JPH0364847B2 - - Google Patents

Info

Publication number
JPH0364847B2
JPH0364847B2 JP56044178A JP4417881A JPH0364847B2 JP H0364847 B2 JPH0364847 B2 JP H0364847B2 JP 56044178 A JP56044178 A JP 56044178A JP 4417881 A JP4417881 A JP 4417881A JP H0364847 B2 JPH0364847 B2 JP H0364847B2
Authority
JP
Japan
Prior art keywords
focus
determined
evaluation function
state
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56044178A
Other languages
Japanese (ja)
Other versions
JPS57158817A (en
Inventor
Asao Hayashi
Kenichi Ooikami
Masatoshi Ida
Masahiro Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4417881A priority Critical patent/JPS57158817A/en
Publication of JPS57158817A publication Critical patent/JPS57158817A/en
Publication of JPH0364847B2 publication Critical patent/JPH0364847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は予定焦点面の前後に所定の光路差を持つ
て配置された1対の光電変換装置上に物体像を投
影し、該光電変換装置からの光電変換出力を所定
の評価関数に従つて演算して得られる評価関数値
に基づいて合焦状態を検出する合焦検出方式に関
するものである。
Detailed Description of the Invention The present invention projects an object image onto a pair of photoelectric conversion devices placed before and after a predetermined focal plane with a predetermined optical path difference, and converts the photoelectric conversion output from the photoelectric conversion devices into The present invention relates to a focus detection method that detects a focus state based on an evaluation function value obtained by calculation according to a predetermined evaluation function.

斯る合焦検出方式は従来より公知であり、その
原理を第1〜第2図を参照して説明する。
Such a focus detection method is conventionally known, and its principle will be explained with reference to FIGS. 1 and 2.

第1図において、物体1から反射された光は対
物レンズ2で集光され、ハーフミラー3により分
割されて受光素子列D1及びD2に入射する。受光
素子列D1及びD2は予定焦点面4の前後に光軸方
向に所定の光路差δを有するよう配置され、対物
レンズ2とのデフオーカス量に対応したボケ像が
これら受光素子列上に形成される。受光素子列D
1及びD2の光電変換出力はA/D変換回路5で
A/D変換され、CPU6で所定の評価関数に基
づいて演算処理され、得られた評価関数値に基づ
いて前ピン、合焦、後ピン及び合焦不能の各状態
が判定され、表示部7の表示素子7a〜7dにそ
れぞれ表示される。評価関数としては、受光素子
列のn番目の素子の出力のA/D変換値をxoとす
ると、例えば 〓n |xo−xo-1|や、|xo−xo-1|の
最大値や、|xo−xo-1|の最大値とその次に大き
な|xo−xo-1|の和等が使用される。第2図は受
光素子列D1及びD2の出力を斯る評価関数に基づ
いて演算して得られる評価関数値F1及びF2とデ
フオーカス量との関係を示し、受光素子列D1
にピントが合うとこの受光素子列に対応する評価
関数値F1が最大になり、受光素子列D2上にピン
トが合うとこの受光素子列に対応する評価関数値
F2が最大となり、予定焦点面4にピントが合う
と評価関数値F1及びF2が等しくなる。従つて、
評価関数値F1及びF2の差の絶対値Δ=|F1−F2
|を求め、これが所定の基準値A1より小さいと
きは合焦状態であると判定することができ、更に
Δ≧A1でF1≧F2のときは前ピン状態、Δ≧A1
F1<F2のときは後ピン状態であると判定表示す
ることができ、この判定結果に基づいて手動的に
又は自動的に合焦制御することができる。しか
し、デフオーカス量が大きくなつてボケが大きく
なるとF1及びF2はともに小さくなり、Δ=|F1
−F2|も小さくなり、ピントはずれの位置でも
合焦状態であると検出する惧れがある。
In FIG. 1, light reflected from an object 1 is condensed by an objective lens 2, divided by a half mirror 3, and incident on light receiving element arrays D1 and D2 . The light-receiving element rows D 1 and D 2 are arranged so as to have a predetermined optical path difference δ in the optical axis direction before and after the planned focal plane 4, and a blurred image corresponding to the amount of defocus with the objective lens 2 is formed on these light-receiving element rows. It is formed. Light receiving element row D
The photoelectric conversion outputs of 1 and D2 are A/D converted by the A/D conversion circuit 5, and then arithmetic processed by the CPU 6 based on a predetermined evaluation function. The in-focus and out-of-focus states are determined and displayed on the display elements 7a to 7d of the display unit 7, respectively. As an evaluation function, if x o is the A/D conversion value of the output of the n-th element in the light-receiving element array, then, for example, 〓 n |x o −x o-1 | or |x o −x o-1 | The maximum value of , the sum of the maximum value of |x o −x o-1 | and the next largest |x o −x o-1 |, etc. are used. FIG. 2 shows the relationship between the evaluation function values F 1 and F 2 obtained by calculating the outputs of the light receiving element rows D 1 and D 2 based on the evaluation function and the amount of defocus. When focused on, the evaluation function value F 1 corresponding to this light receiving element row becomes maximum, and when focused on light receiving element row D 2 , the evaluation function value corresponding to this light receiving element row becomes maximum.
When F 2 becomes maximum and the intended focal plane 4 is in focus, the evaluation function values F 1 and F 2 become equal. Therefore,
Absolute value Δ of the difference between evaluation function values F 1 and F 2 = |F 1 −F 2
When this is smaller than a predetermined reference value A 1 , it can be determined that the focus is in focus. Furthermore, when Δ≧A 1 and F 1 ≧F 2 , the front focus state is determined, and when Δ≧A 1 , it is determined that the focus is in focus.
When F 1 <F 2 , it can be determined and displayed that the camera is in a rear focus state, and focusing can be controlled manually or automatically based on this determination result. However, as the amount of defocus increases and the blur becomes larger, both F 1 and F 2 become smaller, and Δ=|F 1
−F 2 | also becomes small, and there is a risk that an in-focus state may be detected even at an out-of-focus position.

これを防ぐための最も簡単な方法は、評価関数
値F1,F2のいずれか一方(又は両方)が所定の
閾値以下になつたときにΔ=|F1−F2|の大き
さに拘わらず合焦不能であると判定することであ
る。即ち、第2図に示すように評価関数値F1
びF2が所定の閾値Bより小さい場合には合焦不
能と判定するのである。このようにすれば、ボ
ケ、即ちデフオーカス量が大きくなつてΔ=|
F1−F2|がA1より小さくなつた状態を誤つて
「合焦」と判定することはなくなる。
The simplest way to prevent this is to change the magnitude of Δ= |F 1 F 2 | This means that it is determined that focusing is not possible regardless of the condition. That is, as shown in FIG. 2, if the evaluation function values F 1 and F 2 are smaller than a predetermined threshold B, it is determined that focusing is impossible. By doing this, the amount of blur, that is, the amount of defocus increases, and Δ=|
A state in which F 1 −F 2 | becomes smaller than A 1 will no longer be mistakenly determined to be "in focus."

しかしながら、このようにすると合焦検出可能
な範囲が狭くなる。というのは、評価関数値F1
及びF2とデフオーカス量との関係曲線は被写体
毎に異なり、被写体によつては第3図に示すよう
に評価関数値F1及びF2が合焦不能判定閾値Bよ
り小さくなつてもΔが合焦判定基準値A1より小
さくならず、充分に前ピン、後ピン状態を検出で
きるのに、上述の方法ではF1,F2<Bにのみ基
づいてΔの大きさと無関係に「合焦不能」と判定
してしまうからである。
However, if this is done, the range in which focus can be detected becomes narrower. This is because the evaluation function value F 1
The relationship curve between F 1 and F 2 and the amount of defocus differs depending on the subject, and depending on the subject, as shown in Fig. 3, Δ may change even if the evaluation function values F 1 and F 2 become smaller than the out-of-focus determination threshold B. Although it is possible to sufficiently detect the front focus and rear focus states without becoming smaller than the focus judgment reference value A 1 , the above method is able to detect "in focus" based only on F 1 and F 2 <B, regardless of the size of Δ. This is because it is judged as 'impossible'.

従つて、所定の合焦不能判定閾値Bと評価関数
値F1及びF2とを比較することにより合焦不能を
判定する方法では本来合焦検出可能な範囲を不当
に狭くする欠点がある。
Therefore, the method of determining inability to focus by comparing a predetermined inability to focus determination threshold B with the evaluation function values F 1 and F 2 has the drawback of unduly narrowing the range in which focus can be detected.

本発明の目的はこの欠点を解消することにあ
り、本発明は予定焦点面の前後に所定の光路斯差
を持つて配置された1対の光電変換装置上に物体
像を投影し、該1対の光電変換装置からの光電変
換出力をそれぞれ所定の評価関数に従つて演算し
て得られる評価関数値F1及びF2の差の絶対値|
F1−F2|を合焦判定基準値A1と比較して合焦状
態を検出する合焦検出方式において、 1対の光電変換装置に対応する評価関数値F1
F2及びその差の絶対値|F1−F2|がそれぞれ F1,F2<B |F1−F2|<A2 B:予め定められた合焦不能判定閾値 A2:合焦判定基準値A1に等しいか僅かに大きい
基準値 のときは合焦不能と判定することを特徴とする。
The purpose of the present invention is to eliminate this drawback, and the present invention projects an object image onto a pair of photoelectric conversion devices arranged before and after a predetermined focal plane with a predetermined optical path difference. Absolute value of the difference between evaluation function values F 1 and F 2 obtained by calculating the photoelectric conversion outputs from a pair of photoelectric conversion devices according to respective predetermined evaluation functions |
In a focus detection method that detects the in-focus state by comparing F 1 −F 2 | with a focus determination reference value A 1 , the evaluation function value F 1 , corresponding to a pair of photoelectric conversion devices
F 2 and the absolute value of the difference |F 1 −F 2 | are F 1 , F 2 <B |F 1 −F 2 |<A 2 B: Predetermined in-focus determination threshold A 2 : Focus It is characterized in that it is determined that focusing is impossible when the reference value is equal to or slightly larger than the determination reference value A1 .

このように、本発明では評価関数値F1及びF2
が合焦不能判定閾値Bより小さいという条件に加
えて、評価関数値F1及びF2の差の絶対値Δ=|
F1−F2|が合焦判定基準値A1に等しいか僅かに
大きい基準値A2より小さいという条件が重なつ
たときにのみ「合焦不能」と判定するようにした
ものであり、このようにすれば実際に合焦不能と
判定されるのは第3図にB′で示すレベル以下に
なり、既知に方法ではPP′間であつた合焦検出可
能範囲が本発明によればQQ′間で合焦検出が可能
となり、それだけ広い範囲に亘つてオートフオー
カス制御ができるようになる。しかもB′の値は
Bのように固定されず、|F1−F2|の値が実際に
A2より小さくなるところで決まるので、実際の
合焦不能判定レベルB′は被写体によつて変化す
る評価関数値曲線に応じて変化し、それに応じて
適正な合焦検出可能範囲が得られることになる。
In this way, in the present invention, the evaluation function values F 1 and F 2
In addition to the condition that is smaller than the in-focus determination threshold B, the absolute value Δ of the difference between the evaluation function values F 1 and F 2 = |
The system is designed to determine "unable to focus" only when the conditions that F 1 - F 2 | is equal to or slightly larger than the focus judgment reference value A 2 are smaller than the reference value A 2 . In this way, it is determined that the in-focus condition is actually determined to be below the level shown by B' in FIG. Focus detection becomes possible between QQ', and autofocus control can be performed over a correspondingly wider range. Moreover, the value of B′ is not fixed like B, and the value of |F 1 −F 2 | is actually
Since it is determined when A is smaller than 2 , the actual in-focus determination level B' changes according to the evaluation function value curve that changes depending on the subject, and an appropriate focus detectable range can be obtained accordingly. Become.

次に、本発明の方法の好適例を第4図のフロー
チヤートを参照して説明する。本例では、先ず判
断ブロツク11において|F1−F2|が合焦判定
基準A1より僅かに大きい基準値A2より大きいか
小さいかを検査し、|F1−F2|≧A2のときは次に
判断ブロツク12においてF1>F2であるか否か
を検査し、F1≧F2のときは前ピン状態と判定し、
F1<F2のときは後ピン状態と判定する。他方、|
F1−F2|<A2のときは次に判断ブロツク13に
おいてF1,F2が合焦不能判定閾値Bより大きい
か小さいかを検査し、F1,F2<Bのときは合焦
不能と判定する。他方F1,F2≧Bのときは更に
判断ブロツク14において|F1−F2|<A1であ
るか否かを検査し、|F1−F2|<A1のときは合焦
状態と判定し、|F1−F2|≧A1のときは更に判断
ブロツク12においてF1≧F2であるか否かを検
査し、F1>F2のときは前ピン状態、F1<F2のと
きは後ピン状態と判定する。
Next, a preferred example of the method of the present invention will be explained with reference to the flowchart of FIG. In this example, first, in the judgment block 11, it is checked whether |F 1 −F 2 | is larger than or smaller than the reference value A 2 which is slightly larger than the focus judgment reference A 1 , and |F 1 −F 2 |≧A 2 In this case, it is next checked in judgment block 12 whether F 1 >F 2 , and if F 1 ≧F 2 , it is determined that the front pin state is present.
When F 1 < F 2 , it is determined that the rear pin state is present. On the other hand, |
When F 1 −F 2 | _ It is judged that it is impossible to focus. On the other hand, when F 1 , F 2 ≧B, it is further checked in decision block 14 whether |F 1 −F 2 |<A 1 , and when |F 1 −F 2 |<A 1 , the focus is determined. If |F 1 −F 2 |≧A 1 , it is further checked in decision block 12 whether F 1 ≧F 2 , and if F 1 >F 2 , the front pin state is determined. When 1 < F 2 , it is determined that the rear pin state is present.

従つて、この方法によれば、第5図に示すよう
に、|F1−F2|<A2で、F1,F2<Bである領域
及びVにおいて合焦不能判定出力が得られ、F1
F2<Bで|F1−F2|≧A2並びにF1,F2≧Bで|
F1−F2|≧A2である領域及びにおいてF1
F2のとき(領域)前ピン状態判定出力が得ら
れ、F1<F2のとき(領域)後ピン状態判定出
力が得られ、更にF1,F2≧Bで|F1−F2|<A1
である領域において合焦判定出力が得られる。
Therefore, according to this method, as shown in FIG. 5, an out-of-focus determination output can be obtained in the region where |F 1 −F 2 |<A 2 and F 1 , F 2 <B, and in V. , F 1 ,
With F 2 < B | F 1 − F 2 | ≧ A 2 and F 1 , F 2 ≧ B |
F 1 −F 2 |≧A 2 and in the region where F 1
When F 2 (region), the front pin state determination output is obtained, when F 1 < F 2 (region), the rear pin state determination output is obtained, and when F 1 , F 2 ≧B, |F 1 − F 2 |<A 1
A focus determination output is obtained in a certain area.

第6図は第4図の方法を実施する装置の構成図
である。受光素子列D1及びD2の出力はコントロ
ール回路20で制御される切換スイツチ21によ
る選択される。まず、受光素子列D1の出力が選
択されると、その各受光素子の出力信号xoが順次
増幅器22で増幅され、A/D変換器23でA/
D変換された後にメモリ24に記憶される。受光
素子列D1の全ての素子の出力信号がメモリに記
憶された後に隣接する受光素子の出力信号xo
xo+1の差xo−xo+1をシフト回路25と引算回路2
6により得る。次いでxo−xo+1の絶対値を絶対値
回路27で演算し、加算器28で全ての受光素子
についての絶対値|xo−xo+1|の和Σ|xo−xo+1
|を演算して評価関数値F1を求め、これをメモ
リ29のF1領域に格納する。次に、受光素子例
D2の出力を選択して、同様の演算を行なつて評
価関数値F2を求め、これをメモリ29のF2領域
に格納する。次に、コントロール回路20はメモ
リ29のF1,F2領域に格納されているデータF1
F2及び定数メモリ30に格納されているデータ
A1,A2,Bを読み込み、これらデータF1,F2
A1,A2,Bをもとに第4図のフローチヤートに
従つて前ピン、合焦、後ピン、合焦不能の各状態
を判定し、斯るコントロール回路はマイクロプロ
セツサで簡単に実現できる。判定出力は表示回路
31のラツチ回路32でラツチされ、その出力で
対応する素子(本例では発光ダイオード)33
a,33b,33c又は33dが発光されて対応
する状態が表示され、斯る判定結果に基づいて手
動的に又は自動的に合焦調製を行なうことができ
る。
FIG. 6 is a block diagram of an apparatus for carrying out the method of FIG. 4. The outputs of the light receiving element arrays D 1 and D 2 are selected by a changeover switch 21 controlled by a control circuit 20 . First, when the output of the light-receiving element row D 1 is selected, the output signal x o of each light-receiving element is sequentially amplified by the amplifier 22 and A/D converter 23 receives the A/D converter 23.
After being D-converted, it is stored in the memory 24. After the output signals of all the elements of the light receiving element array D 1 are stored in the memory, the output signals of the adjacent light receiving elements x o ,
The shift circuit 25 and the subtraction circuit 2 calculate the difference x o −x o+1 between x o+1.
Obtained by 6. Next, the absolute value of x o −x o+1 is calculated in the absolute value circuit 27, and the adder 28 calculates the absolute value of all the light receiving elements |x o −x o+1 | sum Σ|x o −x o +1
| is calculated to obtain the evaluation function value F 1 , and this is stored in the F 1 area of the memory 29 . Next, an example of a light receiving element
The output of D 2 is selected and the same calculation is performed to obtain the evaluation function value F 2 , which is stored in the F 2 area of the memory 29. Next, the control circuit 20 stores data F 1 , F 2 stored in the F 1 , F 2 areas of the memory 29 .
Data stored in F 2 and constant memory 30
Read A 1 , A 2 , B and read these data F 1 , F 2 ,
Based on A 1 , A 2 , and B, the front focus, in-focus, back focus, and out-of-focus states are determined according to the flowchart in Figure 4, and such control circuits can be easily created using a microprocessor. realizable. The judgment output is latched by the latch circuit 32 of the display circuit 31, and the corresponding element (in this example, a light emitting diode) 33 is latched by the latch circuit 32 of the display circuit 31.
a, 33b, 33c, or 33d is emitted to display the corresponding state, and focus adjustment can be performed manually or automatically based on the determination result.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は既知の合焦検出方式の原理
説明図、第3図は本発明方式の原理説明図、第4
図本発明方式の好適例のフローチヤート、第5図
はその判定特性図、第6図は第4図の方法を実施
する装置の実施例の構成図である。 D1,D2……受光素子例、F1,F2……評価関数
値、B……合焦不能判定閾値、A1……合焦判定
基準値、A2……A1に等しいか僅かに大きい基準
値、20……コントロール回路、21……切換ス
イツチ、22……増幅器、23……A/D変換
器、24……メモリ、25……シフト回路、26
……引算回路、27……絶対値回路、28……加
算回路、29……メモリ、30……定数メモリ、
31……表示回路、32……ラツチ回路、33a
〜33d……表示素子。
Figures 1 and 2 are diagrams explaining the principle of a known focus detection method, Figure 3 is a diagram explaining the principle of the method of the present invention, and Figure 4
5 is a flowchart of a preferred embodiment of the method of the present invention, FIG. 5 is a determination characteristic diagram thereof, and FIG. 6 is a configuration diagram of an embodiment of an apparatus for carrying out the method of FIG. 4. D 1 , D 2 ... Light receiving element example, F 1 , F 2 ... Evaluation function value, B ... Inability to focus judgment threshold, A 1 ... Focus judgment reference value, A 2 ... Equal to A 1 ? Slightly larger reference value, 20... Control circuit, 21... Changeover switch, 22... Amplifier, 23... A/D converter, 24... Memory, 25... Shift circuit, 26
... Subtraction circuit, 27 ... Absolute value circuit, 28 ... Addition circuit, 29 ... Memory, 30 ... Constant memory,
31...Display circuit, 32...Latch circuit, 33a
~33d...display element.

Claims (1)

【特許請求の範囲】 1 予定焦点面の前後に所定の光路差を持つて配
置された1対の光電変換装置上に物体像を投影
し、該1対の光電変換装置からの光電変換出力を
それぞれ所定の評価関数に従つて演算して得られ
る評価関数値F1及びF2の差の絶対値|F1−F2
を合焦判定基準値A1と比較して合焦状態を検出
する合焦検出方式において、評価関数値F1及び
F2の差の絶対値|F1−F2|を合焦判定基準値A1
より僅かに大きい基準値A2と比較し、 |F1−F2|≧A2の場合は、次にF1とF2を比較
し、F1≧F2のときは前ピン状態、F1<F2のとき
は後ピン状態と判定し、 |F1−F2|<A2の場合は次にF1及びF2を合焦
判定閾値Bと比較し、F1,F2<Bのときは合焦
不能と判定し、F1,F2≧Bのときは更に|F1
F2|と合焦判定基準値A1とを比較し、 |F1−F2|<A1のときは合焦状態と判定し、 |F1−F2|≧A1のときは更にF1とF2を比較し、
F1≧F2のときは前ピン状態、F1<F2のときは後
ピン状態と判定することを特徴とする合焦検出方
式。
[Claims] 1. An object image is projected onto a pair of photoelectric conversion devices arranged with a predetermined optical path difference before and after a planned focal plane, and the photoelectric conversion output from the pair of photoelectric conversion devices is Absolute value of the difference between evaluation function values F 1 and F 2 obtained by calculating each according to a predetermined evaluation function |F 1 −F 2 |
In the focus detection method that detects the in-focus state by comparing the
The absolute value of the difference between F 2 |F 1 −F 2 | is the focus judgment reference value A 1
If |F 1 −F 2 |≧A 2 , then compare F 1 and F 2 , and if F 1 ≧F 2 , the front pin state, F When 1 < F 2 , it is determined that the rear focus is on, and when |F 1 - F 2 | < A 2 , then F 1 and F 2 are compared with the focus judgment threshold B, and F 1 , F 2 < When B, it is determined that it is impossible to focus, and when F 1 , F 2 ≧B, further |F 1
Compare F 2 | with the focus judgment reference value A 1 , and when |F 1 −F 2 |<A 1 , it is determined that the state is in focus ; Compare F 1 and F 2 ,
A focus detection method characterized by determining a front focus state when F 1 ≧F 2 and a back focus state when F 1 <F 2 .
JP4417881A 1981-03-27 1981-03-27 System for focusing detection Granted JPS57158817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4417881A JPS57158817A (en) 1981-03-27 1981-03-27 System for focusing detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4417881A JPS57158817A (en) 1981-03-27 1981-03-27 System for focusing detection

Publications (2)

Publication Number Publication Date
JPS57158817A JPS57158817A (en) 1982-09-30
JPH0364847B2 true JPH0364847B2 (en) 1991-10-08

Family

ID=12684319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4417881A Granted JPS57158817A (en) 1981-03-27 1981-03-27 System for focusing detection

Country Status (1)

Country Link
JP (1) JPS57158817A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379531A (en) * 1976-12-24 1978-07-14 Nippon Chemical Ind Matched focal point detection device
JPS55155308A (en) * 1979-05-23 1980-12-03 Canon Inc Focusing position detecting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379531A (en) * 1976-12-24 1978-07-14 Nippon Chemical Ind Matched focal point detection device
JPS55155308A (en) * 1979-05-23 1980-12-03 Canon Inc Focusing position detecting system

Also Published As

Publication number Publication date
JPS57158817A (en) 1982-09-30

Similar Documents

Publication Publication Date Title
JPH0666007B2 (en) Camera focus detector
JP2003247823A (en) Method and device for detecting phase difference, range finder, and image pickup device
JPS627523B2 (en)
JP4838652B2 (en) Imaging device
JP2006251777A (en) Focus detection apparatus and optical apparatus
JP5794665B2 (en) Imaging device
JPH0364847B2 (en)
JP2002072065A (en) Range finder
JP3054011B2 (en) Camera ranging device
JPH0352607B2 (en)
JP3354638B2 (en) Ranging device with pyroelectric infrared sensor
KR100524222B1 (en) Passive auto focusing device with adjustable area and its control method
JP2558377B2 (en) Focus detection device
JPH0561610B2 (en)
JPH095617A (en) Auto-focusing device
JP3549117B2 (en) Camera ranging device
JPH11118476A (en) Distance measuring device
JPS62148910A (en) Focus detector
JP2909130B2 (en) Focus state detector
JPH0772764B2 (en) Focus detection device
JP2950654B2 (en) camera
JPH0511178A (en) Autofocusing device
JP2011053703A (en) Focus detection apparatus and optical device
JPS5859412A (en) Focusing detection system
JPH0381624A (en) Multiple light measuring instrument