaphragm device | |
JP4386248B2 (en) | Manufacturing method of ND filter, optical system having ND filter by the manufacturing method, and optical apparatus | |
FR2676154A1 (en) | MICRO-SCALING DEVICE, INFRARED CAMERA EQUIPPED WITH SUCH A DEVICE, AND METHOD OF MANUFACTURING THE DEVICE | |
JPS6078436A (en) | Single-lens reflex camera | |
JP2004212463A (en) | Method for manufacturing nd filter, and light quantity diaphragming device and camera comprising this nd filter |