JPH0364456A - Heater with plasma electron beam - Google Patents

Heater with plasma electron beam

Info

Publication number
JPH0364456A
JPH0364456A JP20019989A JP20019989A JPH0364456A JP H0364456 A JPH0364456 A JP H0364456A JP 20019989 A JP20019989 A JP 20019989A JP 20019989 A JP20019989 A JP 20019989A JP H0364456 A JPH0364456 A JP H0364456A
Authority
JP
Japan
Prior art keywords
hearth
electron beam
heated
container
plasma electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20019989A
Other languages
Japanese (ja)
Inventor
Akihiko Toku
昭彦 悳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUBATSUKU SEIMAKU KK
Ulvac Seimaku KK
Original Assignee
ARUBATSUKU SEIMAKU KK
Ulvac Seimaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUBATSUKU SEIMAKU KK, Ulvac Seimaku KK filed Critical ARUBATSUKU SEIMAKU KK
Priority to JP20019989A priority Critical patent/JPH0364456A/en
Publication of JPH0364456A publication Critical patent/JPH0364456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To relieve the charge up of a material to be heated and to effectively utilize a plasma electron beam by providing a conductive material having heat resistance in contact with the material to be heated so as to cover the aperture of a hearth and escaping the electrostatic charges of the material to the hearth. CONSTITUTION:The conductive material 16 having the beat resistance is provided in contact with the surface of the material 6 housed in the hearth 5 so as to cover the surface. This conductive material 16 is electrically connected to the hearth 5 or container. The conductive material 16 is so positioned as to receive the irradiation of the plasma electron beam 15a together with the material 6. The electrostatic charges of the material 6 which is dielectrics or insulator escape to the hearth 5 or the container via the conductive material 16 and the charges of the plasma electron beam having the electrostatic charges are decreased. The stable discharge is formed rapidly between a hollow cathode electron gun and the hearth 5 or the container in a short period of time without supplying a large electric power.

Description

【発明の詳細な説明】 (産業上の利用分前) 本発明は、主として非金属、誘電体の溶解、脱ガス、蒸
発等の加熱に使用されるプラズマ電子ビーム加熱装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Prior to Industrial Use) The present invention relates to a plasma electron beam heating apparatus used mainly for heating nonmetals and dielectrics for melting, degassing, evaporation, and the like.

(従来の技術) 従来、例えばイオンブレーティング装置として、第1図
に示すように、真空室a内にArガスか供給されるホロ
ーカソード電子銃すとTa中空陰極Cを設けると共に、
金属などの導電性被加熱材料dを入れた水冷銅ハースの
容器eを基板ホルダfに取付けた基板gと対向して設け
、該電子銃すと容器eを直流電ri、h及び高周波発生
装置を介して接続し、該電子銃すからのプラズマ電子ビ
ームjの加熱により被加熱材料dを溶解蒸発させ、該基
板gの表面に被加熱材料dの薄膜を形成するようにした
ものか知られている。
(Prior Art) Conventionally, for example, as an ion blating device, as shown in FIG. 1, a hollow cathode electron gun to which Ar gas is supplied is provided in a vacuum chamber a, and a Ta hollow cathode C is provided.
A water-cooled copper hearth container e containing a conductive material to be heated such as metal d is provided facing the substrate g attached to the substrate holder f, and the electron gun and the container e are connected to a DC electric current r, h and a high frequency generator. It is known that the material d to be heated is melted and evaporated by the heating of the plasma electron beam j from the electron gun, and a thin film of the material d to be heated is formed on the surface of the substrate g. There is.

該ホローカソード電子銃すには、直流電源11のプラス
端子に抵抗Rを介して接続され且つ中央に開口部を有す
る補助陽極qと、該Ta中空陰極Cを取囲む収束用電磁
コイルpとか設けられる。第1図に於て、l(はンヤソ
ター Lは真空排気口、mは剋板バイアス用直流電源で
ある。
The hollow cathode electron gun is provided with an auxiliary anode q connected to the positive terminal of the DC power supply 11 via a resistor R and having an opening in the center, and a focusing electromagnetic coil p surrounding the Ta hollow cathode C. It will be done. In Figure 1, L is a vacuum exhaust port, and m is a DC power supply for biasing the plate.

この装置では、直流電源り及び図示してない高周波発生
装置をホローカソード電子銃すに接続してこれに放電を
発生させ、Ta中空陰極Cの開口部から発生ずるプラズ
マ電子ビームjで容器e内の被加熱月料dを照射するこ
とにより該材料dの加熱蒸発を行なう。この場合、該補
助陽極qは中空陰極Cからプラズマ電子ビームを引き出
す作用を営むもので、これを更に説明すると、放電の初
期には該中空陰極Cと補助陽極qとの間で行なわれ、該
中空陰極Cから前方へ電子ビームが放出されないが、補
助陽極qはこれに入った電子か例えば400Ωの抵抗R
を介して直流電源りへと連らなる補助陽極回路を流れる
ことによって直流電源りのプラス極の電位より低い電位
となり、放電で発生した電子を該補助陽極qの低い電位
により加速して中空陰極Cからビーム状に引き出す。批
抗Rの値は一般に10Ω〜400Ωであり、補助陽極q
はプラズマ発生時にだけ作動し、このとき補助陽極に流
れる電流はIA〜15A程度て、Ta中空陰極Cから発
生する電子ビームの5%未満てあり、−れは同時に補助
陽極に流せる許容電流値にほぼ等しい。
In this device, a DC power source and a high frequency generator (not shown) are connected to a hollow cathode electron gun to generate a discharge, and a plasma electron beam j generated from the opening of the Ta hollow cathode C is used to inject the inside of the container e. The material d is heated and evaporated by irradiating it with the heated monthly charge d. In this case, the auxiliary anode q has the function of extracting a plasma electron beam from the hollow cathode C. To explain this further, at the beginning of the discharge, the discharge occurs between the hollow cathode C and the auxiliary anode q, and the plasma electron beam is drawn out from the hollow cathode C. Although the electron beam is not emitted forward from the hollow cathode C, the auxiliary anode q has a resistor R of, for example, 400Ω.
The electrons flowing through the auxiliary anode circuit connected to the DC power supply have a potential lower than that of the positive electrode of the DC power supply, and the electrons generated by the discharge are accelerated by the low potential of the auxiliary anode q, and the electrons are connected to the hollow cathode. Pull it out in a beam shape from C. The value of resistance R is generally 10Ω to 400Ω, and the auxiliary anode q
is activated only when plasma is generated, and at this time, the current flowing through the auxiliary anode is about IA ~ 15A, which is less than 5% of the electron beam generated from the Ta hollow cathode C, which is within the allowable current value that can be passed through the auxiliary anode at the same time. Almost equal.

放電電流は直流電源11により維持される。The discharge current is maintained by a DC power supply 11.

第1図示の装置により、酸化物、窒化物、フッ化物、硫
化物などの誘電体、或は絶縁体の被加熱材料dを直接加
熱蒸発させようとする場合、被加熱材料のチャージアッ
プや放電電流を非導電性の被加熱利料を通して流せない
ため、ホローカソード電子銃すのプラズマの発生と維持
か難しく、或はプラズマが不安定で、蒸着が安定しない
欠点かある。更にホローカソード電子銃すと被加熱利料
dとの距離を充分にとることが出来ず、該電子銃すか容
器eからの蒸発流を妨げる不都合があり、プラズマ゛電
子ビームの径か小さくエネルギ密度か高過ぎるために被
加熱材料か局所的に加熱されて好ましくない熱分解を起
す欠点や、プラズマ電子ビームの経路が短いめ、蒸発物
やAr等とプラズマ電子ビームとの衝突の機会か少なく
、蒸発物のイオン化の割合を大きく出来ない欠点かあっ
た。
When attempting to directly heat and evaporate the heated material d, which is a dielectric or an insulator such as an oxide, nitride, fluoride, or sulfide, using the apparatus shown in Figure 1, the material to be heated may be charged up or discharged. Since current cannot be passed through a non-conductive heated material, it is difficult to generate and maintain plasma in a hollow cathode electron gun, or the plasma is unstable, resulting in unstable deposition. Furthermore, when using a hollow cathode electron gun, it is not possible to maintain a sufficient distance from the heated material d, which hinders the evaporation flow from the electron gun container e. However, because the temperature is too high, the material to be heated is locally heated, causing undesirable thermal decomposition.The path of the plasma electron beam is short, so there is less chance of collision between the plasma electron beam and evaporated matter, Ar, etc. The drawback was that the ionization rate of the evaporated matter could not be increased.

かかる不都合や欠点を解消するため、本発明者は、ホロ
ーカソード電子銃すの補助陽極qの少なくとも一部にW
% Tas Mo等の高融点導電44料、或はステンレ
ス、Ti等の耐熱性材料を使用し、第2図示のように中
空陰極Cを取囲むように該補助陽極qを設け、ホローカ
ソード電子銃すの作動時には、常に補助陽極qに中空陰
極Cて発生ずるプラズマ電子ビームの一部」2を大量に
流してこもを加熱する形式のちのを提案した。
In order to eliminate such inconveniences and shortcomings, the inventors of the present invention added W to at least a portion of the auxiliary anode q of the hollow cathode electron gun.
A high melting point conductive material such as % Tas Mo or a heat resistant material such as stainless steel or Ti is used, and the auxiliary anode q is provided to surround the hollow cathode C as shown in the second diagram, and a hollow cathode electron gun is used. He proposed a later method in which a large amount of the plasma electron beam generated by the hollow cathode C is constantly flowed into the auxiliary anode q during operation of the auxiliary anode q to heat the auxiliary anode.

この第2図示のイオンブレーティング装置は、真空室内
を1(:V3Torr以下にjA:気し、Arなとのブ
ラスマ発生用の気体をホローカソード電子銃に、例えば
200〜300SCCMの流量て導入し、真空室内の圧
力が0.O1〜0.05Torrになったら、電子銃の
中空陰極とハース及び補助陽極との間に、例えば80〜
100Vの直流電圧に高周波電圧をfF査させた電圧を
与える。これによって重畳!°5周波電圧で刺激された
ホローカソード電子銃σ)ノ′スル内の導入気体が電離
されてプラズマになり、かつ直流電圧の作用によってプ
ラズマ中の電子が中空陰極先端の開口部から補助陽極及
びハース(陽極)に向かって飛行する。これと同時に補
助陽極及びハースからホローカソードに向かってイオン
が飛行する。かくして、補助陽極及びハースと中空陰極
間に放電が形成され、補助陽極の先端部分は、電子ビー
ムの一部がこれを衝撃することによって加熱される。こ
の場合、補助陽極の開口部が電子ビームの直撃、を避け
るように+M成されており、また電子ビームによって加
熱される部分には、w、 Tas No、ステンレスな
どの耐熱性金属が使用されており、プラズマ発生時及び
被加熱材料の加熱時に、補助陽極にかなりの電流が流れ
てもその溶解が阻止される。
The ion blating apparatus shown in the second figure introduces a gas for generating plasma such as gas or Ar into a hollow cathode electron gun at a flow rate of 200 to 300 SCCM, for example, to a temperature of 1 Torr or less in a vacuum chamber. , when the pressure in the vacuum chamber reaches 0.01 to 0.05 Torr, for example, 80 to
A voltage obtained by fF scanning a high frequency voltage is applied to a DC voltage of 100V. This allows superimposition! °The gas introduced into the hollow cathode electron gun σ) nozzle stimulated by a 5-frequency voltage is ionized and becomes plasma, and by the action of the DC voltage, electrons in the plasma are transferred from the opening at the tip of the hollow cathode to the auxiliary anode and Fly towards the hearth (anode). At the same time, ions fly from the auxiliary anode and hearth toward the hollow cathode. Thus, a discharge is formed between the auxiliary anode and the hearth and the hollow cathode, and the tip of the auxiliary anode is heated by being bombarded by a portion of the electron beam. In this case, the opening of the auxiliary anode is made of +M to avoid direct hit by the electron beam, and a heat-resistant metal such as W, Tas No., or stainless steel is used for the part heated by the electron beam. Therefore, even if a considerable current flows through the auxiliary anode during plasma generation and heating of the material to be heated, its melting is prevented.

この補助陽極は500〜2500℃に加熱される。This auxiliary anode is heated to 500-2500°C.

この場合補助陽極は、ハース(陽極)と共に中空陰極か
ら電子ビームを引出す作用を営むが、加熱された補助陽
極は、中空陰極を更に加熱するように働くため、中空陰
極からの電子ビームの射出を促進し、このことによって
プラズマ電子ビームによるプラズマの発生及び維持を容
易としかつ安定にする。史に、補助陽極には大電流を流
せるので、水冷銅ハース内の被加熱材料が誘電体あるい
は絶縁体であって、水冷銅ハースから十分電流を流せな
い場合にも補助陽極を介して中空陰極に電流を流すこと
ができる。
In this case, the auxiliary anode works together with the hearth (anode) to extract the electron beam from the hollow cathode, but the heated auxiliary anode works to further heat the hollow cathode, so it prevents the emission of the electron beam from the hollow cathode. This facilitates and stabilizes the generation and maintenance of plasma by the plasma electron beam. Historically, since a large current can be passed through the auxiliary anode, even if the material to be heated inside the water-cooled copper hearth is a dielectric or insulator and a sufficient current cannot be passed from the water-cooled copper hearth, the hollow cathode can be passed through the auxiliary anode. current can flow through.

通常、放電電流と、放電電圧は、それぞれ50〜500
A、 20〜907である。被加熱材料dはプラズマ電
子ビームjの衝撃により加熱され、蒸発温度に達すると
、蒸気流nが基板gに到達し、これに金属膜、金属酸化
膜あるいは窒化膜(反応蒸着の場合)が形成される。プ
ラズマ電子ビームjの電離作用により、蒸気流nの一部
はイオン化されてプラスに帯電しており、バイアス用直
流電源mにより負のバイアス電圧のかけられた基板g及
び基板ホルダfに向けて加速される。電子銃すには、A
rガスが供給され、その流量は放電の初期には多く、放
電開始後は絞られる。基板gの前に配置されるシャッタ
ーには、蒸着中は開かれる。
Usually, the discharge current and discharge voltage are 50 to 500, respectively.
A, 20-907. The material d to be heated is heated by the impact of the plasma electron beam j, and when it reaches the evaporation temperature, the vapor flow n reaches the substrate g, on which a metal film, metal oxide film or nitride film (in the case of reactive vapor deposition) is formed. be done. Due to the ionization effect of the plasma electron beam j, a part of the vapor flow n is ionized and positively charged, and is accelerated toward the substrate g and substrate holder f to which a negative bias voltage is applied by the bias DC power supply m. be done. For the electron gun, A
R gas is supplied, and its flow rate is high at the beginning of discharge, and is reduced after discharge starts. A shutter placed in front of substrate g is opened during deposition.

この第2図示の装置によれば、ホローカソード電子銃の
中空陰極Cの先端から被加熱材料dの表面迄の距離が2
00mm未満では、プラズマの発生、被加熱材料の加熱
開始、プラズマの維持及び制御が容易且つ安定で、必ず
しも電磁コイルを使用しなくとも、被加熱材料dを加熱
することが出来、比較的長い電子ビームの経路が得られ
て蒸発物のイオン化の割合を大きく出来る利点がある。
According to the apparatus shown in the second figure, the distance from the tip of the hollow cathode C of the hollow cathode electron gun to the surface of the heated material d is 2.
Below 00 mm, it is easy and stable to generate plasma, start heating the material to be heated, maintain and control the plasma, and the material to be heated d can be heated without necessarily using an electromagnetic coil. This has the advantage that a beam path can be obtained and the rate of ionization of the evaporated material can be increased.

(発明が解決しようとする課題) しかし、第2図示の装置では、ホローカソード電子銃の
中空陰極Cの先端から被加熱材料dの表面迄の距離が2
00mmを越えると、被加熱材料dを昇温させるために
プラズマ電子ビームを第2図のj3に示すように被加熱
材料dの表面中央部を狙って照射しようとしても、被加
熱材料dが絶縁体であると、プラズマ電子ビームのチャ
ージアップのために、被加熱材料とプラズマ電子ビーム
との間に反撥力が彷いて、第2図のj4に示すようにプ
ラズマ電子ビームが被加熱側材dの上方或は側方にそれ
てしまい、ホローカソード電子銃と被加熱材料、容器、
或はハースとの間に安定した放電の発生が困難であるか
又はこの放電の発生のために長い時間を要したり、大電
力を要する欠点が見られた。但し、中空陰極の先端から
被加熱劇料の表面迄の距離が200mmを越えた場合で
も、−旦放電が発生ずると、その後はプラズマと被加熱
側材の加熱の保持と制御を安定に行なうことが容易とな
り、従って該距離が長いときに放電を容易に発生させる
ことが望まれる。
(Problem to be Solved by the Invention) However, in the device shown in the second figure, the distance from the tip of the hollow cathode C of the hollow cathode electron gun to the surface of the heated material d is 2.
If it exceeds 00 mm, even if you try to irradiate the plasma electron beam to the center of the surface of the material d as shown at j3 in Figure 2 to raise the temperature of the material d, the material d will be insulated. When the plasma electron beam is charged up, a repulsive force is generated between the material to be heated and the plasma electron beam, and the plasma electron beam hits the material to be heated d as shown at j4 in FIG. The hollow cathode electron gun, the material to be heated, the container,
Alternatively, it is difficult to generate a stable discharge between the electrode and the hearth, or it takes a long time or a large amount of power to generate the discharge. However, even if the distance from the tip of the hollow cathode to the surface of the material to be heated exceeds 200 mm, once discharge occurs, the heating of the plasma and the material to be heated will be maintained and controlled stably thereafter. Therefore, it is desirable to easily generate a discharge when the distance is long.

本発明は、中空陰極と被加熱材料との距離を比較的長く
設定しても面1にホローカソード電子銃と容器或はハー
スとの間で放電を開始し得、放電の維持及び制御が容易
でしかも被加熱材料を熱分解することなく均一に加熱出
来、蒸発物のイオン化の割合が大きいプラズマ電子ビー
ム加熱装置を提供することを目的とするものである。
According to the present invention, even if the distance between the hollow cathode and the material to be heated is set relatively long, discharge can be started between the hollow cathode electron gun and the container or hearth on the surface 1, and the discharge can be easily maintained and controlled. Moreover, it is an object of the present invention to provide a plasma electron beam heating device that can uniformly heat the material to be heated without thermally decomposing it, and has a high rate of ionization of evaporated material.

(課題を解決するための手段) 本発明では、直流電源に接続したホローカソード電子銃
からのプラズマ電子ビームを、ハス或は容器に収めた被
加熱材料へ照射してこれを加熱するようにしたものに於
て、該被加熱材料に接触し且つ覆うように耐熱性導電材
料を使用した導電相を設け、該導電材を該ハース或は容
器に電気的に接続してプラズマ電子ビームの照射により
発生する該被加熱材料の帯電を該ハース或は容器へ逃が
すことにより、上記目的を達成するようにした。
(Means for Solving the Problems) In the present invention, a plasma electron beam from a hollow cathode electron gun connected to a DC power supply is irradiated onto a lotus or a material to be heated housed in a container to heat the material. A conductive phase made of a heat-resistant conductive material is provided in contact with and covers the material to be heated, the conductive material is electrically connected to the hearth or container, and the material is heated by plasma electron beam irradiation. The above object is achieved by dissipating the generated charge on the material to be heated to the hearth or container.

(作 用) 真空室内を例えば10 ’Torr以下に排気し、20
0〜3009CCMの割合でArガスをホローカソド電
子銃に供給して該真空室内か0.01〜0.05Tor
rになったら該電子銃の中空陰極とハース及び補助陽極
との間に、例えば80〜100Vの直流電圧に高周波電
圧を重畳させた電圧を与え、ホローカソード電子銃とハ
ースとの間に放電を発生させる。
(Function) Evacuate the vacuum chamber to, for example, 10' Torr or less, and
Ar gas is supplied to the hollow cathode electron gun at a rate of 0 to 3009 CCM, and the vacuum chamber is heated to 0.01 to 0.05 Torr.
When the temperature reaches r, a voltage of, for example, 80 to 100 V DC voltage superimposed with a high frequency voltage is applied between the hollow cathode of the electron gun and the hearth and the auxiliary anode to cause a discharge between the hollow cathode electron gun and the hearth. generate.

該ホローカッ−1フ15.丁銃の中空陰板と波力1+ 
、l#1材料の表面との距離が例えば200〜300m
mと長く、しかも被加熱材料か誘電体或は絶縁体の場合
、ホローカソード電子銃からのプラズマ電子ビームは、
被加熱材料の負の帯電のために被加熱材の上方或は側方
へそれるが、該被加熱材料の表面に接触し且つ覆うよう
に設けた耐熱性の導電材が被加熱材料の負の電荷の一部
を容器或はハースに逃がすために、プラズマ電子ビーム
のそれ方はかなり緩和され、プラズマ電子ビームの一部
は、被加熱材料とその上の耐熱性の導電材を衝撃し、こ
れらを加熱する。該被加熱H料と該導電材とが昇温する
につれてプラズマ電子ビームのハースからのそれ方はま
すます小さくなり、数分から十数分でホローカソード電
子銃とハース間て安定な放電が発生ずる。この間、ホロ
ーカソード電子銃へのArガスの量を徐々に絞っていき
、11005CC以下に保つようにし、また真空室内の
圧力も(0−4〜10−’Torrの低い圧力1 を保つようにする。
The hollow cup 15. Hollow shadow plate of rifle and wave force 1+
, the distance from the surface of l#1 material is, for example, 200 to 300 m.
m, and in the case of a heated material, dielectric, or insulator, the plasma electron beam from the hollow cathode electron gun is
Due to the negative charge of the heated material, the heated material deflects upward or to the side, but the heat-resistant conductive material provided in contact with and covering the surface of the heated material prevents the negative charge of the heated material. In order to release part of the charge to the container or hearth, the plasma electron beam is considerably relaxed, and a part of the plasma electron beam impacts the material to be heated and the heat-resistant conductive material above it. Heat these. As the temperature of the heated H material and the conductive material rises, the deviation of the plasma electron beam from the hearth becomes smaller and smaller, and a stable discharge occurs between the hollow cathode electron gun and the hearth in a few minutes to more than ten minutes. . During this time, gradually reduce the amount of Ar gas to the hollow cathode electron gun to keep it below 11005 CC, and also keep the pressure in the vacuum chamber at a low pressure of 0-4 to 10-' Torr. .

安定な放電の発生後は、プラズマ電子ビームは被加熱材
料からそれなくなる。安定な放電が発生する迄のプラズ
マ電子銃からハース及び補助陽極への電流は、最大20
0〜300A、電圧は30〜40V1電力は5〜12K
Wてあり、安定な放電発生後は電流、電力共に安定な放
電発生前よりも低い値に制御され、電圧は35〜407
に保たれ、その制御、設定は容易である。
After a stable discharge occurs, the plasma electron beam is no longer deviated from the material to be heated. The current from the plasma electron gun to the hearth and auxiliary anode until a stable discharge occurs is up to 20
0~300A, voltage is 30~40V1 power is 5~12K
After stable discharge occurs, both current and power are controlled to lower values than before stable discharge occurs, and the voltage is 35 to 407.
It is easy to control and set.

該耐熱性の導電材は、非導体の被加熱材料のプラズマ電
子ビーム照射による帯電を、二次電子放出或は導電作用
によってハース或は容器へと逃がし、プラズマ電子ビー
ムのそれを緩和するので、プラズマ電子ビームのエネル
ギーかより有効に被加熱材料の昇温に利用され、該導電
材自身も昇温することによって被加熱材料の昇温を助け
、短時間で且つ大電力を要することなくプラズマ電子銃
とハース間の放電を発生させることが出来る。
The heat-resistant conductive material releases the charge caused by the plasma electron beam irradiation of the non-conductor heated material to the hearth or container by secondary electron emission or conductive action, and alleviates the charge caused by the plasma electron beam. The energy of the plasma electron beam is used more effectively to raise the temperature of the material to be heated, and by raising the temperature of the conductive material itself, it helps to raise the temperature of the material to be heated. It is possible to generate an electric discharge between the gun and the hearth.

尚、安定な放電を発生させて被加熱材料を加] 2 熱し、電力を一旦切って被加熱材料が完全に冷却したあ
と加熱を再開する場合でも、その放゛1ハを容易に発生
させることが出来る。
In addition, even when heating the material to be heated by generating a stable electric discharge and restarting heating after the power is cut off and the material to be heated is completely cooled down, the radiation must be easily generated. I can do it.

(実施例) 本発明の実施例を以下図面に址き説明すると、第3図は
イオンブレーティング装置に適用した場合を示し、図面
において、?:′1号(1)は真排気目(2)を備えた
真空室、(3)は真空室(1)内の上方に設けた基板ホ
ルダ、(4)は裁板ホルダ(3)の下面に取付けたシリ
コンウェハ、ガラス板、金属なとのイオンブレーティン
グ処理か施される裁板、(5)は真空室(1)内下方に
基板(4)と対向して配置される水冷銅ハース、(6)
はハース(5)内に収容した被加熱材料である。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows a case where it is applied to an ion blating device, and in the drawing, ? :'1 (1) is a vacuum chamber equipped with a true exhaust hole (2), (3) is a substrate holder installed above the vacuum chamber (1), (4) is the bottom surface of the cutting board holder (3) (5) is a water-cooled copper hearth placed in the vacuum chamber (1) downward facing the substrate (4). ,(6)
is the material to be heated housed in the hearth (5).

また(8)はホローカソード電子銃、(9)はTa等の
中空陰極、(IGはホローカソード電子銃(8〉と水冷
銅ハース(5)との間に設けた直流電源、(′lvは高
周波発生装置、1″+2) (IZは高周波バイパス用
コンデンサをそれぞれ示す。高周波発生装置C11)及
びバイパス用コンデンサaD(Iつは、直流電源11■
と並列に接続される。a3は基板バイアス用直流電源、
0Φはシャッター、(1g)は補助陽極である。
(8) is a hollow cathode electron gun, (9) is a hollow cathode such as Ta, (IG is a DC power supply installed between the hollow cathode electron gun (8) and the water-cooled copper hearth (5), ('lv is High frequency generator, 1''+2) (IZ indicates a high frequency bypass capacitor.High frequency generator C11) and bypass capacitor aD (I indicates a DC power supply 11)
connected in parallel with a3 is a DC power supply for substrate bias,
0Φ is a shutter, and (1g) is an auxiliary anode.

以上の構成は、第1図又は第2図に示す従前のイオンブ
レーティング装置とほぼ同様であり、ホローカソード電
子銃(8)にArガスを供給し、直流電源aO及び高周
波発生装置(ITJを作動させると、電子銃〈8〉の放
電が開始され、Ta中空陰極(9)の開口部からプラズ
マ電子ビーム(15a)が出射することも従来のものと
変わりかない。
The above configuration is almost the same as the conventional ion brating apparatus shown in FIG. 1 or 2, and supplies Ar gas to the hollow cathode electron gun (8), When activated, the electron gun (8) starts discharging and a plasma electron beam (15a) is emitted from the opening of the Ta hollow cathode (9), which is the same as in the conventional one.

しかし乍ら、被加熱材料(6)が誘電体或は絶縁体であ
ると、従来の装置では、電子銃から出るプラズマ電子ビ
ームが被加熱材料の負の帯電によって反撥力を受け、ハ
ースからそれるため、被加熱材料を照射するプラズマ電
子ビームが少なくなり有効に該材料の加熱を行なえず、
大電力を電子銃に投入しても、電子銃とハースとの間に
安定な放電の発生が困難であったり、放電発生に長時間
を要する不都合があったが、本発明では、該被加熱材料
(6)の表面を覆うように接触させて耐熱性の導電材l
′leを設け、該導電材aeをハース(5〉或は容器と
電気的に接続し、該導電材(IGが被加熱材料(6)と
共にプラズマ電子ビーム(15a)の照射を受けるよう
にした。誘電体或は絶縁体の被加熱材料(6〉の帯電は
、該導電材00を介してハース(5)或は容器に逃げ、
;:j)?liを11卜なうプラズマ電子ビームのそれ
が少なくなる。
However, if the material to be heated (6) is a dielectric or an insulator, in the conventional device, the plasma electron beam emitted from the electron gun is subjected to a repulsive force due to the negative charge of the material to be heated, and the plasma electron beam is deflected from the hearth. As a result, the number of plasma electron beams that irradiate the material to be heated decreases, making it impossible to effectively heat the material.
Even if a large amount of electric power is applied to the electron gun, it is difficult to generate a stable discharge between the electron gun and the hearth, or it takes a long time to generate the discharge.However, in the present invention, the heated A heat-resistant conductive material is placed in contact so as to cover the surface of material (6).
'le was provided, the conductive material ae was electrically connected to the hearth (5) or the container, and the conductive material (IG) was irradiated with the plasma electron beam (15a) together with the material to be heated (6). The electrical charge of the dielectric or insulating material to be heated (6) escapes to the hearth (5) or container via the conductive material 00,
;:j)? The plasma electron beam that exceeds li by 11 mm is reduced.

該導電材(leとしては、Wの他にTa5Re、 MO
%Nb5Hf及びグラファイト或はボロンナイトライド
系導電性化合物、TaC% Tic S’ W2C% 
ZrC%TaB2などの導電性化合物が用いられ、披加
熱側材の種類によっては、Tiやステンレスなど比較的
耐熱性のある側材を用いることも出来る。
In addition to W, the conductive material (le is Ta5Re, MO
%Nb5Hf and graphite or boron nitride type conductive compound, TaC% Tic S' W2C%
A conductive compound such as ZrC%TaB2 is used, and depending on the type of heating side material, a relatively heat-resistant side material such as Ti or stainless steel may be used.

該耐熱性の導電材(IOは、第4図乃至第8図に示すよ
うに、ハース(5)或は容器の開口部に、その内部の収
めた被加熱材料(6)の表面を覆うようにし且つこれと
接して設けられる被覆部(1f3a)と、これをハース
(5)或は容器と電気的に接続するためのリード部(I
i)とで構成され、第4図(A) (B)に示す例では
該リード部(IGJ)の一端(IGe)をばね材で形成
し、その弾性で被覆部(1f3a)と嵌合させて5 取付け、他端(IGf)をビス止めによって水冷銅ハー
ス(5)に電気的に接続するようにした。また、第5図
(A) (B)に示す例では、リード部(16jりの一
端(16e)は被覆部(IGa)と溶接或は単に接触さ
せることによって電気的に接続され、他端(16f)を
水冷銅ハース(5)の上面縁に置かれた金属片(16g
)にビス止めし、この金属片(16g)を介して被覆部
(16a)と水冷銅ハース(5)との電気的接続を行な
うようにした。更に、第6図(A)’ (B)に示す例
では、3つのリード部(IOA)を被覆部(IGa)と
容器(5a)との間にまたがって電気接続を行なうよう
に設けた。
The heat-resistant conductive material (IO is, as shown in FIGS. 4 to 8, A sheathing part (1f3a) provided in and in contact with the sheathing part (1f3a), and a lead part (I) for electrically connecting this to the hearth (5) or the container.
i), and in the example shown in FIGS. 4(A) and 4(B), one end (IGe) of the lead part (IGJ) is formed of a spring material, and its elasticity allows it to fit with the covering part (1f3a). 5, and the other end (IGf) was electrically connected to the water-cooled copper hearth (5) using screws. In the example shown in FIGS. 5A and 5B, one end (16e) of the lead part (16j) is electrically connected to the covering part (IGa) by welding or simply by contacting it, and the other end ( 16f) placed on the upper edge of the water-cooled copper hearth (5).
), and electrical connection between the covering part (16a) and the water-cooled copper hearth (5) was made through this metal piece (16g). Furthermore, in the example shown in FIGS. 6A and 6B, three lead portions (IOA) are provided so as to span between the covering portion (IGa) and the container (5a) for electrical connection.

該耐熱性の導電材(IOで構成された被覆部(16a)
は、第4図示の場合、はぼ均一な肉厚t1高さHの円筒
で径を異にするものを半径方向に透孔部色を存して同心
円状に配置し、厚さUの板材を十字形に組合せたものに
よって固定され、この場合その外径C1高さH1透孔部
立によって性能が異なる。尚、外径Cはハースの開口径
Eよりも小さく設定される。
The covering portion (16a) made of the heat-resistant conductive material (IO)
In the case shown in Fig. 4, cylinders with uniform wall thickness t1 and height H and different diameters are arranged concentrically with the through holes in the radial direction. In this case, the performance differs depending on the outer diameter C1 height H1 of the hole. Note that the outer diameter C is set smaller than the opening diameter E of the hearth.

第5図(A) (B)及び第6図(A) (B)に示す
被覆部(IGa)] 6 は、外径C1板厚Hの円盤状の板ふるいの形状をしてお
り、丸穴の径で代表される透孔部L、丸穴の中心距MS
によって性能が変わり、該外径Cは容器(5a)の開口
径りより小さく設定することか好ましい。
The covering portion (IGa) shown in FIGS. 5(A)(B) and 6(A)(B)] 6 is in the shape of a disc-shaped plate sieve with an outer diameter C1 and a plate thickness H. Through-hole portion L represented by the diameter of the hole, center distance MS of the round hole
It is preferable that the outer diameter C is set smaller than the opening diameter of the container (5a).

更に、第7図示の被覆部(IGa)は、外径C1線径H
の円盤状の網ふるいの形状を有し、その性能は透孔部℃
、針金の径Hによって変わる。この外径Cは容器(5a
)の開口径りより小さい。
Furthermore, the covering portion (IGa) shown in FIG. 7 has an outer diameter C1 and a wire diameter H.
It has the shape of a disc-shaped mesh sieve, and its performance is
, varies depending on the diameter H of the wire. This outer diameter C is the container (5a
) is smaller than the opening diameter.

更に、第8図示の被覆部(IGa)は、板厚t、幅Hの
板材と、板厚u1幅Hの板祠を格子状に組合せて、外径
C1高さHの円盤状に構成したもので、その性能は透孔
部L1板厚t、uで変わる。
Further, the covering part (IGa) shown in FIG. 8 is configured in a disk shape with an outer diameter C1 and a height H by combining a plate material having a thickness t and a width H, and a plate plate having a thickness u1 and a width H in a lattice shape. Its performance varies depending on the plate thickness t and u of the through-hole portion L1.

上記各種形状の被覆部(16a)は、第4図示のように
水冷銅ハース(5)の開口部に設けられるか、第5図示
のように水冷銅ハース(5)にはめ込まれた耐熱性の容
器(5a)の開口部に設けるか、或は第6図示のように
水冷銅ブロック(7)の上に置かれた耐熱性の導電利製
の容器(5a)の開口部に設けるかは任意であり、いず
れの場合も被覆部(16a)の一部分は被加熱材料(6
)と接触して設けられ、第4図及び第8図示のように一
部を埋設させるようにしてもよい。
The variously shaped covering parts (16a) are either provided at the opening of the water-cooled copper hearth (5) as shown in the fourth figure, or are heat-resistant and fitted into the water-cooled copper hearth (5) as shown in the fifth figure. It is optional whether it is provided at the opening of the container (5a) or at the opening of the heat-resistant conductive container (5a) placed on the water-cooled copper block (7) as shown in the sixth figure. In either case, a part of the covering part (16a) is heated material (6
), and may be partially buried as shown in FIGS. 4 and 8.

尚、導電材(′IOのリード部(IGjりは、第4図示
の例では厚さ1 mm %幅10mm5長さ60mmの
Ta板材と、外径2 mmのTa燃り線とで構成され、
また第5図示の例ではリード部(16fりは厚さ1mm
5幅10mm。
In addition, the conductive material ('IO lead part (IGj) is composed of a Ta plate material with a thickness of 1 mm, a width of 10 mm, a length of 60 mm, and a Ta burning wire with an outer diameter of 2 mm in the example shown in Figure 4.
In addition, in the example shown in Figure 5, the lead part (16f is 1 mm thick)
5 width 10mm.

長さ50+n+nのTa板材で構成され、また第6図乃
至第8図示の例では、リード部(IOA)を厚さ1 m
m、幅10mm、長さ25mmのWのL字型板材で構成
するようにした。
It is made of Ta plate material with a length of 50+n+n, and in the example shown in FIGS. 6 to 8, the lead part (IOA) is made of a 1 m thick
It was constructed from a W-shaped L-shaped plate with a width of 10 mm and a length of 25 mm.

第5図に示す水冷銅ハース(5)は、外径75m+n。The water-cooled copper hearth (5) shown in FIG. 5 has an outer diameter of 75 m+n.

高さ63mmの円筒形で上面開口部内径[10mm、深
さ28祁、内容積62ccであり、また第6図に示す実
施例の容器(5a)はMo製で、肉厚6mm、外径45
mm。
It has a cylindrical shape with a height of 63 mm, an inner diameter of the top opening of 10 mm, a depth of 28 mm, and an internal volume of 62 cc.The container (5a) of the embodiment shown in Fig. 6 is made of Mo, has a wall thickness of 6 mm, and an outer diameter of 45 mm.
mm.

高さ23+++ms内容積13ccのすり林形である。It is in the form of a forest with a height of 23 +++ ms and an internal volume of 13 cc.

尚、第3図に於て、符号のは抵抗を示し、実施例では該
抵抗のをOΩ即ち抵抗なしとして装置を作動させた。蒸
着或はイオンブレーティング時には基板(4)は室温〜
100°C程度である。
In FIG. 3, the reference numeral indicates a resistance, and in the example, the apparatus was operated with the resistance set to OΩ, that is, with no resistance. During vapor deposition or ion blating, the substrate (4) is kept at room temperature ~
The temperature is about 100°C.

本発明装置の作動を第3図示の実施例に址つき説明する
と、真空室(1〉内を1O−3Torr以下に排気し、
プラズマ発生用気体源から気体導入孔を介してホローカ
ソード電子銃(8)へArガスを200〜300SCC
Hの流量で導入し、真空室内の圧力か0.01〜0.0
5Torrになったら、直流電源装置00によってホロ
ーカソード電子銃(8)とハース(5)及び補助陽極(
I9との間に、例えば80〜100ボルトの直流電圧に
高周波電圧発生iQ 5 (11)による高周波電圧を
重畳させた電圧を発生させる。かくして、重畳高周波電
圧によって励起された中空陰極(9)内の導入気体が電
離されて、プラズマになり、また直流電圧の作用によっ
て、プラズマ中のイオンは中空陰極内壁を衝撃してこれ
を白熱し、プラズマ中の電子は中空陰極先端開口部から
プラズマ電子ビーム(15a)(15b)となって補助
陽極(19)及びハース(5)に向かって飛行する。
To explain the operation of the device of the present invention with reference to the embodiment shown in the third figure, the inside of the vacuum chamber (1) is evacuated to 10-3 Torr or less,
200 to 300 SCC of Ar gas is supplied from the plasma generation gas source to the hollow cathode electron gun (8) through the gas introduction hole.
Introduced at a flow rate of H, and the pressure in the vacuum chamber was 0.01 to 0.0.
When the temperature reaches 5 Torr, the hollow cathode electron gun (8), the hearth (5) and the auxiliary anode (
A voltage in which a high frequency voltage generated by the high frequency voltage generator iQ 5 (11) is superimposed on a DC voltage of, for example, 80 to 100 volts is generated between the high frequency voltage generator iQ 5 (11) and the high frequency voltage generator iQ 5 (11). In this way, the gas introduced into the hollow cathode (9) excited by the superimposed high-frequency voltage is ionized and becomes plasma, and due to the action of the DC voltage, the ions in the plasma impact the inner wall of the hollow cathode, making it incandescent. , electrons in the plasma become plasma electron beams (15a) (15b) from the hollow cathode tip opening and fly toward the auxiliary anode (19) and the hearth (5).

被加熱材料(6)が誘電体或は絶縁体であると、加熱の
初期段階では、プラズマ電子ビーム(15a)1つ の照射を受けても温度か十分上昇していないので負に帯
電し、プラズマ電子ビーム(15a)はその帯電による
反撥力を受けることになるが、該被加熱材料(6)の表
面に耐熱性の導電材(Ieの被覆部(16a)が接触し
て密にその表面を被覆し、該被覆部(IGa)をリード
部(1i)を介して水冷銅ハース(5)と電気的に接続
したので、プラズマ電子ビーム(15a)による被加熱
材料(6)からの二次電子放射や、電荷の移動、局所的
放電による除電作用が促進され、プラズマ電子ビーム(
15a)を照射して加熱開始後短時間で被加熱材料(6
)の帯電が緩和されるようになり、これによってプラズ
マ電子ビムに対する反撥力も次第に軽減され、ますます
プラズマ電子ビーム(15a)か有効に被加熱材料(6
)を照剃するようになる。
If the material to be heated (6) is a dielectric or an insulator, in the initial stage of heating, even when irradiated with one plasma electron beam (15a), the temperature does not rise sufficiently, so it becomes negatively charged and the plasma The electron beam (15a) will receive a repulsive force due to its electrification, but the heat-resistant conductive material (Ie coating part (16a)) will come into contact with the surface of the heated material (6) and cover the surface closely. Since the coating part (IGa) is electrically connected to the water-cooled copper hearth (5) via the lead part (1i), secondary electrons from the material to be heated (6) by the plasma electron beam (15a) are Static neutralization by radiation, charge movement, and local discharge is promoted, and the plasma electron beam (
15a) and start heating, the material to be heated (6
) becomes less charged, and as a result, the repulsive force against the plasma electron beam is gradually reduced, and the plasma electron beam (15a) becomes more and more effectively heated material (6).
).

プラズマ電子ビーム(15a)は被加熱材料(6)を照
射すると同時に耐熱性導電材(′IOを照射するが、該
導電材(IOは高い導電性は有するため被加熱材料(6
)よりも先に加熱、昇温する。そのため、該導電材(′
IOの被覆部(IGa)近傍の被加熱材料(6)は、 
0 プラズマ電子ビームの直接の照81と被覆部(IGa)
の発熱の両件用により加熱されるので、昇温か促進され
る。
The plasma electron beam (15a) irradiates the material to be heated (6) and at the same time irradiates the heat-resistant conductive material (IO);
) before heating and raising the temperature. Therefore, the conductive material (′
The material to be heated (6) near the covering part (IGa) of the IO is
0 Direct irradiation of plasma electron beam 81 and coating (IGa)
The temperature rise is accelerated because the temperature is increased by both the heat generation and the heat generation.

プラズマ電子ビーム(15a)の照射を開始して数分か
ら十数性で被加熱側斜は十分昇温し、ホローカソード電
子銃(8)とハース(5)間で安定な族7じが発生し、
それが維持される。安定な放電の発生後も被覆部(16
a)を介して電荷か水冷銅ハース(5)に逃げられるよ
うになっているため、被加熱材料り6)の表面で温度が
やや低い場所があっても帯電は避けられる。プラズマ電
子銃(8)とハース(5)の間で安定な放電の発生後は
、被加貼材料(6)がZnSやPbF2など余り7% 
?Rてなくても導′屯性の物質となる場合、プラズマ電
子ビーム(15a)を照射して第3図示のように水冷銅
ハース(5)から直接十分高い蒸発速度で蒸発させるこ
とができる。
Within a few minutes after starting irradiation with the plasma electron beam (15a), the temperature of the heated side rises sufficiently, and a stable group 7 is generated between the hollow cathode electron gun (8) and the hearth (5). ,
It is maintained. Even after stable discharge occurs, the covering part (16
Since the electric charge can escape to the water-cooled copper hearth (5) through a), charging can be avoided even if there are places on the surface of the heated material (6) where the temperature is slightly low. After a stable discharge occurs between the plasma electron gun (8) and the hearth (5), the material to be applied (6) is ZnS, PbF2, etc.
? If the material is conductive even without R, it can be evaporated directly from the water-cooled copper hearth (5) at a sufficiently high evaporation rate by irradiating it with a plasma electron beam (15a) as shown in FIG.

ZnS % Mg「2、CeF3、CaF2、TlO2
などの被加熱材料(6)では、第5図乃至第8図示のよ
うに、これらの被加熱側斜(6)をW、 Ta、 Mo
などの高励点金属の容器(5a)の中に充填してプラズ
マ電子ビムを照射した方が加熱及び蒸発が容易である。
ZnS % Mg'2, CeF3, CaF2, TlO2
For heated materials (6) such as, as shown in FIGS. 5 to 8, these heated side slopes (6) are made of W, Ta, Mo.
It is easier to heat and evaporate the material by filling it in a container (5a) made of a metal with a high excitation point such as and irradiating it with a plasma electron beam.

プラズマ電子ビーム(15a)は、第5図乃至第8図の
場合、主として被加熱材料(6)と導電材(IOの被覆
部(16a)を照射し、一部は容器(5a)及び水冷銅
ハース(5)或は水冷銅ブロック(7)を照射する。
In the case of FIGS. 5 to 8, the plasma electron beam (15a) mainly irradiates the material to be heated (6) and the conductive material (the covering part (16a) of the IO), and partially irradiates the container (5a) and the water-cooled copper. Irradiate the hearth (5) or water-cooled copper block (7).

こ9ため、被加熱柄材(6)と被覆部(IGa)は高い
温度に加熱されるが、容器(5a)は水冷銅ハース(5
)或は水冷銅ブロック(7)に接触しているので余り昇
温しない。被覆部(16a)は、W、 Ta、 Noな
どの高融点金属を使用しているため、被加熱材料(6)
が蒸発温度に達しても、被覆部(16a)はその蒸発温
度にまで達しないように出来るので、導電材(161を
構成しているこれら高融点金属が蒸着膜に混入する量は
、実用上無視できる位少なくすることが可能である。
Therefore, the handle material to be heated (6) and the covering part (IGa) are heated to a high temperature, but the container (5a) is heated to a high temperature.
) Or, since it is in contact with the water-cooled copper block (7), the temperature does not rise much. Since the covering part (16a) uses a high melting point metal such as W, Ta, No, etc., the material to be heated (6)
Even if it reaches the evaporation temperature, the coating part (16a) can be prevented from reaching the evaporation temperature, so the amount of these high melting point metals that make up the conductive material (161) mixed into the deposited film is practically limited. It is possible to reduce it to a negligible level.

被加熱材料(6)の加熱や蒸着過程が完了してプラズマ
電子銃による加熱を一旦停止し、そのあとで加熱を再開
した場合、被加熱材料(6)の温度が完全に室温に戻っ
ていても加熱の再開は容易であり、被加熱材料〈6〉の
温度が高い程安定な放電開始迄の加部時間は短くなる。
When the heating and vapor deposition process of the material to be heated (6) is completed and the heating by the plasma electron gun is temporarily stopped, and then the heating is restarted, the temperature of the material to be heated (6) has completely returned to room temperature. It is easy to restart heating, and the higher the temperature of the material to be heated (6), the shorter the addition time until stable discharge starts.

第3図示の例に於て、プラズマ電子銃(8)とハース(
5)の上面との距離を200〜300叩、被加熱材料(
6)から基板(4)までの高さを420〜500mmに
設定することが出来、酸化物からなる被加熱材料(6)
の蒸発を行なう場合、必要に応じて真空室(1〉内に3
0〜140SCCMの流量で酸素ガスが導入される。ま
た、イオンブレーティングを行なう場合は、基板バイア
ス用直流電源(I3を作動させ、基板ホルダ(3)に0
〜500Vの電位を与え、シャッターaΦを開いてイオ
ンブレーティングをガラスあるいは金属の基板(4)に
対して行ない、この基板(4)に形成される膜厚さが所
定の厚さに達すると、シャッターa@を閉じる。基板(
4)及び基板ホルダー(3)には0〜IAの電流が流れ
る。直流電源031を用いない場合には、基板ホルダ(
3)と基板(4)は電気的に浮かされる。
In the example shown in Figure 3, the plasma electron gun (8) and the hearth (
5) Adjust the distance to the top surface by 200 to 300 strokes and press the material to be heated (
The height from 6) to the substrate (4) can be set to 420 to 500 mm, and the heated material (6) made of oxide
When performing evaporation of
Oxygen gas is introduced at a flow rate of 0 to 140 SCCM. In addition, when performing ion blating, activate the substrate bias DC power supply (I3) and apply zero voltage to the substrate holder (3).
Applying a potential of ~500V and opening the shutter aΦ, ion blating is performed on the glass or metal substrate (4), and when the film formed on the substrate (4) reaches a predetermined thickness, Close shutter a@. substrate(
4) and a current of 0 to IA flows through the substrate holder (3). If the DC power supply 031 is not used, the substrate holder (
3) and the substrate (4) are electrically suspended.

なお、蒸着あるいはイオンブレーティング中の基板上の
膜厚及び堆積速度は、光電側光式膜厚モニターによって
、波長550nmにおける透過 3 率の変化をレコーダーに記録することによって測定され
る。
The film thickness and deposition rate on the substrate during vapor deposition or ion blating are measured by recording the change in transmittance at a wavelength of 550 nm on a recorder using an optical film thickness monitor on the photoelectric side.

第4図示の導電材(I61で被覆部(IGa)をM O
% リド部(1Gl)をTaとし、外径Cを50mm、
高さHを6祁、透孔部の互を4和m1t=1、u=1、
開口部Eを57mm、被覆部(16a)の容積が3.4
3ccの場合、ホローカソード電子銃(8)とハース(
5)との間で安定な放電を発生するために必要な電力値
は、5〜12KWであり、安定な放電発生までの時間は
数分から十数性であり、供給電力が高い程放電発生まで
の時間は短くなる。この電力と時間の積(所要電力量)
が小さい程、同じ電力値に対しては短時間で安定な放電
が発生し、また同じ時間に対しては小さい電力で放電を
発生させ得て有利であるが、前記形状の導電材aOでは
、所要電力量が0.5〜2.5KW ・hrと小さい値
を示した。また、被覆部(16a)の透孔部のLが小さ
い程、この所要電力量は小さくなり、立がIO++++
nを越えると導電材aeによる被加熱材料の帯電防止効
果は薄くなった。被覆部(IGa)の容積或は熱容量が
 4 大きすぎても、又は小さすぎても所要電力量は大きくな
る傾向があった。また被加熱林料(6)が導電性を帯び
る温度が高い程、所要電力量は大きくなり、安定な放電
発生に時間がかかるようになり、被加熱材料(6)の蒸
発温度が高い程、所要電力量は大きくなる。第5図乃至
第8図示の導電材(IOについても第4図示の導電材の
、場合と同様の傾向を示した。
The conductive material shown in FIG.
% The lid part (1Gl) is Ta, the outer diameter C is 50 mm,
The height H is 6, the mutual sum of the through holes is 4 m1t = 1, u = 1,
The opening E is 57 mm, and the volume of the covering part (16a) is 3.4.
In the case of 3cc, hollow cathode electron gun (8) and Haas (
The power value required to generate a stable discharge between the time becomes shorter. Product of this power and time (required power amount)
The smaller the , the more stable the discharge will occur in a short time for the same power value, and the more advantageous it is that the discharge can be generated with a smaller power for the same time, but in the conductive material aO of the above shape, The required power amount was as low as 0.5 to 2.5 KW/hr. Moreover, the smaller the L of the through-hole part of the covering part (16a), the smaller the required power amount, and the vertical is IO+++++
When the value exceeds n, the antistatic effect of the conductive material ae on the heated material becomes weaker. Even if the volume or heat capacity of the covering portion (IGa) is too large or too small, the amount of power required tends to increase. In addition, the higher the temperature at which the heated forest material (6) becomes conductive, the greater the amount of power required and the longer it takes for stable discharge to occur, and the higher the evaporation temperature of the heated material (6), The amount of power required increases. The conductive materials shown in FIGS. 5 to 8 (IO) showed the same tendency as the conductive material shown in FIG. 4.

一般にPbF2、ZnSは比較的安定な放電が発生し易
< 、MgFz、CeF3、CaF2、TiO2の順に
安定な放電が発生しにくくなる傾向が見られた。
In general, a relatively stable discharge tends to occur with PbF2 and ZnS, whereas stable discharge tends to become less likely to occur in the order of MgFz, CeF3, CaF2, and TiO2.

第3図で基板(4)として板厚2 +nn+の127 
X127mImの青板ガラス基板及びパイレックスガラ
ス基板を使用し、安定な放電発生後の蒸着膜堆積速度を
測定したところ、ZnSについては、電力2〜4Kwで
↓00〜250nm/min SMgF2は4〜7Kw
で50〜200nm/min 、 CeF3は〜4Kw
で70〜80nm/min。
In Figure 3, the board (4) is 127 with a board thickness of 2 +nn+.
Using a blue plate glass substrate and a Pyrex glass substrate of X127 mIm, we measured the deposition rate after stable discharge, and found that for ZnS it was ↓00 to 250 nm/min at a power of 2 to 4 Kw, and for SMgF2 it was 4 to 7 Kw.
50-200nm/min, CeF3 is ~4Kw
at 70-80 nm/min.

CaF2は4.5−6.5KWで50〜13Or+m/
minであった。
CaF2 is 4.5-6.5KW and 50-13Or+m/
It was min.

ZnS s PbF2は水冷銅ハースに充填して蒸発さ
せ得た。
ZnS s PbF2 could be charged into a water-cooled copper hearth and evaporated.

本発明の装置により蒸着したZnSは膜厚1000〜3
000r+mの場合、可視域における光学定数が約2.
2−0.002jであった。また、MgF2は膜厚16
00〜330(lnmの場合、可視域の光学定数は約1
,350.003iであった。更に1100〜1300
nmの膜厚に形成したCeF3)光学定数は約1.60
−0.002+ 、 500〜2000r++1の膜厚
に形成したCaF2の光学定数は約1.45−0.03
jであった。
ZnS deposited by the apparatus of the present invention has a film thickness of 1000 to 3
000r+m, the optical constant in the visible range is approximately 2.
It was 2-0.002j. In addition, MgF2 has a film thickness of 16
00 to 330 (in the case of lnm, the optical constant in the visible range is approximately 1
, 350.003i. Further 1100-1300
CeF3) formed to a film thickness of nm has an optical constant of approximately 1.60.
-0.002+, the optical constant of CaF2 formed to a film thickness of 500 to 2000r++1 is approximately 1.45-0.03
It was j.

尚、本発明のプラズマ電子ビーム加熱装置は、誘電体の
みならずセラミックの溶解にも用いることが出来る。
The plasma electron beam heating device of the present invention can be used for melting not only dielectric materials but also ceramics.

該導電+a’ aeの被覆部(16a)は、円盤状に限
ることなく、角柱、円錐形、角錐形であってもよく、そ
の一部が上下左右に飛び出した形をしていてもよい。導
電材00としては、Re、 Nb、 llfなどの高融
点金属、グラファイト、ボロンナイトライド系導電性化
合物、或は高融点材料、高融点金属もしくは導電性化合
物を主成分とする高融点の導電体を使用することも可能
であり、更に導電材(IOの一部にアルミナその他の絶
縁性のセラミックか使用してあってもよい。
The conductive +a' ae covering portion (16a) is not limited to a disk shape, and may be a prism, a cone, or a pyramid, or may have a part thereof protruding vertically and horizontally. The conductive material 00 is a high melting point metal such as Re, Nb, ILF, graphite, a boron nitride type conductive compound, or a high melting point conductor whose main component is a high melting point material, a high melting point metal, or a conductive compound. It is also possible to use a conductive material (alumina or other insulating ceramic for a part of the IO).

リード部(IGfりのプラズマ電子ビームの照AJ m
が少ない部分には銅などの耐熱性の良くない導電材料を
使用することが出来る。
Lead part (IGfri plasma electron beam light AJ m
A conductive material with poor heat resistance, such as copper, can be used in areas where there is little heat resistance.

被覆部(IGa)の形状は、図示実施例の他にスノコ状
、繊維状等のものでもよく、被覆部(16a)の各構成
部材が固定状態ではなく、互に接触しているものであっ
てもよい。
The shape of the covering part (IGa) may be in the form of a drainboard or a fiber, in addition to the illustrated embodiment, and the constituent members of the covering part (16a) are not in a fixed state but in contact with each other. You can.

(発明の効果) 以上のように本発明に於ては、耐熱性の導電材をハース
或は容器の開口部を覆うようにして被加熱材料に接触し
て設け、該被加熱側材の帯電をハース或は容器へ逃がす
ようにしたので、被加熱材料のチャージアップか緩和さ
れ、プラズマ電子ビームが被加熱側材からそれることが
緩和されるので、プラズマ電子ビームを有効に被加熱材
料の加熱に利用することが出来、大電力を供給せずに短
時間でホローカソード電子銃とハース或は容器との間に
安定な放電を形成し得、被加FA 44料の加熱や蒸発
を安定して行なえ 7 るようになり、ホローカソード電子銃とハース或は容器
とが遠く離れていても該電子銃と絶縁体或は誘電体など
の非導電性の材料を充積したハース或は容器との間で安
定な放電を容易、確実に発生させることが出来、従って
該電子銃を蒸発量の邪魔にならない位置に設けることが
可能で、しかも電子ビームの経路か長いために、電子ビ
ームと蒸発物やAr、反応ガスとの衝突の確率が高まっ
てイオン化効率を向上させることが出来ると共にプラズ
マ電子ビームの径を被加熱材料の表面に適度に拡がらせ
て均一な加熱を行なえて被加熱材料の好ましくない熱分
解を抑えることが出来、比較的装置も簡単で安価に製作
出来る等の効果がある。
(Effects of the Invention) As described above, in the present invention, a heat-resistant conductive material is provided in contact with the material to be heated so as to cover the opening of the hearth or container, and the charging of the side material to be heated is prevented. This allows the plasma electron beam to escape into the hearth or container, which reduces the charge-up of the material to be heated and reduces the deviation of the plasma electron beam from the side material to be heated. It can be used for heating, and a stable discharge can be formed between the hollow cathode electron gun and the hearth or container in a short time without supplying large amounts of power, stabilizing the heating and evaporation of the added FA44 material. Even if the hollow cathode electron gun and the hearth or container are far apart, the electron gun and the hearth or container filled with a non-conductive material such as an insulator or dielectric can be used. It is possible to easily and reliably generate a stable discharge between the The probability of collision with evaporated matter, Ar, and reaction gas increases, improving ionization efficiency, and the diameter of the plasma electron beam is appropriately spread over the surface of the material to be heated, allowing uniform heating. It has the advantage that undesirable thermal decomposition of the material can be suppressed, and the device is relatively simple and can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、従来のプラズマ電子ビム加熱装置
の概略的な断面図、第3図は本発明の実施例の概略的な
断面図、第4図乃至第8図は本発明の実施例の要部の拡
大断面図である。 〈1)・・・真空室     (4)・・基 板 8 (5)・・・水冷銅ハース (5ζ1)容(6)・・被
加熱月1l−1 (8)・・・ホローカソード電子;°、・(15a)・
・プラズマ電子ビーム qO・・・導電オー1’     (IGa)(16j
2)・・・リード部     A被覆部 透孔部 器 減 の 〜−−一 N
1 and 2 are schematic sectional views of a conventional plasma electron beam heating device, FIG. 3 is a schematic sectional view of an embodiment of the present invention, and FIGS. 4 to 8 are schematic sectional views of a conventional plasma electron beam heating device. FIG. 3 is an enlarged cross-sectional view of the main part of the embodiment. <1)...Vacuum chamber (4)...Substrate 8 (5)...Water-cooled copper hearth (5ζ1) Volume (6)...Heated month 1l-1 (8)...Hollow cathode electron; °,・(15a)・
・Plasma electron beam qO...conductive O1' (IGa) (16j
2) Lead part

Claims (5)

【特許請求の範囲】[Claims] 1.直流電源に接続したホローカソード電子銃からのプ
ラズマ電子ビームを、ハース或は容器に収めた被加熱材
料へ照射してこれを加熱するようにしたものに於て、該
被加熱材料に接触し且つ覆うように耐熱性導電材料を使
用した導電材を設け、該導電材を該ハース或は容器に電
気的に接続してプラズマ電子ビームの照射により発生す
る該被加熱材料の帯電を該ハース或は容器へ逃がすこと
を特徴とするプラズマ電子ビーム加熱装置。
1. A plasma electron beam from a hollow cathode electron gun connected to a DC power source is irradiated onto a material to be heated stored in a hearth or a container to heat the material, and A conductive material using a heat-resistant conductive material is provided so as to cover the hearth or the container, and the conductive material is electrically connected to the hearth or the container so that the electrical charge of the heated material generated by the irradiation of the plasma electron beam is transferred to the hearth or the container. A plasma electron beam heating device characterized by escaping into a container.
2.前記導電材は、該被加熱材料と接触し且つこれを覆
う面に、平均寸法が10mm未満のメッシュ状その他の
多数の透孔部を備えていることを特徴とする請求項1に
記載のプラズマ電子ビーム加熱装置。
2. The plasma according to claim 1, wherein the conductive material is provided with a large number of mesh-like or other through-holes having an average size of less than 10 mm on a surface that contacts and covers the heated material. Electron beam heating device.
3.該耐熱性導電材料は、グラファイトなどの高融点材
料、W、Ta、Re、Mo、Nb、Hfなどの高融点金
属、ボロンナイトライド系導電性化合物、TaC、Ti
C、W_2C、ZrC、及びTaB_2などの導電性化
合物、あるいはこれらの高融点材料、高融点金属、もく
しは導電性化合物を主成分とする高融点の導電体である
ことを特徴とする請求項1に記載のプラズマ電子ビーム
加熱装置。
3. The heat-resistant conductive material includes a high-melting point material such as graphite, a high-melting point metal such as W, Ta, Re, Mo, Nb, and Hf, a boron nitride-based conductive compound, TaC, and Ti.
A claim characterized in that the material is a high melting point conductor whose main component is a conductive compound such as C, W_2C, ZrC, and TaB_2, or a high melting point material thereof, a high melting point metal, or a conductive compound. 1. The plasma electron beam heating device according to 1.
4.該ハースが水冷銅ハースであることを特徴とする請
求項1に記載のプラズマ電子ビーム加熱装置。
4. 2. The plasma electron beam heating apparatus according to claim 1, wherein the hearth is a water-cooled copper hearth.
5.該容器がグラファイトなどの高融点材料、W、Ta
、Re、Mo、Nb、Hfなどの高融点金属、ボロンナ
イトライド系導電性化合物、TaC、TiC、W_2C
、ZrC、TaB_2などの導電性化合物、あるいはこ
れらの高融点材料、高融点金属、もしくは導電性化合物
を主成分とする耐熱性導電材料で形成され、また該容器
が水冷ハースあるいは水冷銅ブロックに接触しているこ
とを特徴とする請求項1に記載のプラズマ電子ビーム加
熱装置。
5. The container is made of a high melting point material such as graphite, W, Ta.
, Re, Mo, Nb, Hf and other high-melting point metals, boron nitride-based conductive compounds, TaC, TiC, W_2C
, ZrC, TaB_2, etc., or a heat-resistant conductive material whose main component is these high-melting point materials, high-melting point metals, or conductive compounds, and the container is in contact with a water-cooled hearth or a water-cooled copper block. The plasma electron beam heating device according to claim 1, characterized in that:
JP20019989A 1989-08-03 1989-08-03 Heater with plasma electron beam Pending JPH0364456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20019989A JPH0364456A (en) 1989-08-03 1989-08-03 Heater with plasma electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20019989A JPH0364456A (en) 1989-08-03 1989-08-03 Heater with plasma electron beam

Publications (1)

Publication Number Publication Date
JPH0364456A true JPH0364456A (en) 1991-03-19

Family

ID=16420450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20019989A Pending JPH0364456A (en) 1989-08-03 1989-08-03 Heater with plasma electron beam

Country Status (1)

Country Link
JP (1) JPH0364456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503259A (en) * 2009-08-25 2013-01-31 エイティーアイ・プロパティーズ・インコーポレーテッド Ion plasma electron emitter for melting furnace
JP2014231618A (en) * 2013-05-28 2014-12-11 住友重機械工業株式会社 Evaporation furnace, and evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503259A (en) * 2009-08-25 2013-01-31 エイティーアイ・プロパティーズ・インコーポレーテッド Ion plasma electron emitter for melting furnace
JP2014231618A (en) * 2013-05-28 2014-12-11 住友重機械工業株式会社 Evaporation furnace, and evaporator

Similar Documents

Publication Publication Date Title
US7427766B2 (en) Method and apparatus for producing extreme ultraviolet radiation or soft X-ray radiation
US5549780A (en) Method for plasma processing and apparatus for plasma processing
US7557511B2 (en) Apparatus and method utilizing high power density electron beam for generating pulsed stream of ablation plasma
JP4364950B2 (en) Plasma processing equipment
JP2009542900A (en) Electron beam evaporator
US20140110607A1 (en) Ion implanter power supply which is intended to limit the loading effect
US5739528A (en) Fast atom beam source
JPH0456761A (en) Thin film forming device
JPH0364456A (en) Heater with plasma electron beam
JP3406769B2 (en) Ion plating equipment
JP2648167B2 (en) Plasma electron beam heating equipment
JP3942343B2 (en) Plasma generator and thin film forming apparatus
JP2000017431A (en) MgO FILM FORMING METHOD AND PANEL
JPH03158457A (en) Method and device for heating evaporating source by plasma electron beam
JP3073711B2 (en) Ion plating equipment
JP3775851B2 (en) Vapor deposition apparatus and protective film manufacturing method
JPH11224797A (en) Plasma generating apparatus, and thin film forming apparatus
JPH11273894A (en) Thin film forming device
JPS616271A (en) Method and device for bias ion plating
JP2823834B2 (en) Crucible mechanism in vapor deposition equipment
JP2000017429A (en) Vacuum deposition apparatus
JP2712539B2 (en) Electron beam evaporation source
JPH0582257A (en) Vacuum arc device and vacuum arc ignition method
JP3504169B2 (en) Ion implantation apparatus and ion implantation method
JPH0445264A (en) Thin film forming device