JPH0364565A - High strength non-woven fabric - Google Patents

High strength non-woven fabric

Info

Publication number
JPH0364565A
JPH0364565A JP1199909A JP19990989A JPH0364565A JP H0364565 A JPH0364565 A JP H0364565A JP 1199909 A JP1199909 A JP 1199909A JP 19990989 A JP19990989 A JP 19990989A JP H0364565 A JPH0364565 A JP H0364565A
Authority
JP
Japan
Prior art keywords
strength
nonwoven fabric
woven fabric
dtm
strong
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1199909A
Other languages
Japanese (ja)
Inventor
Hideo Isoda
英夫 磯田
Shigeki Tanaka
茂樹 田中
Takashi Arimoto
有本 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1199909A priority Critical patent/JPH0364565A/en
Publication of JPH0364565A publication Critical patent/JPH0364565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject non-woven fabric having high strengths in both the longitudinal and transverse directions and excellent punchability and useful for filters by limiting a ratio between the strengths of the non-woven fabric in both the longitudinal and transverse directions in a specific range and specifying the strength of the fabric in the transverse direction at >= a specific value. CONSTITUTION:The objective non-woven fabric is substantially prepared of filaments having an average fiber diameter of <=10mum by a melt blow method and has a DTT/DTM ratio of 1.5-10 between the strength DTT of the fabric in the longitudinal direction and the strength DTM thereof in the transverse direction and the strength of >=5 (g/cm weight) in the transverse direction. For example, polyethylene terephthalate fibers are preferably used as the fibers composing the non-woven fabric.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、縦方向に強くかつ横方向にも適度の強さを有
する加工性に優れた高強力不織布に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-strength nonwoven fabric that is strong in the machine direction and moderately strong in the transverse direction and has excellent workability.

(従来の技術) メルトブロー法で得られる極細不織布は特公昭41−7
883号公報、特公昭43−20248号公報、特公昭
44−22232号公報、特公昭56−33511号公
報等に開示されているが、いずれも不織布強力は弱いも
のであった。それらの改良法が特開昭53−38767
号公報に捏案された。しかしこの不織布は縦方向には強
いが横方向には著しく弱いものでありテープ状の限られ
た用途にしか使えないのが実情である。
(Prior art) The ultrafine nonwoven fabric obtained by the melt blowing method was
Although these are disclosed in Japanese Patent Publication No. 883, Japanese Patent Publication No. 43-20248, Japanese Patent Publication No. 44-22232, Japanese Patent Publication No. 33511-1988, etc., the strength of the nonwoven fabric is low in all of them. The improved method is published in Japanese Patent Application Laid-Open No. 53-38767.
It was fabricated in the bulletin. However, although this nonwoven fabric is strong in the vertical direction, it is extremely weak in the horizontal direction, and the reality is that it can only be used in limited tape-like applications.

また特開昭54−131080号公報に高分子量の樹脂
を用いることが開示されているが可塑剤を用いる為弱い
ものしか得られていない。更に特開昭54−14727
6号公報には三次元交絡されたものが開示されているが
、縦と横の強力比は1よりも小さくなり、ランダムなた
め横方向が強くなり縦方向の強力はいまだ高強力なもの
にはなりえなかった。
Further, although JP-A-54-131080 discloses the use of a high molecular weight resin, only a weak resin is obtained due to the use of a plasticizer. Furthermore, JP-A-54-14727
Publication No. 6 discloses a three-dimensionally intertwined product, but the strength ratio of vertical and horizontal strength is smaller than 1, and because it is random, the strength in the horizontal direction is strong, and the strength in the vertical direction is still high. It was impossible.

(発明が解決しようとする課題) 従来の技術には縦と(Mの強度比が小さくかつ高強度な
ものが無いため高速で加工する工程でシート切れなどの
問題点が多発する。
(Problems to be Solved by the Invention) Conventional techniques have a small strength ratio between longitudinal and (M) and do not have high strength, so problems such as sheet breakage occur frequently during high-speed processing.

本発明は、高速加工性の優れた縦方向がやや強く横方向
にも強い高強力不織布を提供しようとするものである。
The present invention aims to provide a high-strength nonwoven fabric that has excellent high-speed processability and is somewhat strong in the machine direction and strong in the transverse direction.

(課題を解決するための手段) 本発明は、単繊維の強力を向上せしめること、繊維の配
列状態をコントロールすることで単繊維同士の絡まり点
の増加及び絡まり点の強力が向上すると推測される方法
で縦横の不織布強力をコントロールできることを知見し
て完成されたもので、前記の課題を解決するために、次
の手段をとるものである。すなわち、本発明は、平均繊
維径が10μm以下で実質的に長繊維であるメルトブロ
ー法により得られた不織布からなり縦方向の強力DTT
と横方向の強力DTMの比DTT/DTMの比が1.5
以上10以下であり、横方向の強力DTMが5(g/c
m目付)以上であることを特徴とする高強力不織布であ
る。
(Means for Solving the Problems) The present invention improves the strength of single fibers, and by controlling the arrangement of fibers, it is presumed that the number of entanglement points between single fibers increases and the strength of the entanglement points increases. This method was completed after discovering that the strength of a nonwoven fabric in the longitudinal and lateral directions could be controlled by a method, and the following measures were taken to solve the above-mentioned problems. That is, the present invention is made of a nonwoven fabric obtained by a melt blowing method, which has an average fiber diameter of 10 μm or less and is substantially a long fiber, and has a strong DTT in the longitudinal direction.
and the lateral strong DTM ratio DTT/DTM ratio is 1.5
10 or less, and the lateral strong DTM is 5 (g/c
It is a high-strength nonwoven fabric characterized by having a weight per unit area of m) or more.

(作 用) 本発明における平均繊維径はソフトな風合いを保持する
ため10μm以下好ましくは5μm以下である。10μ
mを越えるものは風合いが硬くなり好ましくない。又絡
合性も劣るので好ましくない。
(Function) The average fiber diameter in the present invention is 10 μm or less, preferably 5 μm or less in order to maintain a soft texture. 10μ
If it exceeds m, the texture becomes hard and undesirable. Furthermore, the entanglement property is also poor, which is not preferable.

本発明の不織布はバルキーかつソフトに自由度がある最
も効率の良い極細不織布の製造法であるメルトブロー法
により得る。
The nonwoven fabric of the present invention is obtained by the melt blowing method, which is the most efficient method for producing ultrafine nonwoven fabrics that are bulky and have a degree of flexibility in softness.

本発明の不織布は実質的に長繊維である。糸切れが有る
と絡まり点の数が低下し強力低下につながるので好まし
くない。またメルトブロー法特有のノズルでの糸切れは
玉状の固まりとなり風合いと強力及び濾過性能やバリヤ
ー性能等の機能性をも劣悪化させるので好ましくない。
The nonwoven fabric of the present invention is substantially long fiber. If there is thread breakage, the number of entanglement points will decrease, leading to a decrease in strength, which is undesirable. In addition, thread breakage at the nozzle, which is unique to the melt blowing method, results in ball-shaped lumps that deteriorate the texture, strength, and functionality such as filtration performance and barrier performance, which is undesirable.

本発明の不織布は縦方向の強力DTTと横方向の強力D
TMとの比DTT/DTMが1.5以上10以下である
。1.5未満では縦方向の強力が充分な実用強力を保持
出来ない。10をこえると横方向の強力が弱くなり広幅
の不織布で使う場合充分な実用強力を保持出来ない。加
工性からの本発明の特に好ましい範囲は2以上6以下で
ある。
The nonwoven fabric of the present invention has a strong strength DTT in the longitudinal direction and a strong strength D in the lateral direction.
The ratio DTT/DTM with TM is 1.5 or more and 10 or less. If it is less than 1.5, sufficient strength in the longitudinal direction cannot be maintained for practical use. If it exceeds 10, the strength in the lateral direction becomes weak and it is not possible to maintain sufficient practical strength when used with a wide nonwoven fabric. A particularly preferable range of the present invention from the viewpoint of processability is 2 or more and 6 or less.

この様な好ましい強力バランスとするためには積層され
たときの鱗片長が少なくとも20 am以上80 c−
以下でかつ単繊維が配列された状態がマイクロ波分子配
向計で測定された縦方向透過マイクロ波強度TDと横方
向透過マイクロ波強度MDとの比TD/MDが1.5以
上20以下となる状態とするのが好ましい。
In order to achieve such a preferable strength balance, the scale length when laminated should be at least 20 am or more 80 c-
The ratio TD/MD of the longitudinally transmitted microwave intensity TD and the horizontally transmitted microwave intensity MD measured with a microwave molecular orientation meter is 1.5 or more and 20 or less when the single fibers are aligned. It is preferable to set it as the state.

この理由は明らかではないが適度にランダムな繊維の横
方向への広がりと縦方向への配列がバランスされるため
ではないかと考えられる。又鱗片長が長くなると単繊維
同士の絡まり点が増加し強力が増すものと考えられる。
The reason for this is not clear, but it is thought to be due to a balance between the moderately random spread of the fibers in the lateral direction and the arrangement in the longitudinal direction. It is also believed that as the scale length increases, the number of entanglement points between single fibers increases, increasing strength.

但し鱗片長をながくし過ぎると単繊維の横方向への広が
りが抑制されるのか例えば1m以上になると横方向の強
力が弱くなり1.3mを越えるとDTT/DTMも20
以上となる。
However, if the scale length is too long, the spread of the single fibers in the lateral direction will be suppressed. For example, if the scale length is longer than 1 m, the lateral strength will be weakened, and if the scale length is over 1.3 m, the DTT/DTM will be 20.
That's all.

TD/MDが適当な範囲の値でしか強力比も発現しない
ことから、明らかではないが薄層状の鱗片の中での単繊
維同士の交絡度と配列度及び単繊維の配向度とが何らか
の関係でそのような現象となると考えられる。
Since the strength ratio is expressed only when TD/MD is within an appropriate range, it is not clear that there is some relationship between the degree of entanglement of the single fibers in the thin scales, the degree of alignment, and the degree of orientation of the single fibers. It is thought that such a phenomenon will occur.

本発明における横方向の強力は(5g/cm目付)以上
好ましくは(7g/cm目付)以上、より好ましくは1
0(g/cm目付)以上である。
The strength in the lateral direction in the present invention is (5 g/cm basis weight) or more, preferably (7 g/cm basis weight) or more, more preferably 1
It is 0 (g/cm basis weight) or more.

本発明の不織布は乾熱収縮率が10(%)以下が好まし
い。10(%)以上のものは強力が弱くなることがある
。この理由は明らかではないが単繊維同士の絡まり点の
強力は絡み点での繊維の強さに依存すると考えられる。
The nonwoven fabric of the present invention preferably has a dry heat shrinkage rate of 10 (%) or less. If it exceeds 10 (%), it may become less powerful. Although the reason for this is not clear, it is thought that the strength at the point where single fibers are entangled with each other depends on the strength of the fibers at the point where the single fibers are entangled.

強さは単繊維の結晶化と配向度及び分子量に依存すると
考えられる。
It is believed that the strength depends on the crystallization and orientation degree of the single fibers and the molecular weight.

乾熱収縮率が高いと結晶化が不充分なため伸び易くなり
交絡点が外れてしまう為強力が弱くなることがあるので
はないかと考えられる。
It is thought that when the dry heat shrinkage rate is high, crystallization is insufficient, making it easier to stretch and the interlacing points to be dislocated, resulting in a decrease in strength.

本発明の不織布を構成する繊維は特に素材を限定されな
いが、出来るだけ分子量の高いものが好ましい。分子量
が高いと繊維の強力も高くなるため不織布の強力も強く
なる。また、より高強力化する為には分子鎖が剛直でか
つ分子間結合力の強いものが好ましい。例えばポリエチ
レンテレフタレートなどが好ましい。
The fibers constituting the nonwoven fabric of the present invention are not particularly limited in material, but those having as high a molecular weight as possible are preferred. If the molecular weight is high, the strength of the fibers will also be high, so the strength of the nonwoven fabric will also be strong. Further, in order to obtain higher strength, it is preferable that the molecular chain is rigid and the intermolecular bond strength is strong. For example, polyethylene terephthalate is preferred.

本発明の不織布を構成する繊維は実質的に単繊維が相互
に接着していないほうがフィルター用途など繊維表面を
機能として利用するものには好まし5− 6− い。
It is preferable for the fibers constituting the nonwoven fabric of the present invention that substantially no single fibers are bonded to each other for applications in which the fiber surface is used for functions such as filter applications.

本発明の不織布を得る方法はメルトブロー法を利用する
The method for obtaining the nonwoven fabric of the present invention utilizes a melt blowing method.

メルトブロー法は公知の方法を基本とするが、本発明の
不織布を得るには構成繊維を強くする必要から高分子の
分子鎖を長くすること及び高度に配向させ固定化させる
ため高粘度かつ短い滞留時間で低い温度で強く伸長させ
かつ細化完了時同時に結晶化させるのが好ましい。
The melt blowing method is based on a known method, but in order to obtain the nonwoven fabric of the present invention, it is necessary to make the constituent fibers strong, so the molecular chains of the polymer are lengthened, and in order to achieve highly oriented and immobilization, high viscosity and short retention are required. It is preferable to strongly elongate the material at a low temperature for an hour and crystallize it at the same time as the thinning is completed.

例えばポリエチレンテレフタレートでは極限粘度0.6
以上好ましくは極限粘度0.65以上のポリマーを融点
プラス40°C以下、好ましくは融点プラス30°C以
下、例えば285°Cにて滞留時間10分以下好ましく
は5分以下で吐出させる。
For example, polyethylene terephthalate has an intrinsic viscosity of 0.6
Preferably, a polymer having an intrinsic viscosity of 0.65 or more is discharged at a melting point plus 40°C or less, preferably a melting point plus 30°C or less, for example 285°C, with a residence time of 10 minutes or less, preferably 5 minutes or less.

牽引流体は空気では300″C以下好ましくは280℃
以下で流速マツハ1以上で牽引する。加熱スチームや窒
素は不活性のため特に好ましい。
The traction fluid is air below 300″C, preferably 280°C.
Tow at a flow rate of Matsuha 1 or higher below. Heated steam and nitrogen are particularly preferred because they are inert.

引取り方法も重要である。ランダムな配列となる公知の
方法は縦方向の強力が著しく弱くなり好ましくない。ま
た傾斜面またはフラット面に斜めから吹きつけると縦方
向に繊維が配列しすぎて横方向の強力が弱くなりかつ紐
状物が多発し好ましくない。また引取点が短か過ぎて融
着すると後で延伸しないので配向度が低くなり強力も弱
くなる上、かつ、収縮率も著しく高くなるので好ましく
ない。
The collection method is also important. The known method of random arrangement is not preferable because the strength in the longitudinal direction is significantly weakened. Also, if the spray is applied obliquely onto a sloped or flat surface, the fibers will be arranged too much in the vertical direction, which will weaken the strength in the horizontal direction and cause strings to form frequently, which is not preferable. Furthermore, if the take-off point is too short and fused, the degree of orientation will be lowered and the strength will be lowered because the film will not be stretched later, and the shrinkage rate will also be significantly higher, which is not preferable.

本発明の不織布を得るための好ましい方法はtM着しな
い距離で頂点が曲率を有する山形のネット面に進行方向
と逆方向に繊維が流下するように積層すると縦方向に配
列しつつ横方向にも絡合した長い鱗方長の薄層が積層さ
れ縦横の強カバランス好ましくは2%以下の収縮処理を
施すことで絡合点が強固に絡み強力が著しく向上すると
共に内層はバルキーな本発明の不織布が得られる。必要
に応じ更に絡合処理や樹脂加工及び染色加工等を行って
もよい。またエンボス加工や超音波加工等をおこなって
も良い。
A preferred method for obtaining the nonwoven fabric of the present invention is to stack the fibers on a mountain-shaped net surface with a curvature at the apex at a distance that does not adhere to tM so that the fibers flow down in the direction opposite to the traveling direction, so that the fibers are arranged in the vertical direction and also in the horizontal direction. The entangled thin layers with long scale lengths are laminated and are subjected to a shrinkage treatment with a strong vertical and horizontal coverage, preferably 2% or less, so that the entangled points are firmly entangled and the strength is significantly improved, and the inner layer is bulky. A nonwoven fabric is obtained. If necessary, further entanglement treatment, resin treatment, dyeing treatment, etc. may be performed. Further, embossing, ultrasonic processing, etc. may be performed.

以下に実施例を挙げて本発明の+111¥成及び作用効
果を一層明確にする。尚本発明で定義される不織布構成
の繊維物性等は、下記の方法で測定した値を言う。
Examples are given below to further clarify the composition and effects of the present invention. Note that the fiber physical properties of the nonwoven fabric structure defined in the present invention refer to values measured by the following method.

繊維径 不織布を電子顕微鏡写真により撮影した拡大写真の中か
ら繊維100本をランダムに選択してその直径を測定し
て次式により平均繊維径りとして求める。
Fiber Diameter 100 fibers are randomly selected from an enlarged electron micrograph of the nonwoven fabric, their diameter is measured, and the average fiber diameter is determined by the following formula.

繊維径斑 不織布強力 縦方向及び横方向に幅2伽、長さ15側の試料を作成し
標準条件の恒温室で調湿後テンシロンにてn=20を有
効試料長10cm、チャックの掴みしろ2.5cmとし
て100%伸長速度にて破断まで伸長歪みを記録、最大
歪み応力点σj(g/2cm)を得て次式で求める。な
お試料の目付Mの単位はg/♂を用いる。
A strong nonwoven fabric with uneven fiber diameter A sample with a width of 2 mm in the longitudinal and transverse directions and a length of 15 mm was prepared, and after humidity was conditioned in a constant temperature room under standard conditions, n = 20 was measured using a Tensilon, with an effective sample length of 10 cm and a chuck gripping width of 2 .5cm, the elongation strain is recorded at 100% elongation speed until breakage, and the maximum strain stress point σj (g/2cm) is obtained and calculated using the following formula. Note that g/male is used as the unit for the basis weight M of the sample.

縦方向の強力をDTT1横方向の強力をDTMとする。The strength in the vertical direction is DTT1, and the strength in the lateral direction is DTM.

強力比 上記DTTとDTMの比を次式よりもとめる。Strength ratio The ratio of the above DTT and DTM is determined from the following equation.

強力比=DTT/DTM 収縮率 不織布を200m X 20 cmの試料に切断し中心
部15 cm X 15 cmに目印を付けた試料を乾
熱130℃の熱風乾燥機に入れフリー状態で15分熱処
理し縦および横方向の目印の長さLiを測定し個々に次
式より求める。
Strength ratio = DTT/DTM Shrinkage rate The nonwoven fabric was cut into 200 m x 20 cm samples, with a mark marked at the center of 15 cm x 15 cm.The samples were placed in a hot air dryer at 130°C and heat treated for 15 minutes in a free state. The lengths Li of the marks in the vertical and horizontal directions are measured and determined individually using the following formula.

なお断りのない限り縦及び横を別々に計算し加えて平均
値を求めた値を不織布の収縮率と言う。
Unless otherwise specified, the value obtained by calculating the vertical and horizontal dimensions separately and calculating the average value is referred to as the shrinkage rate of the nonwoven fabric.

透過マイクロ波強度比 不織布を25 cm X 25 cIllに切断して試
料とし、−〇 10 神崎製紙社製マイクロ波分子配向計rMDA−2001
A型」を用いて縦方向及び横方向の透過マイクロ波強度
の比を算出する。尚試料は1〜3枚を周方向に重ねて測
定し、厚み効果を最小自乗法で求めた補正を曲線より夫
々目付80(g/cJ)に相当する値に基づいて求める
Transmitted microwave intensity ratio The nonwoven fabric was cut into 25 cm x 25 cIll as a sample, and a microwave molecular orientation meter rMDA-2001 (manufactured by Kanzaki Paper Industries Co., Ltd.) was used.
The ratio of the transmitted microwave intensities in the vertical direction and the horizontal direction is calculated using "Type A". Note that one to three samples are measured by stacking them in the circumferential direction, and the thickness effect is determined by the least squares method and the correction is determined based on the value corresponding to the fabric weight of 80 (g/cJ) from the curve.

鱗片長 シートを縦方向に剥離してその長さL(c+n)を求め
る。
The scale length sheet is peeled in the longitudinal direction to determine its length L(c+n).

(実施例) 実施例1〜4、比較例1〜2 極限粘度0.65のポリエチレンテレフタレートを28
0℃にて孔径0.15のオリフィスより0.1g/分で
押し出し、295℃の牽引流体にて細化させ下方60c
I11で進行方向に対し水平方向との角度0度から75
度の勾配を有するサクションされたネット(第1図)に
ひきとりついで連続して遠赤外線ヒーターにて表面を熱
処理して巻き取った。得られた各々のシートの特性を第
1表に示す。
(Example) Examples 1 to 4, Comparative Examples 1 to 2 Polyethylene terephthalate with an intrinsic viscosity of 0.65 was
It is extruded at 0.1 g/min from an orifice with a hole diameter of 0.15 at 0°C, and is thinned by a traction fluid at 295°C, and then lowered to 60 cm.
At I11, the angle between the direction of travel and the horizontal direction is 0 to 75
The material was placed on a suctioned net (FIG. 1) having a gradient of 100°C, and then the surface was continuously heat-treated with a far-infrared heater and wound up. Table 1 shows the properties of each sheet obtained.

得られたシートを連続打ち抜き装置にて速度を変更して
打ち抜きテストを行った。
A punching test was performed on the obtained sheet using a continuous punching machine at different speeds.

このときの状況を第1表に併記する。The situation at this time is also listed in Table 1.

本発明のものは10m/分以上の高速度で打ち抜きが可
能であるが発明を外れるDTT/DTMが1.5より低
いものは低速度でしか打ち抜きが出来なかったり又横方
向の強力の低いものは打ち抜きがきれいにできず横割れ
を生じた。
The product of the present invention can be punched at a high speed of 10 m/min or more, but the product with DTT/DTM lower than 1.5, which is outside the scope of the invention, can only be punched at a low speed or has low strength in the lateral direction. The punching could not be done cleanly and horizontal cracks occurred.

実施例5〜9、比較例3〜4 寺と同じ条件にて得たシートの特性及び打ち抜きテスト
の結果を第2表に示す。比較例3.4のものは打ち抜き
速度がかなり低くても打ち抜きが不良であった。
Examples 5 to 9, Comparative Examples 3 to 4 Table 2 shows the properties of the sheets and the results of the punching test obtained under the same conditions as those for the test. In Comparative Examples 3.4, the punching was poor even though the punching speed was quite low.

14− 実施例101比較例5〜6 メルトインデックス12のポリプロピレンを240 ’
Cにて溶Fa L 265°Cの糸引流体にてザク5.
6のものは、角度が大きいために横方向の強力が低く実
用的でなかった。
14- Example 101 Comparative Examples 5-6 Polypropylene with a melt index of 12 was heated to 240'
Melt Fa L at 265°C. Zaku 5.
6 had a large angle and had low lateral strength, making it impractical.

6− (発明の効果) 本発明の高強力不織布は、縦方向に強く、シかも横方向
にも強い、打抜きなど加工性に優れたものである。
6- (Effects of the Invention) The high-strength nonwoven fabric of the present invention is strong in the longitudinal direction, strong in both the longitudinal and transverse directions, and has excellent workability such as punching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の高強力不織布を製逍するときに用い
る装置の一部側面図である。
FIG. 1 is a partial side view of an apparatus used for producing the high-strength nonwoven fabric of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1.平均繊維径が10μm以下で実質的に長繊維である
メルトブロー法により得られた不織布からなり、縦方向
の強力DTTと横方向の強力DTMの比DTT/DTM
が1.5以上10以下であり、横方向の強力DTMが5
(g/cm目付)以上であることを特徴とする高強力不
織布。
1. It is made of a nonwoven fabric obtained by a melt-blowing method with an average fiber diameter of 10 μm or less and substantially long fibers, and has a ratio of strong DTT in the longitudinal direction to strong DTM in the transverse direction DTT/DTM
is 1.5 or more and 10 or less, and the horizontal strong DTM is 5
(g/cm basis weight) or more.
JP1199909A 1989-07-31 1989-07-31 High strength non-woven fabric Pending JPH0364565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199909A JPH0364565A (en) 1989-07-31 1989-07-31 High strength non-woven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199909A JPH0364565A (en) 1989-07-31 1989-07-31 High strength non-woven fabric

Publications (1)

Publication Number Publication Date
JPH0364565A true JPH0364565A (en) 1991-03-19

Family

ID=16415622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199909A Pending JPH0364565A (en) 1989-07-31 1989-07-31 High strength non-woven fabric

Country Status (1)

Country Link
JP (1) JPH0364565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129994A (en) * 1995-03-08 2000-10-10 Tocalo Co., Ltd. Member having composite coating and process for producing the same
US6136409A (en) * 1995-02-20 2000-10-24 Toray Industries, Inc. Nonwoven fabric, filter medium and process for producing the same
JP2001338533A (en) * 2000-05-30 2001-12-07 Toray Ind Inc Electric wire press winding tape and electric wire
JP2008048931A (en) * 2006-08-25 2008-03-06 Matsushita Electric Works Ltd Luminaire mounting structure of channel sash with mirror

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136409A (en) * 1995-02-20 2000-10-24 Toray Industries, Inc. Nonwoven fabric, filter medium and process for producing the same
US6129994A (en) * 1995-03-08 2000-10-10 Tocalo Co., Ltd. Member having composite coating and process for producing the same
JP2001338533A (en) * 2000-05-30 2001-12-07 Toray Ind Inc Electric wire press winding tape and electric wire
JP2008048931A (en) * 2006-08-25 2008-03-06 Matsushita Electric Works Ltd Luminaire mounting structure of channel sash with mirror

Similar Documents

Publication Publication Date Title
US3855046A (en) Pattern bonded continuous filament web
JPH02127553A (en) Stretchable non-woven fabric and production thereof
JP2018145544A (en) Bulky combined filament nonwoven fabric excellent in barrier property
JP2003528226A (en) Multi-component perforated nonwoven
JPS62215057A (en) Reinforced nonwoven fabric
JPS58191215A (en) Polyethylene hot-melt fiber
KR102469632B1 (en) Hydraulically treated nonwoven fabric and its manufacturing method
JP2016041858A (en) Bulky conjugate filament nonwoven fabric
JP2004532939A (en) Stretchable fibers and nonwovens made from large denier splittable fibers
JP2018535332A (en) Nonwoven fabric having improved wear resistance and method for producing the same
JPH06207320A (en) Biodegradable conjugate short fiber and its nonwoven fabric
JP2008297673A (en) Filament nonwoven fabric and method for producing base material for artificial leather
JPH0364565A (en) High strength non-woven fabric
JPH0450353A (en) Melt-blown nonwoven fabric
CN116005356A (en) Micro-nano overlapped bio-based fiber material and preparation method and application thereof
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JP2849929B2 (en) Moisture permeable laminate
JPH01201567A (en) Production of bulky spun-bond nonwoven fabric
JP2538602B2 (en) Fiber for spunbond nonwovens
JPH0735632B2 (en) Elastic nonwoven fabric and method for producing the same
JP3193938B2 (en) Polyvinyl alcohol-based water-soluble long-fiber nonwoven fabric
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JPH04100920A (en) Composite type thermal-adhesive fiber and nonwoven fabric using the same fiber
JP4792662B2 (en) Production method of porous sheet
JPH09302562A (en) Opened nonwoven fabric and its production