JPH0364566B2 - - Google Patents

Info

Publication number
JPH0364566B2
JPH0364566B2 JP61000262A JP26286A JPH0364566B2 JP H0364566 B2 JPH0364566 B2 JP H0364566B2 JP 61000262 A JP61000262 A JP 61000262A JP 26286 A JP26286 A JP 26286A JP H0364566 B2 JPH0364566 B2 JP H0364566B2
Authority
JP
Japan
Prior art keywords
weight
calcium
cao
carbon
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61000262A
Other languages
Japanese (ja)
Other versions
JPS62158814A (en
Inventor
Juji Hanada
Motomichi Yoshino
Naohiko Kusano
Takeshi Nakamura
Kunio Nomura
Shingo Ito
Yasunobu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yahashi Kogyo KK
Original Assignee
Yahashi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yahashi Kogyo KK filed Critical Yahashi Kogyo KK
Priority to JP61000262A priority Critical patent/JPS62158814A/en
Publication of JPS62158814A publication Critical patent/JPS62158814A/en
Publication of JPH0364566B2 publication Critical patent/JPH0364566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 近年鋼の溶製において、溶解や粗精錬した溶鋼
を、粗精錬の酸化性スラグと分離し、別の炉外精
錬設備に移して脱酸剤や造滓剤等を加え、還元や
脱硫を行う精錬方法が広く実施されている。この
場合前工程でのスラグを炉外精錬工程に持込ない
ことが必要であるが、適切な脱酸剤や造滓剤を選
択して使用することも又重要である。本発明は上
記の溶鋼の炉外精錬(以下二次精錬と定義する)
に際して溶鋼に添加する、脱酸剤と造滓剤の性質
を兼ね備えた複合精錬剤に関する。 〔従来の技術〕 二次精錬で溶鋼に添加する材料は、生石灰、フ
ラツクス及び脱酸剤であり、従来それ等の使用方
法は単味あるいは混合して使用されていた。即ち
混合使用方法は次の様に区分されていた。 (イ) 生石灰+フラツクス系の造滓剤 (ロ) スラグの流動性及び滓化性を改善した補助造
滓剤的なスラグ調整剤 (ハ) スラグ調整剤に補助脱酸剤(CaC2,SiC,
Fe−Si等)を加えた還元脱酸造滓剤だあつた
が、その形態は粉粒混合物並びに造粒物であ
り、又還元精錬に必要な総ての能力を備えた
(以下ワンタツチ式と定義する)ワンタツチ式
精錬剤でないため以下の欠点があつた。即ち、
精錬剤の種類が複雑になり、ホツパーならびに
投入設備等が煩雑となりハンドリングの負荷が
大きく、又粉粒状混合物ではハンドリング中に
振動などで原料構成成分の分離が起り均質性を
損い、またワンタツチ式精錬剤と比較して操炉
熟練度が必要であつた。 また生石灰やフラツクスや脱酸剤を単味で使
用する際は、溶融を早め反応性をよくするため
に粉体での添加が望ましいが、キヤリアガス等
による吹込の方法は大規模な設備が必要であ
り、また粉体を溶鋼に直接添加するには別個の
集塵装置等が必要なために普遍的ではなく、従
つて従来の添加物は塊状の副原料や合金鉄が主
であり、特別の工夫は払われていなかつた。 〔発明が解決しようとする問題点〕 本発明は、二次精錬の溶鋼えの添加物であつ
て、迅速に溶融して反応性がよく、添加に際して
粉塵の発生が少なく、且主たる添加物を適切な割
合で全て複合させたワンタツチ式の二次精錬用の
精錬剤の製造を目的としており、またこの精錬剤
を用いて効率よく二次精錬を行うことを目的とし
ている。 〔問題点を解決するための手段〕 本発明は、生石灰が50重量%以上、蛍石が5−
20重量%、炭化カルシウムが10重量%以下でかつ
下記の第(1)〜(3)式で規定される量の脱酸剤及び炭
素を含有する混合物であつて、各成分を粉粒物と
し、均一に混合したあと加圧成形しあるいはバイ
ンダーを用いて造粒成形した複合精錬剤であり又
上記の原料に熱崩壊剤として蛭石、真珠岩、黒曜
石、松脂石、膨張頁岩の1種若しくは2種以上を
5重量%以下の量加えた混合物であつて、各成分
原料を粉粒物とし、均一に混合したあと加圧成形
加工によりあるいはバインダーを用いて造粒成形
した熱崩壊型の複合精錬剤であり、更には上記の
複合精錬剤又は熱崩壊型の複合精錬剤を炉外精錬
用の受鋼槽内に予め入れ置し、これにスラグを分
離した溶鋼を受鋼し、受鋼時の溶鋼流の強力な撹
拌力により短時間で脱酸、造滓および脱流を行う
ことを特徴とする溶鋼の二次精錬法である。 〔C〕<6 ……(1) 但し〔C〕は原料の炭素量の合計(重量%) (CaO)/(SiO2)>2.3 ……(2) 但し(CaO)は原料のCaの全量をCaOに、又
(SiO2)はSiの全量をSiO2に換算した重量% 0.4〔Ca〕+1.14〔Si〕+1.33〔C〕>9……(3) 但し〔Ca〕は炭化カルシウム、カルシウムシリ
コン中のカルシウム分の合計(重量%)、〔Si〕は
炭化珪素、カルシウムシリコン、フエロシリコン
中の珪素分の合計(重量%)である。 〔作用〕 本発明の作用を以下に説明する。先づその成分
について説明する。生石灰を50重量%以上含有さ
せることとしたが、これは脱硫等の反応性がよい
スラグを作るためである。又本精錬剤は成形加工
された精錬剤であるが、後述するごとく生石灰が
50重量%以下では加圧成形した成形品の強度が低
い。更に本発明では粉粒状の生石灰を原料とする
が、微粒であるために迅速に溶融して均質なスラ
グとなり、スラグ中には従来の塊状の生石灰の使
用時にみられた未反応の生石灰粒子はない。螢石
を5〜20重量%含有させることとしたが、これは
炭化カルシウムを10重量%以下で含有させること
としたが、これは炭化カルシウムが強い脱硫、脱
燐力を有するためである。しかし蛍石と同様に、
過剰に含有させると耐火物の損傷が大きくなる。
次に脱酸剤の含有量としては、第3式に示した如
く、0.4〔Ca〕+1.14〔Si〕+1.33〔C〕で規定される
脱酸力を9以上とすることとしたが、これは本精
錬剤1Kg中には、9/100Kg以上の溶鋼中の酸素の
除去に必要な当量の脱酸剤を含有させたもので、
適当量(通常は溶鋼1トン当たり数Kg)の添加に
より溶鋼を十分に脱酸するためである。本精錬剤
に含まれる炭素の合計量は第1式に示した如く、
〔C〕<6以下としたが、これは本精錬剤を上記の
適当量使用した際に、溶鋼の炭素含有量の上昇を
支障のない範囲とするためである。更に本精錬剤
では、第2式に示した如く(CaO)/(SiO2)>
2.3としたが、これは反応性の優れたスラグを成
形させるためである。 次に本精錬剤を、各成分の粉粒物を均一に混合
したあと成形品とした理由を説明する。第1表は
精錬剤が粒又は塊の単なる混合物の場合と、本発
明のごとく全ての成分を粉粒物とし均一に混合し
たあと成形品とした場合について、両精錬剤の溶
融性及び反応性を比較し示したものである。成分
はどちらもCaO:65重量%、CaF2:20重量%、
CaC2:5重量%、SiC:5重量%、フエロシリコ
ン:5重量%であり、成形品は各成分を5mm以下
に粉砕し、均一に混合し、10〜20mmの球状に加圧
成形した成形品であり、混合物とは各成分の粒度
が10〜20mmである単なる混合物である。溶融性や
反応性の比較試験は、珪化モリブデン抵抗発熱炉
を用い、高炉銑1500グラムを1630℃に溶融加熱
し、溶融した高炉銑の上に成形品又は混合物を30
グラム添加した。成形品、混合物の何れの場合
も、添加後は炉内に7分間静置し、その後溶銑と
スラグを撹拌し脱硫性を調査した。
[Industrial applications] In recent years, in steel melting, the molten steel that has been melted or roughly refined is separated from the oxidizing slag from the rough refinement, and transferred to a separate out-of-furnace refining equipment where deoxidizers, slag forming agents, etc. In addition, refining methods that involve reduction and desulfurization are widely practiced. In this case, it is necessary not to bring the slag from the previous process into the external refining process, but it is also important to select and use an appropriate deoxidizer or slag forming agent. The present invention relates to the above-mentioned out-of-furnace refining (hereinafter defined as secondary refining) of the molten steel.
This invention relates to a composite refining agent that has the properties of both a deoxidizing agent and a slag-forming agent, and is added to molten steel during processing. [Prior Art] The materials added to molten steel in secondary refining are quicklime, flux, and deoxidizing agents, and conventionally these have been used singly or in combination. In other words, the mixed usage methods were classified as follows. (b) Quicklime + flux-based slag forming agent (b) A slag conditioner as an auxiliary slag forming agent that improves the fluidity and slag formation of slag (c) A slag conditioner containing auxiliary deoxidizers (CaC 2 , SiC ,
It is a reducing deoxidizing slag forming agent containing Fe-Si, etc.), but its form is a powder mixture and granules, and it also has all the capabilities necessary for reduction refining (hereinafter referred to as one-touch type). Since it is not a one-touch type refining agent (definition), it has the following drawbacks. That is,
The type of refining agent becomes complicated, the hopper and charging equipment become complicated, and the handling load becomes large.Also, in the case of granular mixtures, the raw material components separate due to vibration etc. during handling, which impairs homogeneity. Compared to refining agents, it required skill in furnace operation. Furthermore, when using quicklime, flux, or deoxidizer alone, it is desirable to add them in powder form to speed up melting and improve reactivity, but blowing with carrier gas requires large-scale equipment. However, adding powder directly to molten steel requires a separate dust collector, so it is not universally used.Conventional additives are mainly lumpy auxiliary raw materials and ferroalloys, and special No effort had been made. [Problems to be Solved by the Invention] The present invention is an additive for molten steel used in secondary refining, which melts quickly and has good reactivity, generates little dust when added, and which does not contain the main additive. The purpose is to manufacture a refining agent for secondary refining using a one-touch method, in which everything is combined in an appropriate ratio, and to perform secondary refining efficiently using this refining agent. [Means for solving the problem] The present invention is characterized in that quicklime is 50% by weight or more and fluorite is 5-5% by weight.
A mixture containing 20% by weight of calcium carbide, 10% by weight or less of calcium carbide, and a deoxidizing agent and carbon in the amounts specified by formulas (1) to (3) below, each component being treated as powder or granules. It is a composite refining agent that is homogeneously mixed and then pressure molded or granulated using a binder, and the above raw materials are mixed with one of vermiculite, nacre, obsidian, rosinite, expanded shale, or as a heat disintegrating agent. A heat-collapsible composite that is a mixture of two or more components added in an amount of 5% by weight or less, in which each ingredient is made into powder and granules, mixed uniformly, and then granulated by pressure molding or using a binder. It is a refining agent, and furthermore, the above-mentioned composite refining agent or heat-degradable composite refining agent is placed in advance in a steel receiving tank for out-of-furnace refining, and the molten steel from which the slag has been separated is received. This is a secondary refining method for molten steel that is characterized by deoxidizing, slag forming, and deflowing in a short time using the strong stirring force of the molten steel flow. [C] <6 ... (1) However, [C] is the total amount of carbon in the raw material (weight%) (CaO) / (SiO 2 ) > 2.3 ... (2) However, (CaO) is the total amount of Ca in the raw material to CaO, and (SiO 2 ) is the weight% of the total amount of Si converted to SiO 2 0.4 [Ca] + 1.14 [Si] + 1.33 [C] > 9... (3) However, [Ca] is carbonized Calcium, the total calcium content (weight %) in calcium silicon, [Si] is the total silicon content (weight %) in silicon carbide, calcium silicon, and ferrosilicon. [Operation] The operation of the present invention will be explained below. First, the ingredients will be explained. It was decided to contain more than 50% by weight of quicklime in order to create a slag with good reactivity for desulfurization and other purposes. Also, this refining agent is a molded refining agent, but as described later, quicklime is
If it is less than 50% by weight, the strength of the pressure-molded product will be low. Furthermore, in the present invention, quicklime in the form of powder is used as a raw material, but because it is fine, it melts quickly and becomes a homogeneous slag, and the unreacted quicklime particles that were found when conventional lumpy quicklime was used are not contained in the slag. do not have. It was decided to contain fluorite in an amount of 5 to 20% by weight, but it was decided to contain calcium carbide in an amount of 10% by weight or less because calcium carbide has a strong desulfurization and dephosphorization ability. However, like fluorite,
If it is contained in excess, damage to the refractory will increase.
Next, as for the content of the deoxidizing agent, as shown in the third equation, the deoxidizing power defined by 0.4 [Ca] + 1.14 [Si] + 1.33 [C] was set to 9 or more. However, this means that 1 kg of this refining agent contains the equivalent amount of deoxidizing agent required to remove oxygen from 9/100 kg or more of molten steel.
This is to sufficiently deoxidize the molten steel by adding an appropriate amount (usually several kg per ton of molten steel). The total amount of carbon contained in this refining agent is as shown in equation 1,
[C]<6 or less, in order to keep the carbon content of molten steel within a range that does not cause any problem when the above-mentioned appropriate amount of the present refining agent is used. Furthermore, in this refining agent, as shown in the second formula, (CaO)/(SiO 2 )>
The reason for this is to form a slag with excellent reactivity. Next, the reason why this refining agent is made into a molded product after uniformly mixing the powders and granules of each component will be explained. Table 1 shows the melting properties and reactivity of both refining agents, when the refining agent is a simple mixture of grains or lumps, and when the refining agent is a mixture of particles or lumps, and when all the components are uniformly mixed as powder and granules as in the present invention. This is a comparison. The ingredients for both are CaO: 65% by weight, CaF 2 : 20% by weight,
CaC2 : 5% by weight, SiC: 5% by weight, Ferrosilicon: 5% by weight, and the molded product was made by pulverizing each component to 5 mm or less, mixing them uniformly, and press-molding them into a 10-20 mm spherical shape. It is a molded article, and the mixture is simply a mixture in which each component has a particle size of 10 to 20 mm. Comparative tests of meltability and reactivity were conducted using a molybdenum silicide resistance heating furnace, melting and heating 1,500 grams of blast furnace pig to 1,630℃, and placing molded products or mixtures on top of the molten blast furnace pig for 30 minutes.
grams added. After addition, both the molded product and the mixture were allowed to stand in the furnace for 7 minutes, and then the hot metal and slag were stirred to investigate desulfurization properties.

【表】 第1表から明らかな如く、従来の添加物は溶融
に時間がかかりまた脱硫率も低く、従つて本発明
が目的としている、受鋼槽に予め入れ置き受鋼時
の溶鋼の強力な撹拌力により、短時間に脱酸、造
滓および脱硫を行うための添加物としては不満足
であるが、粉砕した各成分を混合し整形した本精
錬剤は溶融が早く、且反応性にも富み、従つて受
鋼に際しての短時間の溶鋼の撹拌力によつて、脱
酸、造滓および脱硫が可能な精錬剤である。次に
精錬剤の成形方法について説明する。本発明で粉
粒物とはサイズが5mm以下好ましくは1mm以下を
いう。粉粒物のサイズがこれより大きいと加圧成
形が困難となる。又生石灰の割合が50%よりも低
いと成形品の強度が低く、輸送や取扱いに際し粉
を発生し易い。第2表は加圧成形の例であるが、
CaF2:2重量部、CuC2:1重量部、SiC:1重
量部、及びフエロシリコン:1重量部の粉粒物を
混合し、これにCaOの粉粒物を第2表の割合で混
じ、2ロール式のブリケツト成形機で170Kg/cm2
のロール圧力で、30mm×20mm×10mmのアーモンド
型のブリケツトを成形した。
[Table] As is clear from Table 1, conventional additives take a long time to melt and have a low desulfurization rate. Although it is unsatisfactory as an additive for deoxidizing, slag-forming, and desulfurization in a short time due to its strong stirring power, this refining agent, which is made by mixing and shaping each crushed component, melts quickly and has low reactivity. It is a refining agent that can deoxidize, form slag, and desulfurize by stirring the molten steel for a short time when receiving the steel. Next, a method for molding the refining agent will be explained. In the present invention, the term "powder and granules" refers to particles having a size of 5 mm or less, preferably 1 mm or less. If the size of the powder is larger than this, pressure molding becomes difficult. If the proportion of quicklime is lower than 50%, the strength of the molded product will be low and powder will easily be generated during transportation and handling. Table 2 is an example of pressure molding,
Mix powders of 2 parts by weight of CaF 2 , 1 part by weight of CuC 2 , 1 part by weight of SiC, and 1 part by weight of ferrosilicon, and add powders of CaO in the proportions shown in Table 2. 170Kg/cm 2 using a two-roll briquette forming machine.
Almond-shaped briquettes of 30 mm x 20 mm x 10 mm were formed using a roll pressure of 30 mm x 20 mm x 10 mm.

〔実施例〕〔Example〕

1 ボトムタツピング方式の電気炉における出鋼
中の溶鋼の撹拌エネルギーを利用し、予め本精
錬剤を受鋼用取鍋精錬炉に入れ置し、溶解、滓
化の促進を図つたが、その実施例を下記に示し
た。 イ 使用電気炉:ボトムタツプ式120トン電気
炉 ロ 二次精錬工程:120トン取鍋精錬炉 ハ 精錬剤入れ置量:500Kg/1チヤージ ニ 滓化時間の短縮:従来約15分を5分とした ホ 使用電力量の減少:20%の減少 ヘ 脱硫率の向上:約25%の向上 以上の如く、二次精錬工程での滓化時間を短
縮し、電力を減少できた。また脱硫等の二次精
錬が容易となつた。これはボトムタツプシステ
ムによる電気炉酸化滓を二次精錬工程へ持ち込
まないことの複合メリツトの例である。 2 ボトムタツプ方式の電気炉において、電気炉
酸化滓を二次精錬工程へ持ちこまない操業が可
能となつたが、その二次精錬工程で本発明の精
錬剤を使用した実施例を下記に示した。 イ 使用電気炉:ボトムタツプ式120トン電気
炉 ロ 二次精錬工程:120トン取鍋精錬炉 ハ 精錬剤入れ置量:1000Kg/1チヤージ ニ 滓化時間の短縮:従来の15分を11分とした ホ 使用電力量の減少:10%の減少 ヘ 脱硫率の向上:約10%の向上 以上の如く、二次精錬工程での滓化時間を短
縮し、使用電力を減少できた。又脱硫等の二次
精錬が容易となつた。 〔効果〕 高級化指向に基づく分割精錬技術が進歩して、
従来の溶解、酸化精錬、還元精錬の三つの機能が
分れ還元精錬が炉外設備が行われるようになつて
きたが、この場合前工程のスラグを次工程に持込
ないことが必要で、又滓化の早い複合添加物が必
要となつたが、本発明はこの要望を満すものであ
る。精錬方式自体は分割により、シンプルになつ
た反面、精錬剤は関してはハンドリング合理化の
ための単一化や、精錬能が電力ロスの少ないもの
が望まれるが、本発明はワンタツチ式精錬剤であ
りその要望を満すものである。 精錬剤としては、出鋼流中に投入し又は取鍋中
に入れ置し、その上から溶鋼を受鋼してその撹拌
エネルギーを利用することにより反応の促進をは
かり、二次精錬の負荷を軽減するものが望ましい
が、本発明はこのような使用方法に適した精錬剤
である。 従来の添加物は、粉塵等作業環境上からも出鋼
という限られた時間内の投入が出来ないために、
出鋼後に投入し電気エネルギーにより滓化を行つ
ていたが、本発明により粉塵の発生はなく、又滓
化のための通電が不必要となつた。
1 Utilizing the stirring energy of molten steel being tapped in a bottom-tapping type electric furnace, this refining agent was placed in advance in a ladle refining furnace for receiving steel to promote melting and slag formation, but the Examples are shown below. A. Electric furnace used: 120 ton electric furnace with bottom tap b. Secondary refining process: 120 ton ladle smelting furnace E. Reduction in electricity consumption: 20% reduction F. Improvement in desulfurization rate: Approximately 25% improvement As described above, the slag formation time in the secondary refining process was shortened and the electricity consumption was reduced. In addition, secondary refining such as desulfurization has become easier. This is an example of the combined benefits of a bottom tap system that prevents electric furnace oxide slag from being brought into the secondary refining process. 2. In a bottom-tap type electric furnace, it has become possible to operate the electric furnace oxide slag without bringing it into the secondary refining process, and examples in which the refining agent of the present invention was used in the secondary refining process are shown below. A. Electric furnace used: 120 ton electric furnace with bottom tap b. Secondary refining process: 120 ton ladle smelting furnace E. Reduction in electricity consumption: 10% reduction F. Improvement in desulfurization rate: Approximately 10% improvement As described above, the slag formation time in the secondary refining process was shortened, and the electricity consumption was reduced. Also, secondary refining such as desulfurization has become easier. [Effects] Advances in split refining technology based on the trend towards higher quality products,
The conventional three functions of melting, oxidation refining, and reduction refining have been separated, and reduction refining has come to be performed outside the furnace, but in this case, it is necessary to not bring slag from the previous process into the next process. There has also been a need for a composite additive that quickly forms a slag, and the present invention satisfies this need. Although the refining method itself has been simplified by dividing it, it is desirable to unify the refining agent to streamline handling and to have a refining capacity with less power loss.However, the present invention is a one-touch type refining agent. It satisfies that need. As a refining agent, it is placed in the tapping stream or placed in a ladle, receives molten steel from above, and utilizes the stirring energy to accelerate the reaction and reduce the load on secondary refining. The present invention is a refining agent suitable for such a method of use. Conventional additives cannot be added within the limited time required for tapping due to dust and other work environment issues.
Although slaging was performed using electrical energy that was introduced after tapping, the present invention eliminates the generation of dust and eliminates the need for energization for slaging.

Claims (1)

【特許請求の範囲】 1 生石灰が50重量%以上、蛍石が5−20重量
%、炭化カルシウム10重量%以下でかつ下記の第
(1)〜(3)式で規定される量の脱酸剤及び炭素を含有
する混合物であつて、各成分は5mm以下の粉粒物
とし、均一に混合したあと加圧成型しあるいはバ
インダーを用いて造粒成型した炉外精錬で用いる
複合精錬剤。 〔C〕<6 ……(1) 但し〔C〕は原料の遊離炭素と化合炭素の合計
(重量%) (CaO)/(SiO2)>2.3 ……(2) 但し(CaO)は原料のCaの全量をCaOに、又
(SiO2)はSiの全量をSiO2に換算した重量% 0.4〔Ca〕+1.14〔Si〕+1.33〔C〕>9……(3) 但し〔Ca〕は炭化カルシウム、カルシウムシリ
コン中のカルシウム分の合計(重量%)、〔Si〕は
炭化珪素、カルシウムシリコン、フエロシリコン
中の珪素分の合計(重量%)である。 2 生石灰が50重量%以上、蛍石が5−20重量
%、炭化カルシウムが10重量%以下でかつ下記の
第(1)〜(3)式で規定される量の脱酸剤及び炭素を含
有し更に熱崩壊剤として、蛭石、真珠石、黒曜
石、松脂石、膨張頁岩の一種若しくは2種以上を
5重量%以下の量を加えた混合物であつて、各成
分は5mm以下の粉粒物とし、均一に混合したあと
加圧成型しあるいはバインダーを用いて造粒成型
した炉外精錬に用いる複合精錬剤。 〔C〕<6 ……(1) 但し〔C〕は原料の遊離炭素と化合炭素の合計
(重量%) (CaO)/(SiO2)>2.3 ……(2) 但し(CaO)は原料のCaの全量をCaOに、又
(SiO2)はSiの全量をSiO2に換算した重量% 0.4〔Ca〕+1.14〔Si〕+1.33〔C〕>9……(3) 但し〔Ca〕は炭化カルシウム、カルシウムシリ
コン中のカルシウム分の合計(重量%)、〔Si〕は
炭化珪素、カルシウムシリコン、フエロシリコン
中の珪素分の合計(重量%)である。 3 生石灰が50重量%以上、蛍石が5−20重量
%、炭化カルシウムが10重量%以下でかつ下記第
(1)〜(3)式で規定される量の脱酸剤及び炭素を含有
し、あるいは更に熱崩壊剤として蛭石、真珠石、
黒曜石、松脂石、膨張頁岩の一種若しくは二種以
上を5重量%以下の量加えた混合物であつて、各
成分は5mm以下の粉粒物で、均一に混合したあと
加圧成型しあるいはバインダーを用いて造粒成型
した複合精錬剤を、受鋼槽内に予め入れ置し、ス
ラグを分離した溶鋼を受鋼し、受鋼時の溶鋼流の
強力な撹拌力により、短時間で脱酸、造滓および
脱硫を行うことを特徴とする溶鋼の精錬方法。 〔C〕<6 ……(1) 但し〔C〕は原料の遊離炭素と化合炭素の合計
(重量%) (CaO)/(SiO2)>2.3 ……(2) 但し(CaO)は原料のCaの全量をCaOに、又
(SiO2)はSiの全量をSiO2に換算した重量% 0.4〔Ca〕+1.14〔Si〕+1.33〔C〕>9……(3) 但し〔Ca〕は炭化カルシウム、カルシウムシリ
コン中のカルシウム分の合計(重量%)、〔Si〕は
炭化珪素、カルシウムシリコン、フエロシリコン
中の珪素分の合計(重量%)である。
[Claims] 1. Quicklime is 50% by weight or more, fluorite is 5-20% by weight, calcium carbide is 10% by weight or less, and the following
A mixture containing a deoxidizing agent and carbon in the amounts specified by formulas (1) to (3), each component being powdered or granular with a size of 5 mm or less, mixed uniformly and then pressure molded or a binder added. A composite refining agent used in out-of-furnace refining that is granulated and molded. [C]<6...(1) However, [C] is the sum of free carbon and combined carbon in the raw material (wt%) (CaO)/(SiO 2 )>2.3...(2) However, (CaO) is the sum of free carbon and combined carbon in the raw material. The total amount of Ca is converted to CaO, and (SiO 2 ) is the weight% of the total amount of Si converted to SiO 2 0.4 [Ca] + 1.14 [Si] + 1.33 [C] > 9... (3) However, [Ca ] is the total calcium content (weight %) in calcium carbide and calcium silicon, and [Si] is the total silicon content (weight %) in silicon carbide, calcium silicon, and ferrosilicon. 2 Contains 50% by weight or more of quicklime, 5-20% by weight of fluorite, 10% by weight or less of calcium carbide, and contains a deoxidizing agent and carbon in the amounts specified by formulas (1) to (3) below. Furthermore, it is a mixture containing one or more of vermiculite, nacre, obsidian, pinestone, and expanded shale in an amount of 5% by weight or less as a heat disintegrating agent, and each component is a powder or granule with a size of 5 mm or less. A composite refining agent used for out-of-furnace refining that is homogeneously mixed and then pressure molded or granulated using a binder. [C]<6...(1) However, [C] is the sum of free carbon and combined carbon in the raw material (wt%) (CaO)/(SiO 2 )>2.3...(2) However, (CaO) is the sum of free carbon and combined carbon in the raw material. The total amount of Ca is converted to CaO, and (SiO 2 ) is the weight% of the total amount of Si converted to SiO 2 0.4 [Ca] + 1.14 [Si] + 1.33 [C] > 9... (3) However, [Ca ] is the total calcium content (weight %) in calcium carbide and calcium silicon, and [Si] is the total silicon content (weight %) in silicon carbide, calcium silicon, and ferrosilicon. 3 Contains 50% by weight or more of quicklime, 5-20% by weight of fluorite, 10% by weight or less of calcium carbide, and meets the following criteria.
Contains the amount of deoxidizing agent and carbon specified by formulas (1) to (3), or further contains vermiculite, pearlite, etc. as a heat disintegrating agent.
A mixture containing one or more of obsidian, rosinite, and expanded shale in an amount of 5% by weight or less, each component being powder or granules with a size of 5 mm or less, which is mixed uniformly and then pressure molded or a binder is added. A composite refining agent that has been granulated and molded is placed in a steel receiving tank in advance, and the molten steel from which the slag has been separated is received, and the strong stirring force of the molten steel flow during receiving the steel deoxidizes and deoxidizes in a short time. A method for refining molten steel, characterized by performing slag formation and desulfurization. [C]<6...(1) However, [C] is the sum of free carbon and combined carbon in the raw material (wt%) (CaO)/(SiO 2 )>2.3...(2) However, (CaO) is the sum of free carbon and combined carbon in the raw material. The total amount of Ca is converted to CaO, and (SiO 2 ) is the weight% of the total amount of Si converted to SiO 2 0.4 [Ca] + 1.14 [Si] + 1.33 [C] > 9... (3) However, [Ca ] is the total calcium content (weight %) in calcium carbide and calcium silicon, and [Si] is the total silicon content (weight %) in silicon carbide, calcium silicon, and ferrosilicon.
JP61000262A 1986-01-07 1986-01-07 Composite refining agent and refining method Granted JPS62158814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000262A JPS62158814A (en) 1986-01-07 1986-01-07 Composite refining agent and refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000262A JPS62158814A (en) 1986-01-07 1986-01-07 Composite refining agent and refining method

Publications (2)

Publication Number Publication Date
JPS62158814A JPS62158814A (en) 1987-07-14
JPH0364566B2 true JPH0364566B2 (en) 1991-10-07

Family

ID=11468996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000262A Granted JPS62158814A (en) 1986-01-07 1986-01-07 Composite refining agent and refining method

Country Status (1)

Country Link
JP (1) JPS62158814A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499969B2 (en) * 2001-11-15 2010-07-14 Jfeスチール株式会社 Desulfurization method by ladle refining of molten steel
CN113502372B (en) * 2021-05-26 2022-05-31 山东鲁丽钢铁有限公司 Rapid white slag making material for 120tLF refining furnace and process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109208A (en) * 1975-03-24 1976-09-28 Komatsu Mfg Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109208A (en) * 1975-03-24 1976-09-28 Komatsu Mfg Co Ltd

Also Published As

Publication number Publication date
JPS62158814A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
US5397379A (en) Process and additive for the ladle refining of steel
CN101935740B (en) White slag refining agent for LF (Ladle Furnace) refining furnace and preparation method thereof
US20200024145A1 (en) Method for resource recovery from silicon slag and deoxidizing agent for iron and steelmaking
JP6693536B2 (en) Converter steelmaking method
JPH06145836A (en) Production of alloy utilizing aluminum slag
KR100446469B1 (en) Deoxidating material for manufacturing alloy steel
JPH06172916A (en) Manufacturing of stainless steel
JPS60152611A (en) Method for modifying slag
JPH0480093B2 (en)
JPH0364566B2 (en)
US5698009A (en) Method for agglomerating pre-reduced hot iron ore particles to produce ingot iron
JP2897640B2 (en) Dephosphorization method of high chromium high manganese molten alloy iron
US11486027B2 (en) Calcium, aluminum and silicon alloy, as well as a process for the production of the same
JP3711835B2 (en) Sintering agent for hot metal dephosphorization and hot metal dephosphorization method
US4053307A (en) Process for manufacture of high-chromium iron alloy
US3666445A (en) Auxiliary composition for steel-making furnaces
KR20100098952A (en) Low carbon-metal manganese and low carbon-ferromanganese manufacturing method by using continuous thermit reaction
JPH09143529A (en) Method for dephosphorizing molten iron
JPH01147011A (en) Steelmaking method
JPH09118911A (en) Granular state complex refining material
JP3736229B2 (en) Hot metal processing method
JP2004010935A (en) Method for manufacturing molten steel
RU2059014C1 (en) Method to produce briquets for direct steel alloying and deoxidizing with manganese
JP2757707B2 (en) Hot metal dephosphorization slag treatment method
JPS62167809A (en) Production of molten chromium iron

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees