JP5794665B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP5794665B2
JP5794665B2 JP2011030575A JP2011030575A JP5794665B2 JP 5794665 B2 JP5794665 B2 JP 5794665B2 JP 2011030575 A JP2011030575 A JP 2011030575A JP 2011030575 A JP2011030575 A JP 2011030575A JP 5794665 B2 JP5794665 B2 JP 5794665B2
Authority
JP
Japan
Prior art keywords
focus
light
subject
light source
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011030575A
Other languages
Japanese (ja)
Other versions
JP2012168429A (en
Inventor
雄一 小坂
雄一 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011030575A priority Critical patent/JP5794665B2/en
Publication of JP2012168429A publication Critical patent/JP2012168429A/en
Application granted granted Critical
Publication of JP5794665B2 publication Critical patent/JP5794665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、撮影光学系の焦点状態を検出してフォーカス制御を行う撮像装置に関する。   The present invention relates to an imaging apparatus that performs focus control by detecting a focus state of a photographing optical system.

デジタルカメラ等の撮像装置は、撮影光学系の焦点状態(デフォーカス量)を検出し、該検出結果に応じて算出した合焦位置に、撮影光学系内のフォーカス素子(例えばフォーカスレンズ)を移動させるAF機能を有する。このような撮像装置において、AF精度を低下させる要因としては、製造誤差やフォーカス素子の位置制御誤差に加えて、以下のような光学的要因がある。   An imaging device such as a digital camera detects the focus state (defocus amount) of the photographic optical system and moves a focus element (for example, a focus lens) in the photographic optical system to a focus position calculated according to the detection result. It has an AF function. In such an imaging apparatus, factors that lower the AF accuracy include the following optical factors in addition to manufacturing errors and focus element position control errors.

撮像装置としての一眼レフカメラでは、撮影光学系を透過した被写体からの光束の一部を、被写体を撮像するための撮像素子とは別に設けられた焦点検出装置に導いて撮影光学系の焦点状態の検出を行うことが多い。この場合、撮影光学系の色収差を考慮して、焦点検出装置は特定の色光における焦点状態の検出(以下、焦点検出ともいう)を行い、該特定の色光における焦点検出結果に応じて合焦位置を算出する。ただし、焦点検出装置と撮像素子の分光感度が異なることから、焦点検出装置による焦点検出結果に応じて算出された合焦位置が、必ずしも撮像素子に対してベストな合焦位置ではない場合がある。   In a single-lens reflex camera as an imaging device, a part of a light beam from a subject that has passed through a photographing optical system is guided to a focus detection device provided separately from an imaging element for photographing the subject, and the focus state of the photographing optical system Is often detected. In this case, in consideration of the chromatic aberration of the photographing optical system, the focus detection device detects the focus state in the specific color light (hereinafter also referred to as focus detection), and the focus position according to the focus detection result in the specific color light. Is calculated. However, since the spectral sensitivity of the focus detection device and the image sensor is different, the focus position calculated according to the focus detection result by the focus detection device may not necessarily be the best focus position for the image sensor. .

例えば、撮影光学系の色収差によって赤色光と青色光の焦点位置が異なる場合において、焦点検出装置が主として赤色光に感度を有し、撮像素子が赤色光、緑色光および青色光に対して均一な感度を有するとする。この場合、焦点検出装置は赤色光に対する焦点検出を行い、赤色光に対してベストな合焦位置を算出するが、この合焦位置は、撮像素子に対して緑色光と青色光のぼけを生じさせる可能性が高い。特に、人間の視覚は緑色に対して強い分光感度特性を有するため、緑色光のぼけが存在すると、全体がぼけた印象の画像が得られることになる。   For example, when the focal positions of red light and blue light are different due to chromatic aberration of the photographing optical system, the focus detection device is mainly sensitive to red light, and the image sensor is uniform with respect to red light, green light, and blue light. Suppose that it has sensitivity. In this case, the focus detection device performs focus detection for red light and calculates the best focus position for red light, but this focus position causes blurring of green light and blue light to the image sensor. There is a high possibility of making it. In particular, since human vision has a strong spectral sensitivity characteristic with respect to green, when there is a blur of green light, an image with an overall blur is obtained.

特許文献1には、被写体からの反射光を、主として可視光領域に分光感度を有するセンサと主として赤外光領域に分光感度を有するセンサとで受光し、これらのセンサからの出力を用いて焦点検出装置の焦点検出結果を補正する撮像装置が開示されている。また、特許文献2には、赤外光領域に分光感度を有するセンサと可視光領域に分光感度を有するセンサの出力から被写体を照明する光源を判別し、その判別結果に応じて焦点検出装置の焦点検出結果を補正する撮像装置が開示されている。   In Patent Document 1, reflected light from a subject is received by a sensor having spectral sensitivity mainly in the visible light region and a sensor having spectral sensitivity mainly in the infrared light region, and is focused using the output from these sensors. An imaging device that corrects a focus detection result of a detection device is disclosed. Further, Patent Document 2 discriminates a light source that illuminates a subject from outputs of a sensor having spectral sensitivity in the infrared light region and a sensor having spectral sensitivity in the visible light region, and the focus detection device includes An imaging apparatus that corrects a focus detection result is disclosed.

特開2006−098771号公報JP 2006-098771 A 特開2005−208300号公報JP-A-2005-208300

しかしながら、特許文献1にて開示された撮像装置では、被写体からの反射光に含まれる可視光の中での分光強度比を測定していない。このため、被写体の色を判別することができず、被写体の色に応じた焦点検出結果の補正を行うことができない。また、特許文献2にて開示された撮像装置では、光源の種類の判別は行うものの被写体の色の判別を行わないため、やはり被写体の色に応じた焦点検出結果の補正を行うことができない。   However, the imaging device disclosed in Patent Document 1 does not measure the spectral intensity ratio in the visible light included in the reflected light from the subject. For this reason, the color of the subject cannot be determined, and the focus detection result cannot be corrected according to the color of the subject. In addition, although the image pickup apparatus disclosed in Patent Document 2 determines the type of light source but does not determine the color of the subject, it cannot correct the focus detection result according to the color of the subject.

本発明は、色収差を有する撮影光学系を用いた撮像を行う場合に、光源の種類だけでなく、被写体の色も考慮した焦点検出結果の補正を行うことができるようにした撮像装置を提供する。   The present invention provides an imaging apparatus capable of correcting a focus detection result in consideration of not only the type of light source but also the color of a subject when performing imaging using a photographing optical system having chromatic aberration. .

本発明の一側面としての撮像装置は、撮影光学系により形成された被写体像を光電変換する撮像素子と、撮影光学系を通った被写体からの光を用いて該撮影光学系の焦点状態を示す焦点情報を出力する焦点検出部と、被写体からの光を用いて該被写体を照らす光源の種類を示す光源情報を出力する光源検出部と、可視光領域における互いに異なる波長域に分光感度を有する複数の受光素子を含み、被写体からの光を受光して該複数の受光素子の出力比を被写体の色を示す色情報として出力する被写体色検出部と、撮影光学系のフォーカス制御を行う制御部とを有し、制御部は、撮影光学系の色収差量と光源情報とから光源の種類に応じた焦点情報の補正量である光源焦点補正量を求めるとともに、色収差量と複数の受光素子の出力比とから該出力比に対応する焦点情報の補正量である色焦点補正量を求め、焦点情報、光源焦点補正量および色焦点補正量を用いて生成した補正焦点情報に基づいてフォーカス制御を行うことを特徴とするAn imaging apparatus according to one aspect of the present invention shows an imaging element that performs photoelectric conversion on a subject image formed by a photographing optical system and a focus state of the photographing optical system using light from a subject that has passed through the photographing optical system. A focus detection unit that outputs focus information, a light source detection unit that outputs light source information indicating the type of light source that illuminates the subject using light from the subject, and a plurality of spectral sensitivities in different wavelength regions in the visible light region A subject color detection unit that receives light from the subject and outputs an output ratio of the plurality of light receiving elements as color information indicating the color of the subject, and a control unit that performs focus control of the imaging optical system; The control unit obtains a light source focus correction amount that is a correction amount of focus information corresponding to the type of light source from the chromatic aberration amount of the photographing optical system and the light source information, and outputs the chromatic aberration amount and the output ratio of the plurality of light receiving elements. And from the A color focus correction amount that is a correction amount of focus information corresponding to the force ratio is obtained, and focus control is performed based on the correction focus information generated using the focus information, the light source focus correction amount, and the color focus correction amount. To do .

本発明によれば、焦点検出部により検出された焦点情報に対して、被写体を照らす光源の種類と被写体の色に応じた適切な補正を行うので、光源の種類や被写体の色にかかわらず良好なフォーカス制御を行うことができる。 According to the present invention, the focus information detected by the focus detection unit is appropriately corrected according to the type of light source that illuminates the subject and the color of the subject. Focus control can be performed.

本発明の実施例1である撮像装置の構成を示す図。1 is a diagram illustrating a configuration of an imaging apparatus that is Embodiment 1 of the present invention. FIG. 実施例1の撮像装置に設けられた測光センサの受光面を示す図。FIG. 3 is a diagram illustrating a light receiving surface of a photometric sensor provided in the imaging apparatus according to the first embodiment. 実施例1において測光センサに配置された3つの受光素子の分光感度を示す図。FIG. 3 is a diagram showing spectral sensitivities of three light receiving elements arranged in the photometric sensor in the first embodiment. マクベスチャートの反射特性を示す図。The figure which shows the reflective characteristic of a Macbeth chart. 光源の分光強度分布を示す図。The figure which shows the spectral intensity distribution of a light source. 実施例1の撮像装置に設けられた2つの被写体色検出用受光素子で蛍光灯により照明されたマクベスチャートからの反射光を受光したときの該受光素子の出力比を示す図。FIG. 6 is a diagram illustrating an output ratio of light receiving elements when reflected light from a Macbeth chart illuminated by a fluorescent lamp is received by two light receiving elements for detecting a subject color provided in the imaging apparatus according to the first embodiment. 実施例1におけるデフォーカス量補正の処理を示すフローチャート。6 is a flowchart illustrating a defocus amount correction process according to the first exemplary embodiment. 実施例1における色収差情報の計算方法を示す図。FIG. 4 is a diagram illustrating a method for calculating chromatic aberration information in the first embodiment. 本発明の実施例2である撮像装置の構成を示す図。FIG. 5 is a diagram illustrating a configuration of an imaging apparatus that is Embodiment 2 of the present invention. 実施例2の撮像装置に設けられた測光センサの受光面を示す図。FIG. 6 is a diagram illustrating a light receiving surface of a photometric sensor provided in the imaging apparatus according to the second embodiment. 実施例2の撮像装置に設けられた光源検出センサの構造を示す図。FIG. 6 is a diagram illustrating a structure of a light source detection sensor provided in the imaging apparatus according to the second embodiment.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1には、本発明の実施例1である撮像装置の構成を示している。この撮像装置は、一眼レフデジタルカメラであり、撮影光学系2を収容した交換レンズを取り外し可能に装着されている。撮像装置と交換レンズ内に設けられた制御手段としてのレンズコントローラ12は、相互に通信が可能である。   FIG. 1 shows the configuration of an image pickup apparatus that is Embodiment 1 of the present invention. This imaging apparatus is a single-lens reflex digital camera, and an interchangeable lens that houses the photographing optical system 2 is detachably attached thereto. The imaging controller and the lens controller 12 as control means provided in the interchangeable lens can communicate with each other.

なお、本実施例では、レンズ交換式の撮像装置について説明するが、レンズ一体型の撮像装置も、本発明の実施例に含まれる。   In this embodiment, an interchangeable lens type imaging apparatus will be described, but a lens-integrated imaging apparatus is also included in the embodiment of the present invention.

撮影光学系2は、少なくともフォーカス素子としてのフォーカスレンズ(図示せず)を含む。フォーカスレンズは光軸方向に移動可能であり、該フォーカスレンズの駆動のために、交換レンズにはモータ等の不図示のフォーカスアクチュエータが設けられている。   The photographing optical system 2 includes at least a focus lens (not shown) as a focus element. The focus lens is movable in the direction of the optical axis. For driving the focus lens, the interchangeable lens is provided with a focus actuator (not shown) such as a motor.

不図示の光源からの光によって照明された不図示の被写体は、その表面の反射特性に従って光源からの光を反射する。被写体によって反射された光は、撮影光学系2を通って撮像装置に入射し、撮像素子1上に被写体像を形成する。   A subject (not shown) illuminated by light from a light source (not shown) reflects light from the light source according to the reflection characteristics of its surface. The light reflected by the subject passes through the photographing optical system 2 and enters the imaging device, and forms a subject image on the imaging element 1.

撮影光学系2と撮像素子1との間には、撮影光学系2からの光路内に配置されるダウン位置と該光路外に退避するアップ位置とに回動可能な主ミラー3が配置されている。主ミラー3がダウン位置に配置された状態では、撮影光学系2からの光の一部は主ミラー3によって反射され、ピント板4上に被写体像を形成した後、ペンタプリズム5およびアイピース6を介してユーザの眼(図示せず)に到達する。これにより、ユーザは、ピント板4上に形成された被写体像(撮影範囲内の被写体)を観察することができる。   Between the photographing optical system 2 and the image pickup device 1, a main mirror 3 that is rotatable between a down position disposed in the optical path from the photographing optical system 2 and an up position retracted outside the optical path is disposed. Yes. In a state where the main mirror 3 is disposed at the down position, a part of the light from the photographing optical system 2 is reflected by the main mirror 3 to form a subject image on the focus plate 4, and then the pentaprism 5 and the eyepiece 6 are moved. To the user's eyes (not shown). Thereby, the user can observe the subject image (subject within the photographing range) formed on the focus plate 4.

ペンタプリズム5に導かれた光の一部は、測光光学系6を介して測光センサ7に到達する。測光センサ7は、撮影範囲内の被写体の輝度を測定する。さらに、測光センサ7は、被写体を照明する光源の種類と被写体の色を検出するための後述する構成を有する。ここで、本実施例にいう「被写体の色」とは、光源からの光により照明された被写体が反射する光のうち可視光領域内での分光強度比を意味する。   Part of the light guided to the pentaprism 5 reaches the photometric sensor 7 through the photometric optical system 6. The photometric sensor 7 measures the luminance of the subject within the shooting range. Further, the photometric sensor 7 has a configuration to be described later for detecting the type of light source that illuminates the subject and the color of the subject. Here, “subject color” in the present embodiment means a spectral intensity ratio in a visible light region of light reflected by a subject illuminated by light from a light source.

主ミラー3と撮像素子1との間には、サブミラー9が配置されている。サブミラー9は、主ミラー3を透過した光を反射し、焦点検出部10に導く。   A sub-mirror 9 is disposed between the main mirror 3 and the image sensor 1. The sub mirror 9 reflects the light transmitted through the main mirror 3 and guides it to the focus detection unit 10.

焦点検出部10は、サブミラー9からの光(つまりは撮影光学系2を通った光の一部)を2つの光に分割し、該2つの光に2つの被写体像(以下、2像という)を形成させ、該2像を2つの光電変換センサ(ラインセンサ)により光電変換して2つの像信号を得る。さらに、焦点検出部10は、2つの像信号に対して相関演算を行って、該2つの像信号のずれ量である位相差を算出し、該位相差に基づいて撮影光学系2の焦点状態を示す情報(焦点情報)であるデフォーカス量を算出(検出)し、これを出力する。この焦点検出部10が行うデフォーカス量の検出方式は、位相差検出方式として知られている。   The focus detection unit 10 divides the light from the sub-mirror 9 (that is, a part of the light that has passed through the photographing optical system 2) into two lights, and two subject images (hereinafter referred to as two images) are divided into the two lights. The two images are photoelectrically converted by two photoelectric conversion sensors (line sensors) to obtain two image signals. Further, the focus detection unit 10 performs a correlation operation on the two image signals, calculates a phase difference that is a shift amount of the two image signals, and based on the phase difference, the focus state of the photographing optical system 2 Is calculated (detected) and is output. The defocus amount detection method performed by the focus detection unit 10 is known as a phase difference detection method.

さらに、制御部としても機能する焦点検出部10は、算出したデフォーカス量を、測光センサ7により検出された光源の種類と被写体の色とに応じて補正して補正デフォーカス量を算出する。補正デフォーカス量を算出する処理を、デフォーカス量補正という。そして、焦点検出部10は、補正デフォーカス量から、撮影光学系2が合焦状態となる位置(合焦位置)までのフォーカスレンズの移動量を算出し、その移動量の情報をレンズコントローラ12に送信する。   Furthermore, the focus detection unit 10 that also functions as a control unit calculates the corrected defocus amount by correcting the calculated defocus amount in accordance with the type of light source detected by the photometric sensor 7 and the color of the subject. The process of calculating the corrected defocus amount is called defocus amount correction. Then, the focus detection unit 10 calculates the movement amount of the focus lens from the corrected defocus amount to the position where the photographing optical system 2 is in focus (focus position), and information on the movement amount is used as the lens controller 12. Send to.

レンズコントローラ12は、送信されてきた移動量だけフォーカスレンズを移動させるようフォーカスアクチュエータを駆動する。これにより、AF(オートフォーカス)が行われる。測光とAFは、撮像装置に設けられたレリーズスイッチの第1ストローク操作(半押し操作)に応じて行われる。   The lens controller 12 drives the focus actuator to move the focus lens by the transmitted movement amount. Thereby, AF (autofocus) is performed. Photometry and AF are performed in response to a first stroke operation (half-press operation) of a release switch provided in the imaging apparatus.

この後、レリーズスイッチの第2ストローク操作(全押し操作)が行われると、撮像装置は、撮像素子1に撮像用の露光を開始させる。撮像素子1は、CCDセンサやCMOSセンサ等の光電変換素子により構成され、被写体像を光電変換する。不図示の画像処理回路は、撮像素子1から出力された電気信号に対して各種画像処理を行い、画像信号(画像データ)を生成する。画像信号は、撮像装置に設けられた背面ディスプレイに表示されたり、半導体メモリ等の記録媒体に記録されたりする。   Thereafter, when a second stroke operation (full pressing operation) of the release switch is performed, the imaging device causes the imaging device 1 to start exposure for imaging. The image sensor 1 is composed of a photoelectric conversion element such as a CCD sensor or a CMOS sensor, and photoelectrically converts a subject image. An image processing circuit (not shown) performs various types of image processing on the electrical signal output from the image sensor 1 to generate an image signal (image data). The image signal is displayed on a rear display provided in the imaging apparatus or recorded on a recording medium such as a semiconductor memory.

図2には、測光センサ7の受光面を示している。該受光面には、3つの受光素子(第1の受光素子、第2の受光素子および第3の受光素子)101,102,103が配置されている。これら第1,第2および第3の受光素子101,102,103のそれぞれの分光感度を図3に示す。   FIG. 2 shows the light receiving surface of the photometric sensor 7. Three light receiving elements (first light receiving element, second light receiving element, and third light receiving element) 101, 102, and 103 are arranged on the light receiving surface. The spectral sensitivities of the first, second and third light receiving elements 101, 102 and 103 are shown in FIG.

図3に示すように、第1の受光素子101は青領域に、第2の受光素子102は赤領域に、第3の受光素子103は赤外光領域(または近赤外光領域)にそれぞれ主な分光感度を有する。   As shown in FIG. 3, the first light receiving element 101 is in the blue region, the second light receiving element 102 is in the red region, and the third light receiving element 103 is in the infrared light region (or near infrared light region). Has main spectral sensitivity.

本実施例では、これら互いに異なる3つの波長域に分光感度を有する第1,第2および第3の受光素子101,102,103を用いて後述するデフォーカス量補正を行う。しかし、さらに互いに異なる波長域に分光感度を有するより多くの受光素子を用いてデフォーカス量補正を行ってもよい。受光素子の数が多いほど、被写体からの光の分光強度(スペクトル)をより精密に検出することができ、より適切なデフォーカス量補正を行うことができる。   In this embodiment, defocus amount correction described later is performed using the first, second, and third light receiving elements 101, 102, and 103 having spectral sensitivities in these three different wavelength ranges. However, the defocus amount correction may be performed using more light receiving elements having spectral sensitivity in different wavelength ranges. As the number of light receiving elements increases, the spectral intensity (spectrum) of light from the subject can be detected more precisely, and more appropriate defocus amount correction can be performed.

なお、第1、第2および第3の受光素子101,102,103はそれぞれ、単一の受光素子により構成されていてもよいし、複数の受光素子により構成されていてもよい。また、撮影範囲のうち各受光素子が光を受ける領域は、撮影範囲全体であってもよいし一部であってもよい。   Each of the first, second, and third light receiving elements 101, 102, and 103 may be composed of a single light receiving element or a plurality of light receiving elements. In addition, the area where each light receiving element receives light in the imaging range may be the entire imaging range or a part thereof.

以下、測光センサ7に配置された各受光素子の役割と、それらを用いたデフォーカス量補正について説明する。   Hereinafter, the role of each light receiving element arranged in the photometric sensor 7 and the defocus amount correction using them will be described.

まず、測光センサ7は、被写体を照明する光源の種類を検出する光源検出機能を有する。この機能には、可視光領域のうち青領域に分光感度を有する第1の受光素子101と、赤外光領域に分光感度を有する第3の受光素子103とが用いられる。   First, the photometric sensor 7 has a light source detection function for detecting the type of light source that illuminates the subject. For this function, the first light receiving element 101 having spectral sensitivity in the blue region of the visible light region and the third light receiving element 103 having spectral sensitivity in the infrared light region are used.

一般的な被写体は、赤外光にも反射特性を有する。図4には、マクベスチャートの反射特性を示している。この図から、マクベスチャートは、赤、青および緑の全てと赤外光領域にて反射特性を持っていることが分かる。このため、光源からの光の中に赤外光が多くなると、反射される光も多くなる。   A general subject also has reflection characteristics for infrared light. FIG. 4 shows the reflection characteristics of the Macbeth chart. From this figure, it can be seen that the Macbeth chart has reflection characteristics in all of red, blue and green and in the infrared light region. For this reason, when infrared light increases in the light from the light source, more light is reflected.

被写体の表面うちある領域にて反射された赤外光を第3の受光素子103により検出し、該被写体の表面における同一の領域からの青色光を第1の受光素子101により検出する。このとき、第3の受光素子103からの出力が第1の受光素子101に対して多ければ、光源から発せられる赤外光の量が多いことになる。   Infrared light reflected from a certain area of the surface of the subject is detected by the third light receiving element 103, and blue light from the same area on the surface of the subject is detected by the first light receiving element 101. At this time, if the output from the third light receiving element 103 is larger than that of the first light receiving element 101, the amount of infrared light emitted from the light source is large.

図5には、光源の分光強度分布を示す。実線は蛍光灯の分光強度分布を、破線は太陽光の分光強度分布を、一点鎖線はタングステンランプの分光強度分布を示す。   FIG. 5 shows the spectral intensity distribution of the light source. The solid line indicates the spectral intensity distribution of the fluorescent lamp, the broken line indicates the spectral intensity distribution of sunlight, and the alternate long and short dash line indicates the spectral intensity distribution of the tungsten lamp.

赤外光の量はタングステンランプ、太陽光、蛍光灯の順で多く、蛍光灯からの光にはほとんど赤外光は含まれていない。この赤外光の量の関係が被写体からの反射光でも保存されることから、第1の受光素子101と第3の受光素子103の出力比は、被写体を照らす光源の種類に応じた値を示す。すなわち、第1および第3の受光素子101,103の出力比は、光源の種類を示す情報(光源情報)であり、焦点検出部10は、該光源情報に基づいて光源の種類を判別(検出)することができる。以下の説明において、第1および第3の受光素子101,103を光源検出センサ(光源検出部)ともいい、第1および第3の受光素子101,103の出力比を光源検出センサの出力ともいう。   The amount of infrared light is large in the order of tungsten lamp, sunlight, and fluorescent lamp, and the light from the fluorescent lamp contains almost no infrared light. Since the relationship between the amounts of infrared light is preserved even in the reflected light from the subject, the output ratio of the first light receiving element 101 and the third light receiving element 103 has a value corresponding to the type of light source that illuminates the subject. Show. That is, the output ratio of the first and third light receiving elements 101 and 103 is information indicating the type of light source (light source information), and the focus detection unit 10 determines (detects) the type of light source based on the light source information. )can do. In the following description, the first and third light receiving elements 101 and 103 are also referred to as light source detection sensors (light source detection units), and the output ratio of the first and third light receiving elements 101 and 103 is also referred to as the output of the light source detection sensor. .

なお、光源の種類の判別(検出)は、第3の受光素子103の出力を他と比較することなく、該出力の絶対値に基づいて行ってもよい。すなわち、光源検出センサとしては、少なくとも第3の受光素子103を有すればよい。   Note that the determination (detection) of the type of light source may be performed based on the absolute value of the output without comparing the output of the third light receiving element 103 with the other. In other words, the light source detection sensor may have at least the third light receiving element 103.

また、測光センサ7は、被写体の色を検出する被写体色検出機能を有する。この機能には、可視光領域における互いに異なる波長域に分光感度を有する第1の受光素子101と第2の受光素子102とが用いられる。   The photometric sensor 7 has a subject color detection function for detecting the subject color. For this function, the first light receiving element 101 and the second light receiving element 102 having spectral sensitivity in different wavelength ranges in the visible light region are used.

被写体の色は、被写体の表面の反射特性の波長強度分布に依存する。このため、ともに可視光領域に分光感度を有し、かつ互いに異なる波長域に分光感度を有する第1および第2の受光素子101,102の出力比には、被写体の表面の反射特性が反映される。   The color of the subject depends on the wavelength intensity distribution of the reflection characteristics on the surface of the subject. For this reason, the reflection characteristics of the surface of the subject are reflected in the output ratio of the first and second light receiving elements 101 and 102 that both have spectral sensitivity in the visible light region and spectral sensitivity in different wavelength regions. The

図6には、光源としての蛍光灯によりマクベスチャートを照明したときの第1および第2の受光素子101,102の出力比とマクベスチャートの色との関係を示している。マクベスチャートの反射特性が赤寄りである場合は、第1の受光素子101の出力より第2の受光素子102の出力の方が高くなる。一方、マクベスチャートの反射特性が青寄りである場合は、第2の受光素子102の出力より第1の受光素子101の出力の方が高くなる。   FIG. 6 shows the relationship between the output ratio of the first and second light receiving elements 101 and 102 and the color of the Macbeth chart when the Macbeth chart is illuminated by a fluorescent lamp as a light source. When the reflection characteristic of the Macbeth chart is closer to red, the output of the second light receiving element 102 is higher than the output of the first light receiving element 101. On the other hand, when the reflection characteristic of the Macbeth chart is closer to blue, the output of the first light receiving element 101 is higher than the output of the second light receiving element 102.

このため、第1および第2の受光素子101,102の出力比は、被写体の色に対応した値となる。すなわち、第1および第2の受光素子101,102の出力比は、被写体の色を示す情報(被写体色情報)であり、焦点検出部10は、該被写体色情報に基づいて被写体の色を判別(検出)することができる。以下の説明において、第1および第2の受光素子101,102を被写体色検出センサ(被写体色検出部)ともいい、第1および第2の受光素子101,102の出力比を被写体色検出センサの出力ともいう。   For this reason, the output ratio of the first and second light receiving elements 101 and 102 is a value corresponding to the color of the subject. That is, the output ratio of the first and second light receiving elements 101 and 102 is information indicating the color of the subject (subject color information), and the focus detection unit 10 determines the color of the subject based on the subject color information. (Detection). In the following description, the first and second light receiving elements 101 and 102 are also referred to as a subject color detection sensor (subject color detection unit), and the output ratio of the first and second light receiving elements 101 and 102 is determined by the subject color detection sensor. Also called output.

図7のフローチャートには、本実施例において焦点検出部10がコンピュータプログラムに従って実行するデフォーカス量補正の処理を示している。   The flowchart of FIG. 7 shows a defocus amount correction process executed by the focus detection unit 10 according to the computer program in this embodiment.

ステップ1においてレリーズスイッチの半押し操作を検出した焦点検出部10は、ステップ2に進み、撮影光学系2の色収差量Xの情報を取得する。この色収差量情報は、焦点検出部10が予め記憶していてもよいし、交換レンズ(レンズコントローラ12)から取得してもよい。   The focus detection unit 10 that has detected the half-press operation of the release switch in step 1 proceeds to step 2 and acquires information on the chromatic aberration amount X of the photographing optical system 2. The chromatic aberration amount information may be stored in advance by the focus detection unit 10 or may be acquired from an interchangeable lens (lens controller 12).

次に、ステップ3において、焦点検出部10は、ステップ2で取得した色収差量Xを用いて、光源補正直線の傾きを計算する。通常、色収差量情報は、赤外光を多く含む光によって照明されたときの色収差量と、赤外光を前者より少なく含む光によって照明されたときの色収差量とを含む。
そこで、まず、図8に示すように、光源検出センサからの出力(第1および第3の受光素子101,103の出力比)γとこれに対するデフォーカス補正量(つまりは色収差量X)とを座標とする2点を結んだ直線を描く。図8中の座標Bは、例えば光源検出センサからの出力γがLとなる光源(基準光源)bからの光によって白黒被写体を照明したときのデフォーカス補正量である。また、座標Aは、例えば光源検出センサからの出力情報γが以外の値となる光源aからの光によって白黒被写体を照明したときのデフォーカス補正量である。そして、この直線の傾きに所定の係数kを掛けて光源補正直線の傾きα(X)を計算する。係数kは、光源検出センサからの出力γの様々な値に対して最も精度良く光源補正直線の傾きを作成できるように調整される。なお、Xに対して定数倍および定数乗のうち少なくとも一方を行ってもよい。
Next, in step 3, the focus detection unit 10 calculates the inclination of the light source correction line using the chromatic aberration amount X acquired in step 2. Normally, the chromatic aberration amount information includes a chromatic aberration amount when illuminated with light containing much infrared light and a chromatic aberration amount when illuminated with light containing less infrared light than the former.
Therefore, first, as shown in FIG. 8, the output from the light source detection sensor (the output ratio of the first and third light receiving elements 101 and 103) γ and the defocus correction amount (that is, the chromatic aberration amount X) corresponding thereto are obtained. Draw a straight line connecting two points as coordinates. A coordinate B in FIG. 8 is a defocus correction amount when a monochrome subject is illuminated with light from a light source (reference light source) b whose output γ from the light source detection sensor is L, for example. Also, the coordinate A is a defocus correction amount when a monochrome subject is illuminated with light from the light source a whose output information γ from the light source detection sensor is a value other than L , for example. Then, the slope α (X) of the light source correction straight line is calculated by multiplying the slope of this straight line by a predetermined coefficient k. The coefficient k is adjusted so that the slope of the light source correction line can be most accurately created for various values of the output γ from the light source detection sensor. Note that at least one of constant multiplication and constant multiplication may be performed on X.

次に、ステップ4において、焦点検出部10は、光源補正直線を示す関数である光源補正関数、
f(γ)=α(X)×(γ−L)
を作成する。なお、Lは定数であり、基準光源からの光により被写体を照明したときのf(γ)の値が0になるようにLと決定した。つまり、Lは基準光源からの光によって被写体を照明したときのγに等しい。
Next, in step 4, the focus detection unit 10 includes a light source correction function that is a function indicating a light source correction line,
f (γ) = α (X) × (γ−L)
Create Note that L is a constant, and is determined to be L so that the value of f (γ) becomes 0 when the subject is illuminated with light from the reference light source. That is, L is equal to γ when the subject is illuminated with light from the reference light source.

次に、ステップ5において、焦点検出部10は、ステップ4にて計算した光源補正関数f(γ)のγに光源検出センサの出力を代入して、光源デフォーカス補正量(光源焦点補正量)Y1を算出する。   Next, in step 5, the focus detection unit 10 substitutes the output of the light source detection sensor for γ of the light source correction function f (γ) calculated in step 4, so that the light source defocus correction amount (light source focus correction amount). Y1 is calculated.

次に、ステップ6において、焦点検出部10は、撮影光学系2の色収差量Xから、図8に示した光源補正直線の傾きα(X)と同様に(すなわち、ステップ3の説明における「光源検出センサからの出力γ」を「被写体色センサからの出力δ」に読み替えるとともに「L」を「m」に読み替えて、座標Bを「被写体色センサからの出力δがmとなる被写体(白黒被写体)を基準光源からの光によって照明したときのデフォーカス量」とし、座標Aを「被写体色センサからの出力δがm以外の値となる被写体を基準光源からの光によって照明したときのデフォーカス補正量」とし、さらに同ステップにおける「光源補正直線の傾きα(X)」を「被写体色補正直線の傾きβ(X)」に読み替えることにより)、被写体色補正直線の傾きβ(X)を計算する。ここでも、Xに対して定数倍および定数乗のうち少なくとも一方を行ってもよい。 Next, in step 6, the focus detection unit 10, "light source from chromatic aberration amount X of the imaging optical system 2, similarly to the inclination of the light source correction line as shown in FIG. 8 alpha (X) (i.e., in the description of Step 3 “Output γ from the detection sensor” is read as “output δ from the subject color sensor” and “L” is read as “m”, and the coordinate B is “subject (monochrome subject) whose output δ from the subject color sensor is m”. ) Is a defocus amount when illuminated with light from a reference light source, and the coordinate A is defocused when a subject whose output δ from the subject color sensor is a value other than m is illuminated with light from the reference light source. Correction amount ”, and“ reading the light source correction line slope α (X) ”in the same step as“ subject color correction line slope β (X) ”) , and subject color correction line slope β (X). Total To. Here, at least one of constant multiplication and constant multiplication may be performed on X.

次に、ステップ7において、焦点検出部10は、ステップ6にて作成した被写体色補正直線を示す関数である被写体色補正関数、
h(δ)=β(X)×(δ−m)
を作成する。δは被写体色センサの出力(第1および第2の受光素子101,102の出力比)であり、mは基準光源からの光によって白黒被写体を照明したときのδである。
Next, in step 7, the focus detection unit 10 performs a subject color correction function that is a function indicating the subject color correction straight line created in step 6.
h (δ) = β (X) × (δ−m)
Create δ is an output of the subject color sensor (output ratio of the first and second light receiving elements 101 and 102), and m is δ when a monochrome subject is illuminated by light from the reference light source.

さらに、ステップ8において、焦点検出部10は、ステップ7にて作成した被写体色補正関数h(δ)に被写体色センサの出力δを代入して、該δに対応する被写体色デフォーカス補正量(色焦点補正量)Y2を得る。 Further, in step 8, the focus detection unit 10 substitutes the output δ of the subject color sensor for the subject color correction function h (δ) created in step 7, and the subject color defocus correction amount ( Color focus correction amount) Y2 is obtained.

次に、ステップ9において、焦点検出部10は、ラインセンサからの出力(像信号)の位相差からデフォーカス量Y3を計算する。   Next, in step 9, the focus detection unit 10 calculates the defocus amount Y3 from the phase difference of the output (image signal) from the line sensor.

次に、ステップ10において、焦点検出部10は、最終的なデフォーカス量としての補正デフォーカス量(補正焦点情報)Yを、
Y=Y1+Y2+Y3
により計算する。言い換えれば、デフォーカス量(焦点情報)Y1と、光源検出センサの出力(光源情報)と被写体色検出センサ(色情報)とを用いて、補正デフォーカス量Yを生成する。
Next, in step 10, the focus detection unit 10 calculates a corrected defocus amount (corrected focus information) Y as a final defocus amount.
Y = Y1 + Y2 + Y3
Calculate according to In other words, the corrected defocus amount Y is generated using the defocus amount (focus information) Y1, the output of the light source detection sensor (light source information), and the subject color detection sensor (color information).

そして、ステップ11において、焦点検出部10は、補正デフォーカス量Yに対応する移動量だけフォーカスレンズを移動させるようにレンズコントローラ12に指示する。レンズコントローラ12は、該指示された移動量だけフォーカスレンズを移動させるようフォーカスアクチュエータを制御する。これにより、フォーカスレンズが合焦位置に移動し、撮影光学系2が合焦状態となる。   In step 11, the focus detection unit 10 instructs the lens controller 12 to move the focus lens by a movement amount corresponding to the correction defocus amount Y. The lens controller 12 controls the focus actuator to move the focus lens by the instructed movement amount. As a result, the focus lens moves to the in-focus position, and the photographing optical system 2 enters the in-focus state.

以上説明したように、本実施例によれば、焦点検出部10における位相差検出方式による焦点情報であるデフォーカス量に対して、被写体を照らす光源の種類と被写体の色に応じた適切な補正を行う。このため、光源の種類や被写体の色にかかわらず良好なAF(フォーカス制御)を行うことができる。   As described above, according to the present embodiment, the defocus amount that is the focus information by the phase difference detection method in the focus detection unit 10 is appropriately corrected according to the type of light source that illuminates the subject and the color of the subject. I do. Therefore, good AF (focus control) can be performed regardless of the type of light source and the color of the subject.

なお、本実施例では、先に光源デフォーカス補正量Y1を算出し、後で被写体色デフォーカス補正量Y2を算出したが、被写体色デフォーカス補正量Y2を先に算出してもよい。また、ともに色収差情報を用いて算出されるため、色収差情報を取得する回数を1回にして、Y1とY2を同時に計算してもよい。   In this embodiment, the light source defocus correction amount Y1 is calculated first and the subject color defocus correction amount Y2 is calculated later. However, the subject color defocus correction amount Y2 may be calculated first. Further, since both are calculated using chromatic aberration information, Y1 and Y2 may be calculated simultaneously by setting the number of times of acquiring chromatic aberration information to one.

図9には、本発明の実施例である撮像装置の構成を示す。本実施例において、図1に示した実施例1と共通する構成要素には、実施例1と同符号を付す。本実施例は、図10に示すように、測光センサ7’が青領域と赤領域に感度を有する第1および第2の受光素子101,102を有するが、赤外光領域に分光感度を有する受光素子(実施例1における第3の受光素子103)を有していない点で実施例1と異なる。また、本実施例は、撮像装置の筐体の外面に光源検出センサ13が設けられている点で、実施例1と異なる。なお、光源検出センサ13は、測光センサ7と別に設けられていれば、撮像装置のいずれに設けられていてもよい。   FIG. 9 shows the configuration of an imaging apparatus that is an embodiment of the present invention. In the present embodiment, the same reference numerals as those in the first embodiment are assigned to the components common to the first embodiment shown in FIG. In this embodiment, as shown in FIG. 10, the photometric sensor 7 ′ has first and second light receiving elements 101 and 102 having sensitivity in the blue region and the red region, but has spectral sensitivity in the infrared region. It differs from the first embodiment in that it does not have a light receiving element (the third light receiving element 103 in the first embodiment). In addition, the present embodiment is different from the first embodiment in that a light source detection sensor 13 is provided on the outer surface of the housing of the imaging device. The light source detection sensor 13 may be provided in any of the imaging devices as long as it is provided separately from the photometric sensor 7.

本実施例における被写体色の判別(検出)方法は、実施例1と同様である。しかし、光源の判別(検出)方法は実施例1と異なる。   The subject color discrimination (detection) method in this embodiment is the same as that in the first embodiment. However, the light source discrimination (detection) method is different from that of the first embodiment.

図11には、光源検出センサ13の構造を示している。光源検出センサ13は、赤外光領域に分光感度を有する第3の受光素子103’と可視光領域(青領域)に分光感度を有する第1の受光素子101’を含み、被写体から撮像装置に入射した光に含まれる赤外光の量を計測する。これにより、被写体からの反射光である可視光に対する赤外光の量を検出することができる。   FIG. 11 shows the structure of the light source detection sensor 13. The light source detection sensor 13 includes a third light receiving element 103 ′ having spectral sensitivity in the infrared light region and a first light receiving element 101 ′ having spectral sensitivity in the visible light region (blue region). The amount of infrared light contained in the incident light is measured. Thereby, the amount of infrared light with respect to visible light that is reflected light from the subject can be detected.

なお、第1および第3の受光素子101’,103’はそれぞれ、単一の受光素子により構成されていてもよいし、複数の受光素子により構成されていてもよい。また、撮影範囲のうち各受光素子が光を受ける領域は、撮影範囲全体であってもよいし一部であってもよい。   Each of the first and third light receiving elements 101 ′ and 103 ′ may be composed of a single light receiving element or a plurality of light receiving elements. In addition, the area where each light receiving element receives light in the imaging range may be the entire imaging range or a part thereof.

光源検出センサ13の出力γと被写体色検出センサ(第1および第2の受光素子101,102)の出力δとを用いて補正デフォーカス量を算出する方法は、実施例1と同様である。そして、焦点検出部10は、補正デフォーカス量に応じたフォーカスレンズの移動量を算出し、レンズコントローラ12を通じてフォーカスレンズを合焦位置に移動させる。   The method for calculating the corrected defocus amount using the output γ of the light source detection sensor 13 and the output δ of the subject color detection sensor (first and second light receiving elements 101, 102) is the same as in the first embodiment. Then, the focus detection unit 10 calculates the movement amount of the focus lens according to the corrected defocus amount, and moves the focus lens to the in-focus position through the lens controller 12.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。   Each embodiment described above is only a representative example, and various modifications and changes can be made to each embodiment in carrying out the present invention.

光源の種類と被写体の色にかかわらず良好なフォーカス制御が可能なデジタルカメラ等の撮像装置を提供する。   Provided is an imaging device such as a digital camera capable of good focus control regardless of the type of light source and the color of a subject.

1 撮像素子
2 撮影光学系
7 測光センサ
10 焦点検出部
101,102,103 受光素子
DESCRIPTION OF SYMBOLS 1 Image pick-up element 2 Shooting optical system 7 Photometric sensor 10 Focus detection part 101,102,103 Light receiving element

Claims (5)

撮影光学系により形成された被写体像を光電変換する撮像素子と、
前記撮影光学系を通った前記被写体からの光を用いて該撮影光学系の焦点状態を示す焦点情報を出力する焦点検出部と、
前記被写体からの光を用いて該被写体を照らす光源の種類を示す光源情報を出力する光源検出部と、
可視光領域における互いに異なる波長域に分光感度を有する複数の受光素子を含み、前記被写体からの光を受光し該複数の受光素子の出力比を前記被写体の色を示す色情報として出力する被写体色検出部と、
記撮影光学系のフォーカス制御を行う制御部とを有し、
前記制御部は、前記撮影光学系の色収差量と前記光源情報とから前記光源の種類に応じた前記焦点情報の補正量である光源焦点補正量を求めるとともに、前記色収差量と前記複数の受光素子の出力比とから該出力比に対応する前記焦点情報の補正量である色焦点補正量を求め、前記焦点情報、前記光源焦点補正量および前記色焦点補正量を用いて生成した補正焦点情報に基づいて前記フォーカス制御を行うことを特徴とする撮像装置。
An image sensor that photoelectrically converts a subject image formed by the photographing optical system;
A focus detection unit that outputs focus information indicating a focus state of the photographing optical system using light from the subject that has passed through the photographing optical system;
A light source detection unit that outputs light source information indicating a type of a light source that illuminates the subject using light from the subject;
It includes a plurality of light receiving elements having spectral sensitivities in different wavelength regions in the visible light region, a subject to output an output ratio of the plurality of light receiving elements to receive light from the object as the color information indicating the color of the object A color detector;
Have a control unit for performing focus control of the previous SL photographing optical system,
The control unit obtains a light source focus correction amount that is a correction amount of the focus information according to the type of the light source from the chromatic aberration amount of the photographing optical system and the light source information, and the chromatic aberration amount and the plurality of light receiving elements. The color focus correction amount, which is the correction amount of the focus information corresponding to the output ratio, is obtained from the output ratio and the corrected focus information generated using the focus information, the light source focus correction amount, and the color focus correction amount. An image pickup apparatus performing the focus control based on the image pickup apparatus.
前記制御部は、前記焦点情報に、前記光源焦点補正量および前記色焦点補正量を加えることで、前記補正焦点情報を生成することを特徴とする請求項1に記載の撮像装置。 Wherein, prior SL focus information, said source focus correction amount and by adding the color focus correction amount, an imaging apparatus according to claim 1, characterized in that to generate the correction focus information. 前記被写体色検出部は、前記可視光領域における互いに異なる波長域に分光感度を有する前記複数の受光素子としての第1の受光素子および第2の受光素子を少なくとも含み、
前記光源検出部は、赤外光領域に分光感度を有する第3の受光素子を少なくとも含むことを特徴とする請求項1又は2に記載の撮像装置。
The subject color detection unit includes a first light receiving element and the second light receiving elements as the plurality of light receiving elements having spectral sensitivities in different wavelength regions in the visible light region of at least,
The imaging apparatus according to claim 1, wherein the light source detection unit includes at least a third light receiving element having spectral sensitivity in an infrared light region.
前記光源検出部は、前記第1の受光素子と前記第3の受光素子とを含むことを特徴とする請求項3に記載の撮像装置。   The imaging apparatus according to claim 3, wherein the light source detection unit includes the first light receiving element and the third light receiving element. 前記制御部は、前記複数の受光素子の出力比に対応する前記色焦点補正量h(δ)を、前記色収差量Xに応じた被写体色補正直線の傾きβ(X)と、前記色情報である前記複数の受光素子の出力比δと、基準光源からの光によって白黒被写体を照明したときの前記出力比δであるmとを用いて、The control unit uses the color focus correction amount h (δ) corresponding to the output ratio of the plurality of light receiving elements as a subject color correction straight line slope β (X) corresponding to the chromatic aberration amount X and the color information. Using an output ratio δ of the plurality of light receiving elements and m which is the output ratio δ when a monochrome object is illuminated with light from a reference light source,
h(δ)=β(X)×(δ−m)h (δ) = β (X) × (δ−m)
により求めることを特徴とする請求項1から4のいずれか一項に記載の撮像装置。The imaging device according to claim 1, wherein the imaging device is obtained by:
JP2011030575A 2011-02-16 2011-02-16 Imaging device Expired - Fee Related JP5794665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030575A JP5794665B2 (en) 2011-02-16 2011-02-16 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030575A JP5794665B2 (en) 2011-02-16 2011-02-16 Imaging device

Publications (2)

Publication Number Publication Date
JP2012168429A JP2012168429A (en) 2012-09-06
JP5794665B2 true JP5794665B2 (en) 2015-10-14

Family

ID=46972626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030575A Expired - Fee Related JP5794665B2 (en) 2011-02-16 2011-02-16 Imaging device

Country Status (1)

Country Link
JP (1) JP5794665B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529214B2 (en) 2013-10-30 2019-06-12 キヤノン株式会社 Imaging device
JP2016004133A (en) * 2014-06-16 2016-01-12 キヤノン株式会社 Imaging device and control method of the same, program, and memory medium
JP6336337B2 (en) * 2014-06-16 2018-06-06 キヤノン株式会社 Imaging apparatus, control method therefor, program, and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003241064A (en) * 2002-02-14 2003-08-27 Pentax Corp Focus detecting device
JP4504031B2 (en) * 2004-01-22 2010-07-14 オリンパス株式会社 Camera system
JP2007140305A (en) * 2005-11-21 2007-06-07 Canon Inc Imaging apparatus

Also Published As

Publication number Publication date
JP2012168429A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5020651B2 (en) Imaging apparatus and imaging system
US10491799B2 (en) Focus detection apparatus, focus control apparatus, image capturing apparatus, focus detection method, and storage medium
US7405762B2 (en) Camera having AF function
JP5424708B2 (en) Focus detection device
US7940323B2 (en) Image-pickup apparatus and control method thereof
US9781330B2 (en) Focus detection apparatus and control method for focus detection apparatus
JP5092565B2 (en) Imaging apparatus, image processing apparatus, and program
JP6372109B2 (en) Imaging device with AF function
JP5794665B2 (en) Imaging device
JP6336337B2 (en) Imaging apparatus, control method therefor, program, and storage medium
JP2009053568A (en) Imaging apparatus and imaging system
JP2008242333A (en) Imaging apparatus and method of controlling the same
JP5211680B2 (en) Autofocus device, autofocus method selection method, and program
JP6529214B2 (en) Imaging device
JP4950634B2 (en) Imaging apparatus and imaging system
JP2006135513A (en) Imaging apparatus
JP4928236B2 (en) Imaging apparatus and imaging system
US10873707B2 (en) Image pickup apparatus and method, for ensuring correct color temperature based on first or second preliminary light emission of a flash device
JP6660036B2 (en) Focus detection device and imaging device
JP4933274B2 (en) FOCUS ADJUSTMENT DEVICE, ITS CONTROL METHOD, AND IMAGING DEVICE
JP2009003261A (en) Focus adjustment device, imaging device and focus adjustment method
JP2006352434A (en) Imaging device
JP2005010353A (en) Projector
JP2016142777A (en) Imaging apparatus
JP2006065070A (en) Device and method for focus detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150807

R151 Written notification of patent or utility model registration

Ref document number: 5794665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees