JPH0364978B2 - - Google Patents

Info

Publication number
JPH0364978B2
JPH0364978B2 JP11977785A JP11977785A JPH0364978B2 JP H0364978 B2 JPH0364978 B2 JP H0364978B2 JP 11977785 A JP11977785 A JP 11977785A JP 11977785 A JP11977785 A JP 11977785A JP H0364978 B2 JPH0364978 B2 JP H0364978B2
Authority
JP
Japan
Prior art keywords
electrode
needle
ionized
storage section
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11977785A
Other languages
Japanese (ja)
Other versions
JPS61279042A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11977785A priority Critical patent/JPS61279042A/en
Priority to DE8686107442T priority patent/DE3677062D1/en
Priority to EP86107442A priority patent/EP0204297B1/en
Priority to US06/870,530 priority patent/US4721878A/en
Publication of JPS61279042A publication Critical patent/JPS61279042A/en
Publication of JPH0364978B2 publication Critical patent/JPH0364978B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン化しようとする物質を加熱し
て溶融し、高電界を印加して高輝度で、点状イオ
ンビームを放射する液体金属イオン源構造体に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the production of liquid metal ions, which heats and melts a substance to be ionized, applies a high electric field, and emits a point-shaped ion beam with high brightness. Regarding the source structure.

〔従来技術と問題点〕[Conventional technology and problems]

従来から液体金属イオン源構造体はいろいろ提
案されている。
Various liquid metal ion source structures have been proposed in the past.

例えば、(1)ヒーターの屈折部に針状電極を固定
したヘアピン型ヒーターを用いた電界蒸発型イオ
ン源構造体がある(特開昭56−114257号公報)。
For example, there is (1) an electric field evaporation type ion source structure using a hairpin type heater in which a needle electrode is fixed to the bent part of the heater (Japanese Patent Laid-Open No. 114257/1983).

しかし、これはヘアピン型ヒーターを用いてい
るので、加熱されると、ヘアピン型ヒーターが熱
変型し、エミツタ位置が変り、安定したイオンビ
ームが得られない。
However, since this uses a hairpin type heater, when heated, the hairpin type heater is thermally deformed and the emitter position changes, making it impossible to obtain a stable ion beam.

これを改良したものに(2)導電性の支持部材によ
り、イオン化しようとする金属の貯蔵部を支持す
るようにしたものがある。さらにこれについて説
明すると、この液体金属イオン源構造体はイオン
化しようとする金属を貯蔵する貯蔵部とその貯蔵
部から液状金属が供給される針状の先端部を有す
る針状電極と、その針状の先端部に強電界を形成
するための手段と、その貯蔵部あるいは針状電極
に熱的に接続され、通電によつて発熱する発熱性
支持部材とを備え、その支持部材は液状金属と親
和性の悪い物質によつて形成された液状金属イオ
ン源構造体からなつている。(特開昭58−35829号
公報)。
An improved version of this is (2) a method in which the storage portion of the metal to be ionized is supported by a conductive support member. To further explain this, this liquid metal ion source structure includes a storage part that stores the metal to be ionized, a needle-like electrode having a needle-like tip to which the liquid metal is supplied from the storage part, and the needle-shaped electrode. means for forming a strong electric field at the tip of the metal, and an exothermic support member that is thermally connected to the reservoir or the needle electrode and generates heat when energized, and the support member has an affinity for liquid metal. It consists of a liquid metal ion source structure made of a substance with poor properties. (Japanese Unexamined Patent Publication No. 58-35829).

しかしながら、このようなものを用いてイオン
を放射させる場合、溶融金属が通電によつて、貯
蔵部および針状電極よりも温度の高い発熱性支持
部材の表面を濡らし、抵抗が小さくなり、溶融金
属の温度が低下し、均一なイオンが得られず、極
端な場合は加熱できなくなりイオンが放射されな
くなる欠点がある。
However, when emitting ions using such a device, the molten metal wets the surface of the exothermic support member whose temperature is higher than that of the reservoir and the needle electrode due to the energization, and the resistance decreases. The disadvantage is that the temperature decreases, making it impossible to obtain uniform ions, and in extreme cases, heating becomes impossible and ions are no longer emitted.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、前記(2)の把握型の電界蒸発型イオ
ン源構造体において、安定なイオンビームを得る
方法についていろいろ研究を行つた結果、イオン
化しようとする物質が発熱性支持部材の表面には
い上らないような手段を用いることにより、安定
で、しかも長寿命の電界蒸発型の液体金属イオン
源構造体の発明を完成したものである。
The inventor of the present invention conducted various studies on methods for obtaining a stable ion beam in the grasping type field evaporation type ion source structure described in (2) above, and found that the substance to be ionized is deposited on the surface of the exothermic support member. By using non-climbing means, we have completed the invention of a stable and long-life field evaporation type liquid metal ion source structure.

すなわち、本発明は、イオン化しようとする物
質を貯蔵する貯蔵部と、前記貯蔵部内にイオン化
しようとする物質のイオンを先端から放射する針
状電極と、さらに前記貯蔵部を通電により発熱す
る発熱性支持部材で挟持すると共に前記発熱性支
持部材と前記針状電極との間に電界を印加して前
記針状電極先端からイオンを引出す引出電極とか
らなる液体金属イオン源構造体において、前記貯
蔵部の底部両側に貯蔵部の底部側面より大きく、
しかもイオン化すべき物質と濡れ性が悪く、かつ
導電性である隔壁部を設けたことを特徴とする液
体金属イオン源構造体である。
That is, the present invention includes a storage section that stores a substance to be ionized, a needle-shaped electrode that emits ions of the substance to be ionized into the storage section from its tip, and an exothermic electrode that generates heat when energized in the storage section. In a liquid metal ion source structure comprising an extraction electrode which is held between support members and applies an electric field between the exothermic support member and the needle-like electrode to draw out ions from the tip of the needle-like electrode, the storage portion Larger than the bottom sides of the reservoir on both sides of the bottom of the
Furthermore, the liquid metal ion source structure is characterized by having a partition wall portion that has poor wettability with the substance to be ionized and is electrically conductive.

以下さらに本発明を図面に従つて具体的に説明
する。
The present invention will be further explained in detail below with reference to the drawings.

第1図、第2図、第3図及び第5図は本発明の
実施例、第4図は従来例を示すものである。第1
図は液体金属イオン源構造体全体を説明する断面
図、第2図、第3図及び第4図は液体金属イオン
源構造体の貯蔵部、発熱性支持体及び針状電極部
分の説明図、第5図は貯蔵部の展開図である。ま
ず第1図に示すように本発明の液体金属イオン源
構造体は、イオン化しようとする物質の貯蔵部2
と、針状電極1と、発熱性支持部材5a,5b
と、引出電極13とからなり、しかも貯蔵部の底
部両側に貯蔵部の底部側面より大きい隔壁部4
a,4bから構成されている。
1, 2, 3, and 5 show embodiments of the present invention, and FIG. 4 shows a conventional example. 1st
The figure is a sectional view illustrating the entire liquid metal ion source structure, FIGS. 2, 3, and 4 are explanatory views of the storage part, exothermic support, and needle-like electrode part of the liquid metal ion source structure, FIG. 5 is a developed view of the storage section. First, as shown in FIG.
, the needle electrode 1, and the heat-generating support members 5a and 5b.
and an extraction electrode 13, and partition walls 4 larger than the side surfaces of the bottom of the storage section are provided on both sides of the bottom of the storage section.
It is composed of a and 4b.

さらに、本発明による液体金属イオン源の構造
について説明すると、針状電極1は、イオン化し
ようとする物質と反応しにくく、かつ濡れやすい
物質、例えば、タングステン、タンタル、モリブ
デン等の高融点金属や、チタン、ジルコニウム、
ニオブ、タンタル、クロム、タングステン、モリ
ブデン等の硼化物、炭化物、窒化物の焼結体又
は、これらの単結晶を細い粒状に加工し、その先
端を電解研磨又は機械研磨等により曲率半径1−
2μmに加工したものである。貯蔵部2は、タン
タルの如き加工しやすい金属で、例えば第5図に
示す様な展開図のものを切り出し、折曲げ加工及
び必要に応じて継ぎ目を電子ビーム等で溶接し
て、第2図、及び第3図に示す様に加工する。第
2図及び第3図の貯蔵部2の一部は、イオン化し
ようとする物質3、針状電極1、との関係を示す
ために破断面にして示してある。貯蔵部2は、イ
オン化しようとする物質の貯蔵及び針状電極1へ
の供給が可能であれば、どの様な形状でも良い。
例えば、二側面が開放された形状であつても、イ
オン化すべき物質の表面張力によつて、イオン化
しようとする物質3の溶融物は、貯蔵部2に保持
できる。貯蔵部2に、針状電極1の底部を挿入
し、針状電極1の底部を貯蔵部2の底部を介し
て、発熱性支持部材5a,5bで把持する。この
場合、貯蔵部2の底部に、その底部より大きな隔
壁部4a,4bを備えている。隔壁部4a,4b
は、イオン化すべき溶融体が、発熱性支持部材5
a,5bの表面に濡れるのを防ぐためのものであ
る。また、隔壁部4a,4bの材質は、グラツシ
ーカーボン、熱分解グラフアイト、炭素質のシー
トなど、イオン化しようとする物質の溶融体との
濡れ接触角が90°以上のもので、かつ導電性であ
ることが望ましい。表面には、濡れを良くする異
物や著しいキズがあつてはならない。隔壁体4
a,4bは、貯蔵部2の底部側面よりも外側に出
る様に作製し、溶融体の濡れ拡がりを防止する。
隔壁体の高さは、液体金属イオン源構造体の構
造、寸法等にもよるが、一般的に貯蔵部2の側部
が10mmの時、側部より0.1〜1.0mm、望ましくは0.2
〜0.5mmより大きい高さである。その大きさが0.1
mm未満では、溶融体の濡れ拡がりを防止できない
し、1.0mmを越えると、隔壁部の作製が著しく困
難である。隔壁部の厚さは、0.1〜0.3mmが望まし
い。0.1mm未満では機械的強度が不足し、0.3mmを
越えると、隔壁部の厚み部分に付着した溶融体が
電気抵抗を変化させる。また、隔壁部4a,4b
は、発熱性支持部材5a,5bを加工して、発熱
性支持部材と一体となるものでも、また、単独部
材を貯蔵部2と発熱性支持部材5a,5bとの間
に介在させたものでも、いづれでも良い。発熱性
支持部材5a,5bは、各部材を把持している方
向に電気抵抗が大きい異方性炭素材料であつて、
熱分解グラフアイト又は、樹脂を高温高圧下で熱
分解した炭素質材料の他、グラツシーカーボンも
使用できる。
Furthermore, to explain the structure of the liquid metal ion source according to the present invention, the needle electrode 1 is made of a material that does not easily react with the substance to be ionized and is easily wetted, such as a high melting point metal such as tungsten, tantalum, or molybdenum. titanium, zirconium,
Sintered bodies of borides, carbides, and nitrides such as niobium, tantalum, chromium, tungsten, and molybdenum, or single crystals thereof are processed into fine grains, and the tips are polished to a radius of curvature of 1- by electropolishing or mechanical polishing.
It is processed to 2μm. The storage section 2 is made of a metal that is easy to work with, such as tantalum, for example, by cutting out a developed view as shown in FIG. , and processed as shown in FIG. A part of the reservoir 2 in FIGS. 2 and 3 is shown as a broken surface to show the relationship between the substance 3 to be ionized and the needle electrode 1. The storage section 2 may have any shape as long as it can store the substance to be ionized and supply it to the needle electrode 1.
For example, even if the two sides are open, the melt of the substance 3 to be ionized can be held in the storage part 2 due to the surface tension of the substance to be ionized. The bottom part of the needle electrode 1 is inserted into the storage part 2, and the bottom part of the needle electrode 1 is gripped by the heat generating support members 5a and 5b via the bottom part of the storage part 2. In this case, the bottom of the storage section 2 is provided with partition walls 4a and 4b that are larger than the bottom. Partition wall parts 4a, 4b
In this case, the melt to be ionized is placed in the exothermic support member 5.
This is to prevent the surfaces of parts a and 5b from getting wet. The material for the partition walls 4a and 4b is one that has a wetting contact angle of 90° or more with the melt of the substance to be ionized, such as glassy carbon, pyrolytic graphite, or carbonaceous sheet, and is electrically conductive. It is desirable that The surface must be free of foreign objects and significant scratches that improve wetting. Partition body 4
a and 4b are made so as to protrude outward from the bottom side of the storage section 2 to prevent the melt from getting wet and spreading.
The height of the partition wall depends on the structure, dimensions, etc. of the liquid metal ion source structure, but generally when the side of the storage section 2 is 10 mm, the height of the partition is 0.1 to 1.0 mm, preferably 0.2 mm from the side.
The height is greater than ~0.5mm. Its size is 0.1
If it is less than 1.0 mm, it is impossible to prevent the melt from spreading, and if it exceeds 1.0 mm, it is extremely difficult to fabricate the partition wall. The thickness of the partition wall is preferably 0.1 to 0.3 mm. If it is less than 0.1 mm, the mechanical strength will be insufficient, and if it exceeds 0.3 mm, the molten material adhering to the thick part of the partition wall will change the electrical resistance. In addition, partition wall portions 4a, 4b
The heat-generating support members 5a, 5b may be processed to be integrated with the heat-generating support members, or a separate member may be interposed between the storage portion 2 and the heat-generating support members 5a, 5b. , either is fine. The heat-generating support members 5a and 5b are made of an anisotropic carbon material with high electrical resistance in the direction in which each member is gripped, and
In addition to pyrolytic graphite or a carbonaceous material obtained by thermally decomposing a resin under high temperature and high pressure, glassy carbon can also be used.

前記した各部材は、導電性支持部材6a,6b
で把持され、導電性支持部材6a,6bは、絶縁
体7a,7bを介して、両端をナツト8a,8b
で固定されたタイバー9で固定されている。ま
た、導電性部材6a,6bは、結合部材12a,
12bによつて、電極端子11a,11bに接続
されている。
Each of the above-mentioned members includes conductive support members 6a and 6b.
The conductive support members 6a, 6b are held at both ends with nuts 8a, 8b via insulators 7a, 7b.
It is fixed with a tie bar 9 fixed at. Further, the conductive members 6a, 6b are connected to the coupling member 12a,
12b, it is connected to electrode terminals 11a and 11b.

〔実施例〕〔Example〕

次に本発明による液体金属イオン源の実施例に
ついて述べる。第2図に示す構造のイオン源にお
いて、断面が0.75×0.75mm、長さが3.0mmの角柱状
のCrB2単結晶を用い、機械研磨で円錐角30°、曲
率半径2μmに針状電極を加工した。厚さ0.1mmの
Ta薄板を加工して、第5図に示したA、B部を
各々0.8mmとし、折曲げ加工を行つて貯蔵部を作
製した。この場合の貯蔵部基部の外寸法は1.0mm
である。隔壁部4a,4bはグラツシーカーボン
を加工して断面1.2mm×1.2mm、厚さ0.2mmのシート
を作製し、熱分解グラフアイトからなるヒーター
(0.75×0.75×0.75mm)にあらかじめシアノアクリ
レート系瞬間接着剤で接着した。前記したTa製
貯蔵部に針状電極の基部を挿入し、隔壁体を接着
したヒーターで両側から把持した。この時、熱分
解グラフアイトの層が、撓む方向を平行になる様
に配置した。貯蔵部にイオン化しようとする物質
としてPd40Ni40B20の合金を入れて7×10-7torr
の真空下でイオンビームの放射を行つた。引出し
電圧3kvで、300時間に渡つて安定なイオンビー
ムが得られた。この時のイオンビームの安定性は
0.5%/時以下であつた。使用後、イオン源を取
り出して観察したが、発熱性支持体5a,5bの
表面には合金の付着が認められなかつた。
Next, examples of the liquid metal ion source according to the present invention will be described. In the ion source with the structure shown in Figure 2, a prismatic CrB 2 single crystal with a cross section of 0.75 x 0.75 mm and a length of 3.0 mm is used, and a needle-like electrode is mechanically polished to a cone angle of 30° and a radius of curvature of 2 μm. processed. Thickness 0.1mm
A storage section was fabricated by processing a Ta thin plate so that sections A and B shown in FIG. 5 were each 0.8 mm, and were bent. In this case, the outer dimension of the reservoir base is 1.0mm
It is. For the partition walls 4a and 4b, a sheet with a cross section of 1.2 mm x 1.2 mm and a thickness of 0.2 mm is prepared by processing glassy carbon, and a cyanoacrylate based heater (0.75 x 0.75 x 0.75 mm) made of pyrolytic graphite is prepared in advance. Attached with instant adhesive. The base of the needle electrode was inserted into the Ta reservoir described above, and was gripped from both sides with heaters to which the partition wall was adhered. At this time, the layers of pyrolytic graphite were arranged so that their bending directions were parallel to each other. Put an alloy of Pd40Ni40B20 as a substance to be ionized in the reservoir and increase the temperature to 7×10 -7 torr.
Ion beam radiation was carried out in a vacuum. A stable ion beam was obtained for 300 hours at an extraction voltage of 3 kV. The stability of the ion beam at this time is
It was less than 0.5%/hour. After use, the ion source was taken out and observed, but no alloy was observed on the surfaces of the exothermic supports 5a and 5b.

比較のために、前記したと同一の針状電極及び
イオン化物質を用いて、第4図に示すイオン源構
造体を作製し、同様にイオンビームの放射実験を
試みたが、5分後に合金が加熱支持体にはい出
し、加熱不能になつた。
For comparison, we fabricated the ion source structure shown in Figure 4 using the same needle-shaped electrode and ionized substance as described above, and similarly attempted an ion beam radiation experiment, but after 5 minutes, the alloy disappeared. It crawled onto the heating support and heating became impossible.

〔発明の効果〕〔Effect of the invention〕

本発明は、貯蔵部の底部両側に、該貯蔵部の底
部側面より大きく、しかも、イオン化しようとす
る物質と濡れが良く、かつ導電性である隔壁部が
備えたものからなつているので、貯蔵部の外側に
従来法では濡れ拡がつてたイオン化しようとする
物質の溶融体を、その隔壁部で溶融体が発熱性支
持体に濡れ広がるのを防ぐ効果がある。従つて長
時間安定に加熱することができ、イオン源の長寿
命、イオンビームの安定性、信頼性を高めること
ができる。
The present invention has partition walls on both sides of the bottom of the storage section that are larger than the sides of the bottom of the storage section, have good wettability with the substance to be ionized, and are electrically conductive. The partition walls have the effect of preventing the melt of the substance to be ionized, which would have wetted and spread on the outside of the exothermic support in the conventional method, from spreading on the exothermic support. Therefore, stable heating can be performed for a long period of time, and the life of the ion source can be increased, and the stability and reliability of the ion beam can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図及び第5図は本発明の
実施例、第4図は従来例を示すもので、第1図は
液体金属イオン源構造体の説明図、第2図、第3
図、第4図は液体金属イオン源構造体の貯蔵部、
発熱性支持体及び針状電極部分の説明図、第5図
は貯蔵部の展開図である。 付号、1……針状電極、2……貯蔵部、3……
イオン化すべき物質、4a,4b……隔壁部、5
a,5b……発熱性支持部材、6a,6b……導
電性支持部材、7a,7b……絶縁体、8a,8
b……ナツト、9……タイバー、10……絶縁碍
子、11a,11b……電極端子、12a,12
b……結合部材、13……引出電極。
1, 2, 3, and 5 show examples of the present invention, and FIG. 4 shows a conventional example. FIG. 1 is an explanatory diagram of a liquid metal ion source structure, and FIG. , 3rd
FIG. 4 shows a storage section of a liquid metal ion source structure;
An explanatory view of the exothermic support and the needle-shaped electrode portion, and FIG. 5 is a developed view of the storage section. Number, 1... Needle electrode, 2... Storage part, 3...
Substance to be ionized, 4a, 4b... partition part, 5
a, 5b... exothermic support member, 6a, 6b... conductive support member, 7a, 7b... insulator, 8a, 8
b... Nut, 9... Tie bar, 10... Insulator, 11a, 11b... Electrode terminal, 12a, 12
b...Coupling member, 13...Extraction electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン化しようとする物質を貯蔵する貯蔵部
と、前記貯蔵部内に貯蔵されるイオン化しようと
する物質のイオンを先端から放射する針状電極
と、さらに前記貯蔵部を通電により発熱する発熱
性支持部材で挟持すると共に前記発熱性支持部材
と前記針状電極との間に電界を印加して前記針状
電極先端からイオンを引出す引出電極とからなる
液体金属イオン源構造体において、前記貯蔵部の
底部両側に貯蔵部の底部側面より大きく、しかも
イオン化すべき物質と濡れ性が悪く、かつ導電性
である隔壁部を設けたことを特徴とする液体金属
イオン源構造体。
1. A storage section that stores a substance to be ionized, a needle-like electrode that emits ions of the substance to be ionized stored in the storage section from its tip, and a heat-generating support member that generates heat when the storage section is energized. In the liquid metal ion source structure, the liquid metal ion source structure comprises an extraction electrode that is held between the heat-generating support member and the needle-like electrode and extracts ions from the tip of the needle-like electrode by applying an electric field between the heat-generating support member and the needle-like electrode. 1. A liquid metal ion source structure, characterized in that partition walls are provided on both sides, which are larger than the bottom side surfaces of a storage section, have poor wettability with the substance to be ionized, and are electrically conductive.
JP11977785A 1985-06-04 1985-06-04 Liquid metallic ion source composition Granted JPS61279042A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11977785A JPS61279042A (en) 1985-06-04 1985-06-04 Liquid metallic ion source composition
DE8686107442T DE3677062D1 (en) 1985-06-04 1986-06-02 SOURCE OF CHARGED PARTICLES.
EP86107442A EP0204297B1 (en) 1985-06-04 1986-06-02 Charged particle emission source structure
US06/870,530 US4721878A (en) 1985-06-04 1986-06-04 Charged particle emission source structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11977785A JPS61279042A (en) 1985-06-04 1985-06-04 Liquid metallic ion source composition

Publications (2)

Publication Number Publication Date
JPS61279042A JPS61279042A (en) 1986-12-09
JPH0364978B2 true JPH0364978B2 (en) 1991-10-09

Family

ID=14769958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11977785A Granted JPS61279042A (en) 1985-06-04 1985-06-04 Liquid metallic ion source composition

Country Status (1)

Country Link
JP (1) JPS61279042A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510719B2 (en) * 1989-03-06 1996-06-26 電気化学工業株式会社 Liquid metal ion source structure

Also Published As

Publication number Publication date
JPS61279042A (en) 1986-12-09

Similar Documents

Publication Publication Date Title
US4088919A (en) Ion source including a pointed solid electrode and reservoir of liquid material
US7235912B2 (en) Diamond-like carbon thermoelectric conversion devices and methods for the use and manufacture thereof
US4978814A (en) Electrical device including an electrical connector
US7608974B2 (en) Diamond-like carbon devices and methods for the use and manufacture thereof
US20070126312A1 (en) DLC field emission with nano-diamond impregnated metals
CN101459019A (en) Thermal electron source
EP0632479A1 (en) Anisotropic pyrolytic graphite heater
JPS5840744A (en) Metal ion source
US6949873B2 (en) Amorphous diamond materials and associated methods for the use and manufacture thereof
JPH0364978B2 (en)
JPH0535535B2 (en)
JPS61279039A (en) Liquid metal ion source structural body
EP1483770A2 (en) Fast heating cathode
JPS61279041A (en) Liquid metallic ion source
US4638210A (en) Liquid metal ion source
US4755683A (en) Liquid-metal ion beam source substructure
JP3810395B2 (en) Charged particle radiation source
JP2510719B2 (en) Liquid metal ion source structure
JPH02247951A (en) Electric field-discharge type ion source
JP3415414B2 (en) Thermocompression tools
JP4195698B2 (en) Nanochip bonding apparatus and method using electrolytic etching
JPS632222A (en) Lanthanum hexaboride hot cathode
JPS6329373B2 (en)
JPS5911172B2 (en) thermionic emission cathode
JPH0542041B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees