JPH0364583B2 - - Google Patents

Info

Publication number
JPH0364583B2
JPH0364583B2 JP61308783A JP30878386A JPH0364583B2 JP H0364583 B2 JPH0364583 B2 JP H0364583B2 JP 61308783 A JP61308783 A JP 61308783A JP 30878386 A JP30878386 A JP 30878386A JP H0364583 B2 JPH0364583 B2 JP H0364583B2
Authority
JP
Japan
Prior art keywords
copper
iron
iron alloy
semi
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61308783A
Other languages
Japanese (ja)
Other versions
JPS63162829A (en
Inventor
Hisao Wakaumi
Masamitsu Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61308783A priority Critical patent/JPS63162829A/en
Publication of JPS63162829A publication Critical patent/JPS63162829A/en
Publication of JPH0364583B2 publication Critical patent/JPH0364583B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は半硬質磁性材料である銅鉄(Cu−Fe)
合金に関するものである。本発明に係る半硬質磁
性銅鉄合金はリード・スイツチ、リレーなどに適
している。 〔従来の技術〕 リレー、スイツチ用半硬質磁性材料には各種の
合金が提案されており、高い残留磁束密度で、あ
る程度の保磁力を持ち、ヒステリシスループが角
形であるのが好ましい(例えば、未踏加工技術協
会編、“新時代の磁性材料”、工業調査会、(1983、
2版)p.103、表8、4、参照)。このような材料
のひとつとして銅鉄合金(Fe−Cu合金)が提案
され、上述の文献および川口寅之輔、小川紘一、
“鉄−銅磁性合金の展望”、金属、197 年10月15
日号、pp.99−107、に開示されている、後者の文
献におけるFe−Cu合金の製造工程は、第1表
(p.102)によると、溶解→注湯→鍛造→熱間ロー
ル→冷間線引き(6mmφ)→焼鈍→冷間線引き
(3mmφ)→焼鈍→冷間線引き2mmφ→1mmφ→
0.5mmφ→0.35mmφ→0.2mmφであり、冷間加工後
に焼戻しを行なうものである。得られたFe−Cu
合金の組織は、鋳造状態で銅基地中の粒状鉄相が
引き伸ばされた平行かつ微細な繊維状となつてい
る。 〔発明が解決しようとする問題点〕 本発明者らは、銅鉄合金に対する加工と熱処理
を工夫して銅基地中の繊維状鉄相をより一層微細
化し、鉄相の単磁区化を試みた。 上述した従来のFe−Cu合金は実験室レベルの
ものであつて工業的に生産(商品化)されてはい
なかつた。本発明者らは工業的生産を実現するこ
とに取り組み、特別な成分を含有しないだけ安価
な半硬質磁性材料を提供することが解決すべき問
題点である。 また、ある程度の保持力を有して、従来のリレ
ー、スイツチ用半硬質材料よりも残留磁束密度の
高い銅鉄合金を提供することも解決すべき問題点
である。 〔問題点を解決するための手段〕 上述の問題点が、銅基地中に平行に多数の繊維
状鉄相が各々独立して存在し、各繊維状鉄相はそ
の断面で1μm径以下でありかつ微断されてほぼ
単磁区化されていることを特徴とする半硬質磁性
銅鉄合金によつて達成される。 平行な多数の繊維状鉄相は従来のFe−Cu合金
の場合と類似しているが、後述するように本発明
に係る銅鉄合金加工、熱処理した製品の顕微鏡写
真から判断してその径は1μm以下であり、多く
はそれよりもはるかに小さい。そして、繊維状鉄
相の断面形状は、縦横の比が大きくない矩形ない
し円形に近いものであつて、従来のFe−Cu合金
での繊維状鉄相の断面形状(細長い小片状、上述
の川口、小川文献の第105頁、写真2)とは異な
る。さらに、本発明では各繊維状鉄相が微断され
て(いくつもに切られて)、圧延(線引き)方向
(長手方向)での長さが短かくされてそれだけ単
磁区化された鉄相となつている。 本発明に係る銅鉄合金の組成は銅が20〜70wt
%であり、残部が鉄および不可避的不純物であ
る。銅は非磁性であり、その量が多いほど磁気特
性は低くなるので、上限を70wt%とする。一方、
銅の量が少ないほど加工性が悪く(鋳造時に割れ
るなどのように脆くなる)ので、下限を20wt%
とする。 本発明に係る銅鉄合金に0.001〜0.005wt%のジ
ルコニウム(Zr)、0.01〜0.02wt%のマグネシウ
ム(Mg)および0.001〜0.004wt%のチタン(Ti)
の少なくとも一種を添加すると、鋳造組織での鉄
粒子を小さくする効果、鋳造時に鉄粒子が砕ける
のを促進する効果、および最終冷間加工時の繊維
状鉄相の分断を促進する効果があつて、得られる
繊維状鉄相をより細くかつより多く切断すること
ができる。これら添加物の量が多くなると電気伝
導度の低下を招く。 そして、本発明に係る銅鉄合金の線材が次のよ
うな工程:銅鉄合金をインゴツトに鍛造し、該イ
ンゴツトを鍛造してインゴツト中の鉄粒子を微分
断し、該鍛造物を熱間圧延し、該圧延物を加工率
55%以下の冷間線引き加工の繰り返しで伸線し、
各冷間線引き加工後に非酸化性雰囲気中で焼鈍
し、製品線材サイズとする最終冷間加工を加工率
90%以上の冷間線引き加工で行なう工程、を含ん
でなる製造方法によつて製作される。 〔実施例〕 以下、添付図面を参照して実施例によつて本発
明をより詳しく説明する。 例 1 原材料である電解銅および精練鉄を用意して、
銅と鉄との組成(重量比)が70:30、60:40、
50:50、40:60、30:70および20:80となるよう
に6種の試料とした。各試料についてまず高周波
誘導炉にて溶解し、内径120mmφの円筒形ケース
に注湯してインゴツトを得た。50wt%Cuおよび
50wt%Feの試料でのインゴツトについてその横
断面での鋳造組組を第1図の顕微鏡写真(150倍)
に示す。Fe−Cu合金状態図からわかるように銅
と鉄はほとんど固溶せずに、二相に分離して銅基
地中に鉄粒子(黒色部)が存在する共晶組織とな
る。この場合には、インゴツト横断面全体に現わ
れる鉄粒子の数は約1445万個と計算される。第1
図の80mm×55mの顕微鏡写真(×150)中にある
鉄粒子は約250個であり、直径120mmインゴツト全
体では、次のように計算される。 (インゴツト断面積)÷(写真の実際面積)×250
個=(120/2)2π÷(80/150×55/150)×250=144
51500個 次にインゴツトを鍛造によつて80mmφのインゴ
ツトにした。50wt%Cuおよび50wt%Feのインゴ
ツトの場合での鍛造後組織を第2図の顕微鏡
(600倍)に示す。このように銅基地中に独立して
散在する鉄粒子が破壊されて微細化される。 鍛造インゴツトを熱間ロール圧延して直径20mm
φの線材とした。次に、この線材を冷間加工(す
なわち、冷間線引き)と焼鈍とを繰り返して直径
3.0mmφの線材とした。この冷間加工は、加工率
(減面率)を55%以下にして行ない例えば、7回
(20φ→15φ→12φ→10φ→8φ→6φ→4.5φ→3φ)行
ない、そして、各冷間線引き後に、焼鈍を非酸化
性雰囲気である不活性雰囲気又は真空中(例え
ば、アルゴン雰囲気中)で酸化を防止して850℃
前後(800〜900℃の範囲)の温度にて40分ないし
2時間行なう。なお、第7回目の4.5φ→3φの冷
間線引きでの加工率は55%であつたが、他の冷間
線引きでは加工率は45%以下であつた。このよう
な冷間加工および焼鈍によつて鉄粒子の繊維状鉄
相を切断することなく伸線できる。この冷間加工
された線材はその線引き方向に平行な断面(長手
方向断面)での組織が、第3図の顕微鏡写真
(300倍)のようになる。なお、この第3図は、
50wt%Cuおよび50wt%Feの銅鉄合金の場合で、
上述した加工と焼鈍とを繰り返して直径3.0mmφ
の線材にしたものの組織である。このように鋳造
組織での鉄粒子が鍛造で砕かれ、圧延および線引
きによる加工で平行かつ個々独立した繊維状にな
る。第3図においては繊維状鉄相の重なつている
部分があつてそこが太く見える。 焼鈍した直径3.0mmφの線材を加工率(減面率)
96%で1回の冷間線引きにて直径0.6mmφの所定
サイズ線材にした。そして、最終熱処理である時
効処理を不活性雰囲気中で400〜600℃の温度にて
30分〜1時間行なつた。 製造した銅鉄合金線(直径0.6mmφ)の磁気特
性を測定した結果、第1表に示す値が得られた。
[Industrial Application Field] The present invention uses copper iron (Cu-Fe), which is a semi-hard magnetic material.
It concerns alloys. The semi-hard magnetic copper-iron alloy according to the present invention is suitable for reed switches, relays, etc. [Prior art] Various alloys have been proposed as semi-hard magnetic materials for relays and switches, and it is preferable that they have a high residual magnetic flux density, a certain degree of coercive force, and a rectangular hysteresis loop (for example, Edited by Processing Technology Association, “Magnetic Materials for a New Era,” Industrial Research Association, (1983,
2nd edition) p.103, see Tables 8 and 4). Copper-iron alloy (Fe-Cu alloy) has been proposed as one such material, and has been proposed in the above-mentioned literature and by Toranosuke Kawaguchi, Koichi Ogawa,
“Prospects for Iron-Copper Magnetic Alloys”, Metals, October 197, 15
According to Table 1 (p.102), the manufacturing process of Fe-Cu alloy in the latter document, which is disclosed in Japanese issue, pp. 99-107, is as follows: melting → pouring → forging → hot rolling → Cold drawing (6mmφ) → Annealing → Cold drawing (3mmφ) → Annealing → Cold drawing 2mmφ → 1mmφ →
The diameter is 0.5mmφ → 0.35mmφ → 0.2mmφ, and tempering is performed after cold working. Obtained Fe−Cu
The structure of the alloy is parallel and fine fibers in which the granular iron phase in the copper matrix is elongated in the cast state. [Problems to be solved by the invention] The present inventors have devised processing and heat treatment for copper-iron alloys to further refine the fibrous iron phase in the copper base, and attempted to make the iron phase into a single magnetic domain. . The above-mentioned conventional Fe--Cu alloys were at the laboratory level and had not been industrially produced (commercialized). The present inventors have worked to realize industrial production, and the problem to be solved is to provide a semi-hard magnetic material that is inexpensive and does not contain any special components. Another problem to be solved is to provide a copper-iron alloy that has a certain degree of holding power and has a higher residual magnetic flux density than conventional semi-hard materials for relays and switches. [Means for solving the problem] The problem described above is that a large number of fibrous iron phases exist independently in parallel in the copper base, and each fibrous iron phase has a diameter of 1 μm or less in its cross section. This is achieved by using a semi-hard magnetic copper-iron alloy which is finely chopped into a substantially single magnetic domain. The large number of parallel fibrous iron phases is similar to that of conventional Fe-Cu alloys, but as will be described later, judging from the micrographs of processed and heat-treated products of the copper-iron alloy of the present invention, the diameter of these phases is It is less than 1 μm, and many are much smaller. The cross-sectional shape of the fibrous iron phase is rectangular or close to circular with a small aspect ratio, and the cross-sectional shape of the fibrous iron phase in conventional Fe-Cu alloys (elongated small piece shape, as described above) This is different from Kawaguchi and Ogawa's literature, page 105, photo 2). Furthermore, in the present invention, each fibrous iron phase is finely chopped (cut into many pieces), and the length in the rolling (drawing) direction (longitudinal direction) is shortened, so that the iron phase is made into a single magnetic domain. It is becoming. The composition of the copper-iron alloy according to the present invention is 20 to 70wt copper.
%, with the remainder being iron and unavoidable impurities. Copper is non-magnetic, and the larger the amount, the lower the magnetic properties, so the upper limit is set at 70 wt%. on the other hand,
The lower the amount of copper, the worse the workability (becomes brittle, such as cracking during casting), so the lower limit is set at 20wt%.
shall be. The copper-iron alloy according to the present invention contains 0.001-0.005wt% zirconium (Zr), 0.01-0.02wt% magnesium (Mg) and 0.001-0.004wt% titanium (Ti).
The addition of at least one of these has the effect of reducing the size of iron particles in the cast structure, the effect of promoting the breakage of iron particles during casting, and the effect of promoting the fragmentation of the fibrous iron phase during final cold working. , the obtained fibrous iron phase can be cut into thinner pieces and more pieces. If the amount of these additives increases, the electrical conductivity will decrease. Then, the copper-iron alloy wire according to the present invention is manufactured through the following steps: forging the copper-iron alloy into an ingot, forging the ingot to finely divide the iron particles in the ingot, and hot rolling the forged product. and the processing rate of the rolled product is
Wire is drawn by repeated cold drawing processes of 55% or less,
After each cold wire drawing process, the final cold process is performed by annealing in a non-oxidizing atmosphere to obtain the product wire size.
Manufactured using a manufacturing method that includes 90% or more of cold wire drawing. [Examples] Hereinafter, the present invention will be described in more detail by way of examples with reference to the accompanying drawings. Example 1 Prepare the raw materials electrolytic copper and refined iron,
The composition (weight ratio) of copper and iron is 70:30, 60:40,
Six types of samples were prepared with ratios of 50:50, 40:60, 30:70, and 20:80. Each sample was first melted in a high frequency induction furnace and poured into a cylindrical case with an inner diameter of 120 mm to obtain an ingot. 50wt% Cu and
Figure 1 is a micrograph (150x magnification) of the casting assembly in the cross section of an ingot with 50wt%Fe sample.
Shown below. As can be seen from the Fe-Cu alloy phase diagram, copper and iron hardly form a solid solution and separate into two phases, forming a eutectic structure in which iron particles (black parts) exist in a copper base. In this case, the number of iron particles appearing in the entire cross section of the ingot is calculated to be approximately 14.45 million. 1st
There are approximately 250 iron particles in the 80 mm x 55 m micrograph (x150) in the figure, and the calculation for the entire 120 mm diameter ingot is as follows. (Ingot cross-sectional area) ÷ (actual area in photo) x 250
pieces = (120/2) 2 π÷ (80/150×55/150)×250=144
51,500 pieces Next, the ingots were forged into 80mmφ ingots. The post-forging structure of an ingot containing 50 wt% Cu and 50 wt% Fe is shown under the microscope (600x magnification) in Figure 2. In this way, the iron particles independently scattered in the copper base are destroyed and refined. Forged ingots are hot rolled to a diameter of 20mm.
It was made into a wire rod of φ. Next, this wire rod is repeatedly cold-worked (i.e., cold-drawn) and annealed to obtain a diameter
A wire rod with a diameter of 3.0 mm was used. This cold working is performed at a working rate (area reduction rate) of 55% or less, and is performed, for example, 7 times (20φ → 15φ → 12φ → 10φ → 8φ → 6φ → 4.5φ → 3φ), and each cold drawing Afterwards, annealing is performed at 850°C in a non-oxidizing atmosphere such as an inert atmosphere or in a vacuum (for example, in an argon atmosphere) to prevent oxidation.
It is carried out for 40 minutes to 2 hours at a temperature of around 800 to 900°C. The processing rate in the seventh cold drawing from 4.5φ to 3φ was 55%, but the processing rate in other cold drawings was 45% or less. By such cold working and annealing, wire drawing can be performed without cutting the fibrous iron phase of the iron particles. The structure of this cold-worked wire in a cross section parallel to the drawing direction (longitudinal cross section) is as shown in the micrograph (300x magnification) in Figure 3. In addition, this figure 3 is
In the case of copper-iron alloy with 50wt%Cu and 50wt%Fe,
Repeat the above processing and annealing to obtain a diameter of 3.0mmφ.
This is the structure of the wire rod. In this way, the iron particles in the cast structure are crushed by forging, and turned into parallel and individual fibers by rolling and wire drawing. In Fig. 3, there is a part where the fibrous iron phase overlaps and it looks thicker there. Processing rate (area reduction rate) of annealed wire rod with a diameter of 3.0 mmφ
A wire of a specified size with a diameter of 0.6 mmφ was made by one cold drawing at 96%. Then, the final heat treatment, aging treatment, is carried out at a temperature of 400 to 600℃ in an inert atmosphere.
It lasted 30 minutes to 1 hour. As a result of measuring the magnetic properties of the manufactured copper-iron alloy wire (diameter 0.6 mmφ), the values shown in Table 1 were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、40wt%Cuおよび60wt%Feの
銅鉄合金線材で従来よりリード・スイツチに使用
されているニブコロイ(12%Fe−3%Nb−Co)
よりも磁気特性が良くかつコバルトを使用しない
のでコストも安い。要するに、特別な原料を用い
ることなく、入手容易で安価な銅および鉄から製
造して、半硬質磁性材料として良好な特性を有す
るものが提供できる。そして、本発明者らは本発
明に係る鉄の単磁区粒子を含む半硬質磁性銅鉄合
金の商業的生産を可能にした。
According to the present invention, nibcoloy (12%Fe-3%Nb-Co), which is a copper-iron alloy wire of 40wt%Cu and 60wt%Fe and is conventionally used for reed switches,
It has better magnetic properties and is cheaper because it does not use cobalt. In short, it is possible to provide a semi-hard magnetic material with good properties by manufacturing it from copper and iron, which are easily available and inexpensive, without using any special raw materials. The inventors have now made it possible to commercially produce a semi-hard magnetic copper-iron alloy containing single domain iron particles according to the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、50wt%Cuおよび50wt%Feの銅鉄合
金の鋳造組織の顕微鏡写真であり、第2図は、第
1図の銅鉄合金の鍛造組織の顕微鏡写真であり、
第3図は、加工率が55%以下で冷間線引きされた
銅鉄合金線材の組織の顕微鏡写真であり、第4図
は、最終加工率が91%で冷間線引きされた銅鉄合
金線材の組織の顕微鏡写真である。第5図は、最
終加工率が91%で冷間線引きされたチタン添加銅
鉄合金線材の組織の顕微鏡写真であり、第6図
は、最終線引き加工率95%である20wt%Cuおよ
び80wt%Feの銅鉄合金線材(0.6mmφ)のヒステ
リシス曲線である。
FIG. 1 is a micrograph of the cast structure of the copper-iron alloy of 50 wt% Cu and 50 wt% Fe, and FIG. 2 is a micrograph of the forged structure of the copper-iron alloy of FIG.
Figure 3 is a micrograph of the structure of a copper-iron alloy wire cold-drawn at a working rate of 55% or less, and Figure 4 is a copper-iron alloy wire cold-drawn at a final working rate of 91%. This is a microscopic photograph of the tissue. Figure 5 is a micrograph of the structure of titanium-added copper-iron alloy wire cold drawn at a final drawing rate of 91%, and Figure 6 is a micrograph of 20wt% Cu and 80wt% Cu and 80wt% at a final drawing rate of 95%. This is a hysteresis curve of Fe copper-iron alloy wire (0.6 mmφ).

Claims (1)

【特許請求の範囲】 1 銅の基地中に平行に多数の繊維状鉄相が各々
独立して存在し、前記各繊維状鉄相はその断面で
1μm径以下でありかつ微断されてほぼ単磁区化
されていることを特徴とする半硬質磁性銅鉄合
金。 2 銅が20〜70wt%であり、残部が鉄および不
可避的不純物であることを特徴とする特許請求の
範囲第1項記載の半硬質磁性銅鉄合金。 3 20〜70wt%の銅を含み、0.001〜0.005wt%の
ジルコニウム、0.01〜0.02wt%のマグネシウムお
よび0.01〜0.004wt%のチタンの少なくとも一種
を含み、残部が鉄および不可避的不純物であるこ
とを特徴とする特許請求の範囲第1項記載の半硬
質磁性銅鉄合金。 4 銅鉄合金をインゴツトに鋳造し、該インゴツ
トを鍛造してインゴツト中の鉄粒子を微分断し、
該鍛造物を熱間圧延し、該圧延物を加工率55%以
下の冷間線引き加工の繰り返しで伸線し、各冷間
線引き加工後に非酸化性雰囲気中で焼鈍し、製品
線材サイズとする最終冷間加工を加工率90%以上
の冷間線引き加工で行なう工程を含んでなること
を特徴とする半硬質磁性銅鉄合金の製造方法。
[Scope of Claims] 1. A large number of fibrous iron phases exist independently in parallel in a copper base, and each of the fibrous iron phases has a shape in its cross section.
A semi-hard magnetic copper-iron alloy characterized by having a diameter of 1 μm or less and being finely fragmented into almost a single magnetic domain. 2. The semi-hard magnetic copper-iron alloy according to claim 1, characterized in that copper is 20 to 70 wt%, and the balance is iron and unavoidable impurities. 3 Contains 20 to 70 wt% copper, 0.001 to 0.005 wt% zirconium, 0.01 to 0.02 wt% magnesium, and 0.01 to 0.004 wt% titanium, with the balance being iron and unavoidable impurities. A semi-hard magnetic copper-iron alloy according to claim 1. 4 Casting a copper-iron alloy into an ingot, forging the ingot and finely dividing the iron particles in the ingot,
The forged product is hot rolled, the rolled product is drawn by repeated cold drawing processes at a processing rate of 55% or less, and after each cold drawing process, it is annealed in a non-oxidizing atmosphere to obtain the product wire size. A method for producing a semi-hard magnetic copper-iron alloy, comprising the step of performing final cold working by cold drawing at a working rate of 90% or more.
JP61308783A 1986-12-26 1986-12-26 Semihard magnetic copper alloy Granted JPS63162829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61308783A JPS63162829A (en) 1986-12-26 1986-12-26 Semihard magnetic copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61308783A JPS63162829A (en) 1986-12-26 1986-12-26 Semihard magnetic copper alloy

Publications (2)

Publication Number Publication Date
JPS63162829A JPS63162829A (en) 1988-07-06
JPH0364583B2 true JPH0364583B2 (en) 1991-10-07

Family

ID=17985249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308783A Granted JPS63162829A (en) 1986-12-26 1986-12-26 Semihard magnetic copper alloy

Country Status (1)

Country Link
JP (1) JPS63162829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036695A2 (en) 2007-08-28 2009-03-18 Tokai Rubber Industries, Ltd. Urethane foam molded article, manufacturing method thereof, and magnetic induction foam molding apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807398B2 (en) * 1993-08-03 1998-10-08 和明 深道 Magnetoresistance effect material, method of manufacturing the same, and magnetoresistance element
JP6050588B2 (en) * 2012-01-11 2016-12-21 住友電気工業株式会社 Copper alloy wire
JP2015137372A (en) * 2014-01-21 2015-07-30 株式会社オートネットワーク技術研究所 Cu-Fe BASED ALLOY WIRE FOR CONNECTOR PIN, AND CONNECTOR
JP2016069713A (en) * 2014-10-01 2016-05-09 住友電気工業株式会社 Copper alloy material, connector terminal and manufacturing method of copper alloy material
CN111826545B (en) * 2020-06-24 2022-02-01 东南大学 Copper-iron alloy material and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036695A2 (en) 2007-08-28 2009-03-18 Tokai Rubber Industries, Ltd. Urethane foam molded article, manufacturing method thereof, and magnetic induction foam molding apparatus

Also Published As

Publication number Publication date
JPS63162829A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
Yang et al. High strength and high conductivity Cu alloys: A review
CN109338200A (en) A kind of high temperature high-damping high-entropy alloy and preparation method thereof
JPH0118979B2 (en)
CN106903294B (en) A kind of preparation method and low cost amorphous alloy part of low cost amorphous alloy part
CN115011857B (en) NiCoFeCrAlTi directional solidification high-entropy alloy with high strength and high plasticity and preparation method thereof
CN115198162B (en) Entropy alloy in high-toughness heterogeneous multi-phase core-shell organization structure and preparation method thereof
JPH0364583B2 (en)
US3444012A (en) Process for treating platinum-iron permanent magnet alloys for improving their magnetic performance
JPS6132386B2 (en)
CN113913709B (en) In-situ authigenic hybrid phase reinforced magnesium-based amorphous composite material based on selective phase dissolution and preparation method thereof
US3019102A (en) Copper-zirconium-hafnium alloys
JP2804944B2 (en) Method for producing pure platinum for decoration having high hardness
JPS5935642A (en) Production of mo alloy ingot
CN113897567A (en) Homogenization thermomechanical treatment method for rapidly refining and homogenizing cast aluminum-lithium alloy
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
CN102534299B (en) Beryllium-free polybasic copper alloy
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JPS607703B2 (en) Manufacturing method of heat-resistant aluminum alloy conductor
JP2000144273A (en) Consumable electrode type re-melting method for super heat resistant alloy
CN115418543B (en) Eutectic multi-principal element alloy with high toughness and preparation method thereof
CN115846931B (en) Magnesium alloy welding wire, preparation method thereof and ZM6 magnesium alloy welding method
JPH02263939A (en) High conductivity and high heat-resistant copper alloy and its manufacture
KR910006016B1 (en) Memorial alloy based cu and the making method
JPS6365052A (en) Soft magnetic alloy for reed chip, its production and reed switch