JPH0365077A - Drive controller of ultrasonic motor - Google Patents

Drive controller of ultrasonic motor

Info

Publication number
JPH0365077A
JPH0365077A JP1202058A JP20205889A JPH0365077A JP H0365077 A JPH0365077 A JP H0365077A JP 1202058 A JP1202058 A JP 1202058A JP 20205889 A JP20205889 A JP 20205889A JP H0365077 A JPH0365077 A JP H0365077A
Authority
JP
Japan
Prior art keywords
detecting
applied voltage
piezoelectric body
vibrator
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1202058A
Other languages
Japanese (ja)
Other versions
JPH0759155B2 (en
Inventor
Yuji Izuno
有司 泉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1202058A priority Critical patent/JPH0759155B2/en
Publication of JPH0365077A publication Critical patent/JPH0365077A/en
Publication of JPH0759155B2 publication Critical patent/JPH0759155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To eliminate the necessity of providing an elastic body with a detecting piezoelectric body separate from an exciting piezoelectric body and also to make a wiring for taking out the output signal of an applied voltage- detecting means and conducting current-detecting means unnecessary by making it possible to detect the vibrational state of a vibrator from the output signal. CONSTITUTION:An apparatus is provided with a quantity of state-detecting means composed of an applied voltage-detecting means 6a for detecting an applied voltage to a piezoelectric body 1, a conducting current-detecting means 6b for detecting a conducting current and an operational means 6c for outputting a deviation quantity between the resonance frequency of a vibrator 3' and the frequency of the applied voltage from the output signal of the applied voltage-detecting means 6a and conducting current-detecting means 6b. Then, the oscillation frequency of a power supply means 5 is controlled appropriately to operate an ultrasonic motor stably. Thus, it is made unnecessary to provide an elastic body 2 with a detecting piezoelectric body separate from an exciting piezoelectric body 1 and also a wiring for taking out the signal so that the manufacturing process of a motor is simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧電体と弾性体とからなる駆動用の振動子を
有する超音波モータに対し、前記圧電体に高周波電力を
供給する電源供給手段と、前記振動子の振動状態を検出
する状態量検出手段とを設けてある超音波モータの駆動
制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a power supply for supplying high-frequency power to the piezoelectric body for an ultrasonic motor having a driving vibrator made of a piezoelectric body and an elastic body. The present invention relates to a drive control device for an ultrasonic motor, which is provided with a state quantity detection means for detecting a vibration state of the vibrator.

さらに詳述すると、弾性体に圧電体を固着して構成する
振動子を固定子又は回転子として、それに回転子又は固
定子を加圧接触し、前記圧電体に供給される高周波電力
により前記弾性体に生じる進行波の作用で回転力を取り
出す超音波モータや、柱状の弾性体の両端に圧電体を配
し、前記弾性体に沿ってスライダを移動させるリニア型
の超音波モータ等に対する駆動制御装置に関する。
More specifically, a stator or a rotor is a vibrator constructed by fixing a piezoelectric body to an elastic body, and the rotor or stator is brought into pressure contact with the vibrator, and the high frequency power supplied to the piezoelectric body causes the elastic body to Drive control for ultrasonic motors that extract rotational force from the action of traveling waves generated in the body, linear ultrasonic motors that have piezoelectric bodies arranged at both ends of a columnar elastic body, and move a slider along the elastic body, etc. Regarding equipment.

〔従来の技術〕[Conventional technology]

従来、この種の超音波モータの駆動制御装置は、振動子
の振動状態を検出する状態量検出手段として、前記振動
子に、励振用の圧電体とは別個の検出用圧電体を設けて
構成してあり、前記振動子の振動振幅に対応する出力電
圧を検出していた。
Conventionally, this type of ultrasonic motor drive control device is configured by providing the vibrator with a detection piezoelectric body separate from the excitation piezoelectric body as a state quantity detection means for detecting the vibration state of the vibrator. The output voltage corresponding to the vibration amplitude of the vibrator was detected.

つまり、超音波モータを、温度、負荷、駆動電圧等の使
用環境、条件の変動による前記振動子の機械的な共振周
波数の変動に係わらず、高効率、且つ、安定に動作させ
るためには、前記振動子の振動状態を一定に維持する必
要がある。
In other words, in order to operate the ultrasonic motor with high efficiency and stability, regardless of fluctuations in the mechanical resonance frequency of the vibrator due to fluctuations in the usage environment and conditions such as temperature, load, and drive voltage, It is necessary to maintain the vibration state of the vibrator constant.

そのために、前記駆動制御装置に、前記振動子の振動状
態、即ち、変位、速度、加速度等何らかの状態量を検出
する状態量検出手段を設けて、その検出出力に基づき、
前記圧電体へ印加する電源周波数を最適な周波数に維持
するよう駆動制御していた。
For this purpose, the drive control device is provided with a state quantity detection means for detecting the vibration state of the vibrator, that is, some state quantity such as displacement, velocity, acceleration, etc., and based on the detection output,
Drive control was performed to maintain the power frequency applied to the piezoelectric body at an optimal frequency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術には、前記弾性体に励振用の圧電
体とは別個の検出用圧電体を設けることが必要であり、
しかも、その信号を取り出すための配線も必要となり、
モータの製作工程が複雑となるばかりか、モータのコス
ト上昇にもつながるという欠点があった。
However, in the above conventional technology, it is necessary to provide the elastic body with a detection piezoelectric body that is separate from the excitation piezoelectric body,
Moreover, wiring is also required to extract the signal.
This method not only complicates the manufacturing process of the motor but also increases the cost of the motor.

さらには、そのような検出用圧電体は、その特性のばら
つきやその設置箇所によっては、前記振動子の振動状態
を正確に検出できるとは限らず、その結果、最適な動作
状態に制御しすらいという欠点もあった。
Furthermore, such detection piezoelectric bodies may not be able to accurately detect the vibration state of the vibrator due to variations in their characteristics or where they are installed, and as a result, it may not be possible to control the vibration state to the optimum operating state. There was also a drawback.

本発明の目的は上述した従来欠点を解消する点にある。An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、本発明による超音波モータの
駆動制御装置の特徴構成は、前記状態量検出手段を構成
するに、前記圧電体への印加電圧を検出する印加電圧検
出手段と、通電電流を検出する通電電流検出手段と、前
記印加電圧検出手段及び前記通電電流検出手段の出力信
号から、前記振動子の共振周波数と前記印加電圧の周波
数とのずれ量を出力する演算手段とを設けてあることに
ある。
In order to achieve this object, the characteristic configuration of the ultrasonic motor drive control device according to the present invention is such that the state quantity detection means includes an applied voltage detection means for detecting the voltage applied to the piezoelectric body, and an energizing current energizing current detecting means for detecting the energizing current detecting means; and calculating means for outputting a deviation amount between the resonant frequency of the vibrator and the frequency of the applied voltage from the output signals of the applied voltage detecting means and the energizing current detecting means. There is something about it.

前記印加電圧検出手段は、前記印加電圧をN:1に降圧
して検出する降圧回路を含み、前記通電電流検出手段は
、巻数比1:Pの変流器とその二次側に接続の容量Cの
コンデンサを含み、それら定数を前記圧電体の静電容量
Cdに対して、C,=C−P/Hの関係に設定してある
ことにある。
The applied voltage detection means includes a step-down circuit that steps down the applied voltage to N:1 and detects the applied voltage, and the energized current detection means includes a current transformer with a turns ratio of 1:P and a capacitor connected to the secondary side of the current transformer. It includes a capacitor of C, and these constants are set in the relationship C,=CP/H with respect to the capacitance Cd of the piezoelectric body.

〔作 用〕[For production]

つまり、状態量検出手段は、以下の原理に基づき、前記
圧電体に対する駆動電圧及び電流を、所定の関係にある
印加電圧検出手段及び通電電流検出手段により検出し、
それら出力信号を演算手段により演算することで、前記
振動子の共振周波数と前記印加電圧の周波数との違いに
より生じる位相差を示す項を含む信号を出力するのであ
る。
In other words, the state quantity detection means detects the drive voltage and current for the piezoelectric body using the applied voltage detection means and the energized current detection means, which have a predetermined relationship, based on the following principle,
By computing these output signals by the computing means, a signal including a term indicating a phase difference caused by a difference between the resonant frequency of the vibrator and the frequency of the applied voltage is output.

その位相差に基づき、前記電源供給手段の発振周波数を
適切に制御することで、超音波モータを、温度、負荷、
駆動電圧等の使用環境、条件の変動による前記振動子の
機械的な共振周波数の変動に係わらず、高効率、且つ、
安定に動作させるのである。
By appropriately controlling the oscillation frequency of the power supply means based on the phase difference, the ultrasonic motor can be controlled depending on temperature, load, etc.
Regardless of fluctuations in the mechanical resonance frequency of the vibrator due to fluctuations in the usage environment and conditions such as drive voltage, high efficiency and
This allows for stable operation.

以下に、その原理を述べる。The principle is described below.

圧電振動子の理論を超音波モータに適用すると、電源供
給手段により印加された交流電圧により圧電体が速度÷
で振動するとき、圧電体と弾性体で構成される振動子に
対して、前記圧電体に流れ込む電流i、及び、起振力t
は、電気音響変換基本式に基づき、次式で表される。
Applying the piezoelectric vibrator theory to an ultrasonic motor, the piezoelectric body changes speed divided by the AC voltage applied by the power supply means.
When vibrating at
is expressed by the following equation based on the electroacoustic conversion basic equation.

f=f?+A÷ ?=−A?+2÷     (1) ここで、幸は電気アドミタンスであり、Aは電気系と機
械系の変換結合係数で力係数といい、之は機械インピー
ダンスである。また変数にドツトを付してあるのはベク
トル量である。
f=f? +A÷? =-A? +2÷ (1) Here, luck is electrical admittance, A is the conversion coupling coefficient between the electrical system and the mechanical system, which is called the force coefficient, and A is the mechanical impedance. Variables with dots are vector quantities.

第5図に示すように、機械端子に音響インピーダンス2
′を接続したときの前記振動子系の等価回路を考えると
、振動速度÷と電気端子電圧との関係は、(1)式から
、 ÷=A/(之+之’)   (2) と表される。
As shown in Figure 5, the mechanical terminal has an acoustic impedance of 2
Considering the equivalent circuit of the vibrator system when ′ is connected, the relationship between the vibration speed ÷ and the electric terminal voltage is expressed as ÷=A/(之+之') (2) from equation (1). be done.

今、振動子を、質量m、スチフネスS、抵抗rからなる
単一共振系としての集中モデルで考え、2’ =r’ 
+j x’ とおくと、之+之’ =r+r・ +jx’+jωm+s/jω ω、= (−x’ +(x’ ”+4m5)”)/2m
 (3)ここで、ω、は機械共振角周波数であり、ω 
は動作角周波数である。
Now, consider the oscillator as a lumped model as a single resonant system consisting of mass m, stiffness S, and resistance r, and 2' = r'
+j
(3) Here, ω is the mechanical resonance angular frequency, and ω
is the operating angular frequency.

従って、(2)式から÷との位相に注目すると、 v=A/l t−+4’  1−exp [−jφ)・
?(4)となり、以下の三通りの場合が考えられる。
Therefore, if we pay attention to the phase of ÷ from equation (2), we get v=A/l t-+4' 1-exp [-jφ)・
? (4), and the following three cases are possible.

i、ω〈ω、:÷はに対してφ進相 り、ω=ω、:÷はと同相 市、ω〉ω、:÷はに対してφ遅相 さらに、振動子の等価回路は、第6図に示すように、圧
電的機械振動を発生させる直列共振回路のり、  C1
抵抗R1振動に無関係の静電容量C6で表すことができ
、(1)式は、f=jωC1+A÷   (5) となる。但し、ωは交流電圧Vの角周波数である。
i, ω〈ω, : ÷ is φ leading in phase, ω=ω, : ÷ is in phase with ω〉ω, : ÷ is φ slow in phase, and the equivalent circuit of the oscillator is As shown in FIG. 6, a series resonant circuit that generates piezoelectric mechanical vibration, C1
It can be expressed as a capacitance C6 that is unrelated to the vibration of the resistance R1, and the equation (1) becomes f=jωC1+A÷ (5). However, ω is the angular frequency of the AC voltage V.

第7図に示すように、前記圧電体への通電電流を検出す
る通電電流検出手段の出力電圧V。
As shown in FIG. 7, the output voltage V of the energizing current detection means for detecting the energizing current to the piezoelectric body.

は、 Vc=f/jωcp =C,/CP+A÷/jωCP  (6)となる。但し
、変流器の巻数比をl:P、変流器の二次側に配したコ
ンデンサの容量をCとする。
is Vc=f/jωcp=C,/CP+A÷/jωCP (6). However, the turns ratio of the current transformer is l:P, and the capacitance of the capacitor placed on the secondary side of the current transformer is C.

また、前記圧電体への印加電圧を検出する印加電圧検出
手段の出力電圧8は、 、=/N             (7)となる。但
し、変圧器の巻数比をN:lとする。
Further, the output voltage 8 of the applied voltage detection means for detecting the voltage applied to the piezoelectric body is as follows: ,=/N (7). However, the turns ratio of the transformer is N:l.

次に、前記出力電圧t。、れを演算手段により差動増幅
すると、その出力電圧、は、2=K(0−れ) =K (C,/CP−1/N)  ・ +KA/(jωCP)・v   (8)となる。但し、
Kは差動利得である。
Next, the output voltage t. , when this is differentially amplified by arithmetic means, the output voltage becomes 2=K(0-RE)=K(C,/CP-1/N)・+KA/(jωCP)・v (8) . however,
K is the differential gain.

ここで、 C,/CP=1/N          (9)となる
ように、C,P、Nの値を選定すると、(8)式は次の
ように表すことができる。
Here, if the values of C, P, and N are selected so that C,/CP=1/N (9), equation (8) can be expressed as follows.

Vp =KA/ (j ωc P )  ・v    
 (10)ここで、KA/ (ωCP)は実数であるか
ら、、と÷との位相関係には影響を与えない。
Vp = KA/ (j ωc P ) ・v
(10) Here, since KA/(ωCP) is a real number, it does not affect the phase relationship between and ÷.

(10)式から出力電圧、は、その振幅が比例関係にあ
り、位相が90°遅れの関係にある圧電体の振動速度÷
を検出することになる。
From equation (10), the output voltage is divided by the vibration speed of the piezoelectric body whose amplitude is proportional and whose phase is delayed by 90°.
will be detected.

従って、速度÷と前記振動子への印加電圧の関係を示す
(4)式より、(10)式はVp =KA2/ (ωC
P  lZ+Z’l  )・exp(−J(丁子φ))
(11) となり、、との位相関係は、以下の三通りの場合に分け
ることができる。
Therefore, from equation (4) showing the relationship between velocity ÷ and voltage applied to the vibrator, equation (10) is Vp = KA2/ (ωC
PlZ+Z'l)・exp(-J(Cloveφ))
(11) The phase relationship between and can be divided into the following three cases.

iv、ω〈ω、:、はに対して90’−φ遅相 V、(L)=(L)、  :VpはVに対して90’遅
相vi、ω〉ω、:、はぐに対して90°+φ遅相 以上より、1、即ち、前記位相差検出手段からの出力信
号を、圧電体への印加電圧やより位相を90°遅らすこ
とにより、常に圧電振動子を共振周波数ω、で駆動する
ことができる。
iv. By delaying the voltage applied to the piezoelectric body or the phase of the output signal from the phase difference detection means by 90 degrees, the piezoelectric vibrator is always kept at the resonant frequency ω. Can be driven.

〔発明の効果〕〔Effect of the invention〕

従って、本発明による超音波モータの駆動制御装置では
、前記振動子の振動状態を、前記印加電圧と通電電流を
検出することで極めて正確に検出できるので、前記弾性
体に励振用の圧電体とは別個の検出用圧電体を設ける必
要がなく、その信号を取り出すための配線も不要となり
、モータの製作工程が簡易化され、部品の増加や製作工
程の複雑化に起因するモータのコスト上昇も防止できる
ようになった。
Therefore, in the drive control device for an ultrasonic motor according to the present invention, the vibration state of the vibrator can be detected extremely accurately by detecting the applied voltage and the energizing current. There is no need to provide a separate piezoelectric body for detection, and there is no need for wiring to extract the signal, which simplifies the motor manufacturing process and reduces the cost of the motor due to increased parts and complexity of the manufacturing process. It can now be prevented.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第2図に示すように、超音波モータ(M)は、圧電体(
1)に弾性体(2)を固着し、超音波の進行波を発生す
るリング状の固定子(3)と、その固定子(3)に加圧
接触して回転する回転子(4)とから構成してある。即
ち、前記固定子(3)が振動子(3′)となる。
As shown in Fig. 2, the ultrasonic motor (M) uses a piezoelectric material (
1) to which an elastic body (2) is fixed, a ring-shaped stator (3) that generates traveling waves of ultrasonic waves, and a rotor (4) that rotates in pressure contact with the stator (3). It is composed of That is, the stator (3) becomes a vibrator (3').

前記圧電体(1)は、周方向に領域(A) 、 (B)
に二分割してあり、各領域(A) 、 (B)は波長λ
の二分の−の間隔で隣り合う区分を交互に厚み方向に分
極処理するとともに、それら領域(A)。
The piezoelectric body (1) has regions (A) and (B) in the circumferential direction.
It is divided into two parts, and each region (A) and (B) has a wavelength λ.
Adjacent sections are alternately polarized in the thickness direction at an interval of -2, and these regions (A).

(B)間を四分の三波長ずらせて配置してある。(B) They are arranged with a three-quarter wavelength shift between them.

前記領域(A) 、 (B)に90°・位相の異なる高
周波電圧を印加することにより、前記領域(A)。
The region (A) is formed by applying high frequency voltages having a phase difference of 90° to the regions (A) and (B).

(B)に対応の前記固定子(3)に発生する定在波が相
互に干渉を起こし、合成されて進行波となる。
The standing waves generated in the stator (3) corresponding to (B) interfere with each other and are combined to form a traveling wave.

即ち、前記回転子(4)は、前記固定子(3)に発生す
る進行波に基づく前記固定子(3)との摩擦力により回
転するのである。
That is, the rotor (4) rotates due to the frictional force with the stator (3) based on the traveling waves generated in the stator (3).

前記超音波モータ(M)の駆動制御装置は、第1図に示
すように、前記圧電体(1)に高周波電力を供給する電
源供給手段(5)と、前記振動子(3°)の機械的な共
振周波数と前記圧電体(1)への印加電圧の周波数との
差により生じる位相差を検出する位相差検出手段(6)
、すなわち、状態量検出手段と、その位相差検出手段(
6)の出力信号と前記印加電圧との位相を比較し、その
位相差を設定値に維持するように、前記電源供給手段(
5)の発振周波数を制御する周波数制御手段(7)と、
前記位相差検出手段(6)の出力信号に基づき前記電源
供給手段(5)の出力電圧、即ち、前記圧電体(1)へ
の印加電圧を制御する速度制御手段(8)等で構成して
ある。
As shown in FIG. 1, the drive control device for the ultrasonic motor (M) includes a power supply means (5) for supplying high-frequency power to the piezoelectric body (1), and a mechanical unit for the vibrator (3°). phase difference detection means (6) for detecting a phase difference caused by a difference between the resonant frequency and the frequency of the voltage applied to the piezoelectric body (1);
, that is, the state quantity detection means and its phase difference detection means (
The power supply means (6) compares the phase of the output signal with the applied voltage and maintains the phase difference at a set value.
5) frequency control means (7) for controlling the oscillation frequency;
It is comprised of a speed control means (8), etc., which controls the output voltage of the power supply means (5), that is, the voltage applied to the piezoelectric body (1), based on the output signal of the phase difference detection means (6). be.

前記電源供給手段(5)は、前段に、前記速度制御手段
(8)の出力信号に基づき、駆動回路(DI)を介して
スイッチ(B5)による通流率を変えることで、出力電
圧を可変する直流チョッパ回路(5a)を、そして後段
に、前記周波数制御手段(7)の出力信号に基づき、駆
動回路(B2)を介してスイッチ(Sl)からスイッチ
(B4)を開閉することで、周波数を可変するインバー
タ回路(5b)を設けて構威してある。
The power supply means (5) is configured to vary the output voltage by changing the conduction rate by a switch (B5) via a drive circuit (DI) based on the output signal of the speed control means (8). Based on the output signal of the frequency control means (7), the DC chopper circuit (5a) that controls the frequency An inverter circuit (5b) is provided to vary the voltage.

前記インバータ回路(5b)は、電源分割形ハーフブリ
ッジインバータを二組組み合わせて、位相が90°ずれ
た二相の方形波を出力するもので、それぞれの出力端子
は、昇圧用のトランス(Tl)、 (T2)を介して、
前記超音波モータ(M)の前記圧電体(1)の領域(A
) 、 (B)に設けてある電極に接続してある。
The inverter circuit (5b) is a combination of two power supply split type half-bridge inverters to output two-phase square waves with a phase shift of 90 degrees, and each output terminal is connected to a step-up transformer (Tl). , via (T2),
The area (A) of the piezoelectric body (1) of the ultrasonic motor (M)
), and are connected to the electrodes provided in (B).

尚、前記方形波は、前記トランス(Tl)、 (T2)
のもれインダクタンスにより正弦波に波形成形される。
Note that the square wave is generated by the transformer (Tl), (T2)
The waveform is shaped into a sine wave by the leakage inductance.

前記位相差検出手段(6)は、前記圧電体(1)への印
加電圧Vを検出する印加電圧検出手段(6a)と、通電
電流Iを検出する通電電流検出手段(6b)と、それら
出力信号を差動増幅する演算手段(6c)等で構成して
ある。
The phase difference detection means (6) includes an applied voltage detection means (6a) for detecting the voltage V applied to the piezoelectric body (1), an energization current detection means (6b) for detecting the energization current I, and their outputs. It is composed of arithmetic means (6c) for differentially amplifying signals and the like.

前記印加電圧検出手段(6a)は、巻数比N:1の変圧
器(PT )の二次側にブートストラップ回路(B1)
を接続して構成し、前記通電電流検出手段(6b)は、
巻数比1:Pの変流器(CT)の二次側に容量Cのコン
デンサ(C3)を介して、ブートストラップ回路(B2
)を接続して構成してあり、共に前記トランス(T2)
の二次側に介装してある。
The applied voltage detection means (6a) includes a bootstrap circuit (B1) on the secondary side of a transformer (PT) with a turns ratio of N:1.
The energizing current detection means (6b) is configured by connecting:
A bootstrap circuit (B2) is connected to the secondary side of a current transformer (CT) with a turns ratio of 1:P via a capacitor (C3) with a capacity of
), both of which are connected to the transformer (T2).
It is installed on the secondary side of the

そして、前記定数N、  P、 Cは、前記圧電体(1
)の静電容量cdに対して、 Ca ”C” P/N となるように設定してある。
The constants N, P, and C are the piezoelectric body (1
) is set so that Ca "C" P/N.

前記印加電圧検出手段(6a)の出力電圧VNと前記通
電電流検出手段(6b)の出力電圧Vcを前記演算手段
(6c)により差動増幅した結果、その出力電圧V、は
、〔作用〕の項で述べたように、前記印加電圧Vの周波
数と前記振動子(3′)の共振周波数との差により生じ
る位相差を表す項を含む。
As a result of differential amplification of the output voltage VN of the applied voltage detection means (6a) and the output voltage Vc of the energizing current detection means (6b) by the calculation means (6c), the output voltage V is as follows. As described in the section above, the term includes a term representing the phase difference caused by the difference between the frequency of the applied voltage V and the resonant frequency of the vibrator (3').

前記周波数制御手段(7)は、位相比較器(PC)と出
力反転形のローパスフィルタ(LPF)と電圧制御発振
器(VCO)とからなるPLLで、前記電圧制御発振器
(VCO)の出力は前記駆動回路(D2)に接続してあ
る。
The frequency control means (7) is a PLL consisting of a phase comparator (PC), an output inversion type low-pass filter (LPF), and a voltage controlled oscillator (VCO), and the output of the voltage controlled oscillator (VCO) is connected to the drive It is connected to the circuit (D2).

前記位相比較器(PC)と前記ローパスフィルタ(LP
P)との間には、前記位相比較器(PC)の出力電圧を
補正する位相補正手段(PSC)を介装してある。
The phase comparator (PC) and the low pass filter (LP
A phase correction means (PSC) for correcting the output voltage of the phase comparator (PC) is interposed between the phase comparator (PC) and the phase comparator (PC).

前記位相比較器(PC)は、前記印加電圧検出手段(6
a)の出力電圧VNと前記演算手段(6c)の出力電圧
V、を、フィルタ(Fl)、(F2) 、及び、方形波
に波形成形する比較器(COMI)、 (C0M2)を
介して入力してあり、第3図に示すように、両型圧VN
、VPの位相差に相当する電圧を出力する。
The phase comparator (PC) is connected to the applied voltage detection means (6
The output voltage VN of a) and the output voltage V of the calculation means (6c) are inputted via filters (Fl), (F2), and a comparator (COMI) that shapes the waveform into a square wave (C0M2). As shown in Fig. 3, both mold pressures VN
, VP outputs a voltage corresponding to the phase difference.

前記電圧制御発振器(VCO)は、第4図に示すように
、前記ローパスフィルタ(LPF)により反転された前
記位相比較器(PC)の出力電圧値に応じてその出力周
波数を可変とするものである。
As shown in FIG. 4, the voltage controlled oscillator (VCO) makes its output frequency variable in accordance with the output voltage value of the phase comparator (PC) which is inverted by the low pass filter (LPF). be.

つまり、両型圧vN、vpの位相差が90゜以下である
と、前記位相比較器(PC)の出力電圧が下がるので、
前記前記電圧制御発振器(VCO)の出力周波数が高く
なり、前記インバータ回路(5b)の発振周波数を高く
する。
In other words, if the phase difference between the two pressures vN and vp is 90 degrees or less, the output voltage of the phase comparator (PC) will decrease.
The output frequency of the voltage controlled oscillator (VCO) increases, and the oscillation frequency of the inverter circuit (5b) increases.

逆に、両型圧VN、VPの位相差が90°以上であると
、前記位相比較器(PC)の出力電圧が上がるので、前
記電圧制御発振器(vCO)の出力周波数が低くなり、
前記インバータ回路(5b)の発振周波数を低くするの
である。
Conversely, if the phase difference between the two types of pressures VN and VP is 90° or more, the output voltage of the phase comparator (PC) increases, so the output frequency of the voltage controlled oscillator (vCO) decreases,
This lowers the oscillation frequency of the inverter circuit (5b).

上述の動作により、両型圧VN、VPの位相差を90°
に維持する、即ち、前記振動子(3′)の温度等の変化
により変動する共振周波数に追尾して駆動することがで
きる。
By the above operation, the phase difference between both mold pressures VN and VP is set to 90°.
In other words, the vibrator (3') can be driven by tracking the resonant frequency that varies due to changes in the temperature, etc. of the vibrator (3').

さらに、前記周波数制御手段(7)は、前記位相比較器
(PC)の出力電圧を、前記位相補正手段(PSC)に
より補正することで、前記超音波モータ(M)が最も安
定、且つ、効率のよい駆動周波数である前記共振周波数
より若干高い周波数になるように、前記発振周波数を制
御するのである。
Furthermore, the frequency control means (7) corrects the output voltage of the phase comparator (PC) with the phase correction means (PSC), so that the ultrasonic motor (M) is most stable and efficient. The oscillation frequency is controlled so that the frequency is slightly higher than the resonance frequency, which is a good driving frequency.

〔別実施例〕[Another example]

以下に本発明の別実施例を説明する。 Another embodiment of the present invention will be described below.

1、先の実施例では、前記印加電圧検出手段(6a)を
構成するに、巻数比N:1の変圧器(PT)を用いてい
るが、変圧器(PT)の代わりに、抵抗比がN−1:1
の抵抗を直列に接続して構成することにより、VNを取
り出してもよい。
1. In the previous embodiment, a transformer (PT) with a turns ratio of N:1 is used to constitute the applied voltage detection means (6a), but instead of the transformer (PT), a transformer (PT) with a resistance ratio of N:1 is used to constitute the applied voltage detection means (6a). N-1:1
VN may be taken out by connecting resistors in series.

2、先の実施例では、前記位相差検出手段(6)をトラ
ンス(T2)の二次側に介装して前記固定子(3)のう
ち、領域(A)における位相差を検出しているが、前記
位相検出手段(6)はトランス(TI)の二次側に介装
して、領域CB)における位相差を検出してもよく、さ
らには、両方のトランス(Tl)、 (T2)にそれぞ
れ介装してもよい。
2. In the previous embodiment, the phase difference detection means (6) is interposed on the secondary side of the transformer (T2) to detect the phase difference in the region (A) of the stator (3). However, the phase detection means (6) may be interposed on the secondary side of the transformer (TI) to detect the phase difference in the region CB). ) may be interposed respectively.

3、先の実施例では、前記位相比較器(PC)に電圧V
N、VPを:l ンハL/ −タ(COMI)、 (C
0M2)を介して入力しているが、電圧VNの代わりに
、前記圧電体(1)への印加電圧Vをコンパレータ(C
OMI)を介して入力してもよい。
3. In the previous embodiment, the voltage V is applied to the phase comparator (PC).
N, VP: l Nha L/-ta (COMI), (C
0M2), but instead of the voltage VN, the voltage V applied to the piezoelectric body (1) is inputted via a comparator (C
It may also be input via OMI).

46  先の実施例では、固定子を振動子として構成し
てある回転型の超音波モータについて説明したが、超音
波モータとしては、回転子を振動子としたものや、リニ
ア型であってもよい さらに、異なる振動方向を持つ二つの振動を組み合わせ
ることにより、質点の運動軌跡を制御する複合振動子型
の超音波モータであってもよく、この場合には、前記電
圧VN。
46 In the previous embodiment, a rotary type ultrasonic motor in which the stator was configured as a vibrator was explained, but the ultrasonic motor may be one in which the rotor is a vibrator or a linear type. Furthermore, it may be a compound vibrator type ultrasonic motor that controls the motion locus of the mass point by combining two vibrations having different vibration directions, and in this case, the voltage VN.

■、の位相差を90°に維持することで、最も安定、且
つ、効率のよい駆動が可能となる。
(2) By maintaining the phase difference of 90°, the most stable and efficient driving is possible.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る超音波モータの駆動制御装置の実施
例を示し、第1図は回路図、第2図(イ)及び([7)
は超音波モータの構成図、第3図は位相比較器の出力特
性図、第4図は電圧制御発振器の出力特性図、第5図は
圧電振動子系の等価回路図、第6図は超音波モータの等
価回路図、第7図は位相差検出手段の回路図である。 (1)・・・・・・圧電体、(2)・・・・・・弾性体
、(3′)・・・・・・振動子、(5)・・・・・・電
源供給手段、(6)・・・・・・状態量検出手段、(6
a)・・・・・・印加電圧検出手段、(6b)・・・・
・・通電電流検出手段、(6c)・・・・・・演算手段
、(M)・・・・・・超音波モータ。
The drawings show an embodiment of the ultrasonic motor drive control device according to the present invention, and FIG. 1 is a circuit diagram, and FIG. 2 (A) and ([7]
is the configuration diagram of the ultrasonic motor, Figure 3 is the output characteristic diagram of the phase comparator, Figure 4 is the output characteristic diagram of the voltage controlled oscillator, Figure 5 is the equivalent circuit diagram of the piezoelectric vibrator system, and Figure 6 is the ultrasonic motor. FIG. 7 is an equivalent circuit diagram of the sonic motor, and FIG. 7 is a circuit diagram of the phase difference detection means. (1) Piezoelectric body, (2) Elastic body, (3') Vibrator, (5) Power supply means, (6)...State quantity detection means, (6
a)...Applied voltage detection means, (6b)...
... energizing current detection means, (6c) ... calculation means, (M) ... ultrasonic motor.

Claims (2)

【特許請求の範囲】[Claims] 1.圧電体(1)と弾性体(2)とからなる駆動用の振
動子(3’)を有する超音波モータ(M)に対し、前記
圧電体(1)に高周波電力を供給する電源供給手段(5
)と、前記振動子(3’)の振動状態を検出する状態量
検出手段(6)とを設けてある超音波モータの駆動制御
装置であって、前記状態量検出手段(6)を構成するに
、前記圧電体(1)への印加電圧を検出する印加電圧検
出手段(6a)と、 通電電流を検出する通電電流検出手段(6b)と、 前記印加電圧検出手段(6a)及び前記通電電流検出手
段(6b)の出力信号から、前記振動子(3’)の共振
周波数と前記印加電圧の周波数とのずれ量を出力する演
算手段(6c)と を設けてある超音波モータの駆動制御装置。
1. For an ultrasonic motor (M) having a driving vibrator (3') consisting of a piezoelectric body (1) and an elastic body (2), a power supply means (for supplying high-frequency power to the piezoelectric body (1)) 5
) and a state quantity detection means (6) for detecting the vibration state of the vibrator (3'), the drive control device for an ultrasonic motor comprising a state quantity detection means (6). an applied voltage detection means (6a) for detecting the voltage applied to the piezoelectric body (1); an energizing current detecting means (6b) for detecting the energizing current; and the applied voltage detecting means (6a) and the energizing current. A drive control device for an ultrasonic motor, comprising a calculating means (6c) for outputting the amount of deviation between the resonant frequency of the vibrator (3') and the frequency of the applied voltage from the output signal of the detecting means (6b). .
2.前記印加電圧検出手段(6a)は、前記印加電圧を
N:1に降圧して検出する降圧回路を含み、前記通電電
流検出手段(6b)は、巻数比1:Pの変流器とその二
次側に接続の容量Cのコンデンサを含み、それら定数を
前記圧電体(1)の静電容量C_dに対して、 C_d=C・P/Nの関係に設定してある 請求項1記載の超音波モータの駆動制御装置。
2. The applied voltage detection means (6a) includes a step-down circuit that steps down the applied voltage to N:1 and detects the applied voltage, and the energized current detection means (6b) includes a current transformer with a turns ratio of 1:P and its second transformer. 2. The superconductor according to claim 1, further comprising a capacitor having a capacitance C connected to the next side, and whose constants are set in a relationship of C_d=C·P/N with respect to the capacitance C_d of the piezoelectric body (1). Drive control device for sonic motor.
JP1202058A 1989-08-03 1989-08-03 Drive controller for ultrasonic motor Expired - Lifetime JPH0759155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202058A JPH0759155B2 (en) 1989-08-03 1989-08-03 Drive controller for ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202058A JPH0759155B2 (en) 1989-08-03 1989-08-03 Drive controller for ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH0365077A true JPH0365077A (en) 1991-03-20
JPH0759155B2 JPH0759155B2 (en) 1995-06-21

Family

ID=16451245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202058A Expired - Lifetime JPH0759155B2 (en) 1989-08-03 1989-08-03 Drive controller for ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0759155B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160379A (en) * 1987-12-16 1989-06-23 Matsushita Electric Ind Co Ltd Driving gear of ultrasonic motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160379A (en) * 1987-12-16 1989-06-23 Matsushita Electric Ind Co Ltd Driving gear of ultrasonic motor

Also Published As

Publication number Publication date
JPH0759155B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US5130619A (en) Drive control apparatus for an ultrasonic motor
US4853579A (en) Drive method for ultrasonic motor providing enhanced stability of rotation
JPH03145976A (en) Drive unit for ultrasonic motor
JPH06237584A (en) Speed control method and speed controller for ultrasonic motor
JP2737420B2 (en) Ultrasonic motor drive system
JPS6356178A (en) Driving of ultrasonic motor
JPS622869A (en) Supersonic motor drive device
JPH0365077A (en) Drive controller of ultrasonic motor
JPH0365079A (en) Drive controller of ultrasonic motor
JPH01148080A (en) Controller for ultrasonic motor
JP2506895B2 (en) Ultrasonic motor controller
JP2543106B2 (en) Ultrasonic motor drive
JPS6292782A (en) Ultrasonic motor device
JP2604731B2 (en) Ultrasonic motor drive
JPS63299788A (en) Ultrasonic motor driving device
JPH0365078A (en) Drive controller of ultrasonic motor
JP2506896B2 (en) Ultrasonic motor drive
JPH09215352A (en) Speed controller of ultrasonic motor
JPH10170277A (en) Detection circuit of piezoelectric oscillation angular velocity meter
JPH02101974A (en) Ultrasonic motor drive
JP2577485B2 (en) Driving method of ultrasonic motor
JPH01214276A (en) Controller for ultrasonic motor
JPH04322179A (en) Method of driving ultrasonic motor
JPS6356179A (en) Driving of ultrasonic motor
JP2532516B2 (en) Ultrasonic motor drive