JPH0364432A - High temperature corrosion-resistant heat transfer tube and its manufacture - Google Patents
High temperature corrosion-resistant heat transfer tube and its manufactureInfo
- Publication number
- JPH0364432A JPH0364432A JP20007189A JP20007189A JPH0364432A JP H0364432 A JPH0364432 A JP H0364432A JP 20007189 A JP20007189 A JP 20007189A JP 20007189 A JP20007189 A JP 20007189A JP H0364432 A JPH0364432 A JP H0364432A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- steel
- temperature
- amount
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 97
- 230000007797 corrosion Effects 0.000 title claims abstract description 97
- 238000012546 transfer Methods 0.000 title abstract description 8
- 238000004519 manufacturing process Methods 0.000 title 1
- 230000005496 eutectics Effects 0.000 claims abstract description 21
- 150000003839 salts Chemical class 0.000 claims abstract description 18
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 5
- 229910052936 alkali metal sulfate Inorganic materials 0.000 claims description 5
- 150000003841 chloride salts Chemical class 0.000 claims 1
- 229910000851 Alloy steel Inorganic materials 0.000 abstract description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 abstract description 6
- 239000010813 municipal solid waste Substances 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 abstract 1
- 239000000463 material Substances 0.000 description 78
- 229910000831 Steel Inorganic materials 0.000 description 29
- 239000010959 steel Substances 0.000 description 29
- 239000000428 dust Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 21
- 238000011084 recovery Methods 0.000 description 18
- 150000001805 chlorine compounds Chemical class 0.000 description 13
- 239000000203 mixture Substances 0.000 description 10
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 239000002585 base Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000002436 steel type Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000002076 thermal analysis method Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910001119 inconels 625 Inorganic materials 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005536 corrosion prevention Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101100120137 Caenorhabditis elegans fip-3 gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003682 vanadium compounds Chemical class 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は耐食性伝熱管に係り、特にアルカリ金属硫酸塩
および塩化物に基づく共融塩による高温腐食環境下で用
いられるNiおよびCrを含有する耐高温腐食伝熱管に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to corrosion-resistant heat exchanger tubes containing Ni and Cr used in high-temperature corrosive environments with eutectic salts based on alkali metal sulfates and chlorides. Regarding high temperature corrosion resistant heat exchanger tubes.
製紙工場における回収ボイラは、蒸解廃液である黒液を
燃焼し、薬品と蒸気を回収する主要な設備である。最近
では、工場における主要な動力源であるこのボイラをさ
らに効率的なものとするため、高濃度黒液の燃焼ならび
に高温高圧型回収ボイラの採用が進められている。Recovery boilers in paper mills are the main equipment that burns black liquor, which is cooking waste, and recovers chemicals and steam. Recently, in order to make boilers, which are the main power source in factories, even more efficient, the combustion of highly concentrated black liquor and the use of high-temperature, high-pressure recovery boilers have been promoted.
しかしながら、この新しい型のボイラを採用した場合、
従来、蒸気温度の最高が480°Cであったものを、5
00〜505°Cに高めるため、次のような重大な問題
が生しることになる。However, when adopting this new type of boiler,
Conventionally, the maximum steam temperature was 480°C, but
In order to raise the temperature to 00-505°C, the following serious problems will arise.
すなわち、蒸気温度を上記の温度まで高くすると、ボイ
ラ過熱器管の表面温度は530〜540°C近くまで上
昇し、回収ボイラ特有の高温腐食が発生する。That is, when the steam temperature is raised to the above temperature, the surface temperature of the boiler superheater tube rises to nearly 530 to 540°C, causing high-temperature corrosion peculiar to recovery boilers.
この高温腐食は、回収ボイラで黒液を燃焼する際、多量
のアルカリ化合物が飛散し、これが過熱器管表面に付着
堆積することにより起こるものである。さらに詳しく述
べると、付着物の主成分はNazS○、であるが、これ
に木材チップからのに含有化合物や系外から混入してく
るNaC1が加わり、500〜600°Cの範囲に共融
点をもつ共融物が生しるため、溶融塩下の金属の腐食反
応が著しく進行することになる。第1図は各種回収ボイ
ラの過熱器管表面の付着物を採取し熱分析を行った例で
ある。各付着物により異なるが、514〜570 ′C
に共融点を持つことがわかる。このような共融点が、過
熱器管の管表面温度と同しか、または管表面温度が共融
点以上になると溶融塩による激しい腐食が進行すること
になる。This high-temperature corrosion is caused by a large amount of alkaline compounds being scattered when black liquor is burned in the recovery boiler and deposited on the surface of the superheater tubes. To explain in more detail, the main component of the deposit is NazS○, but with the addition of compounds contained in wood chips and NaCl mixed in from outside the system, the eutectic point is in the range of 500 to 600°C. Due to the formation of eutectic material, the corrosion reaction of the metal under the molten salt progresses significantly. Figure 1 shows an example in which deposits on the surface of superheater tubes of various recovery boilers were collected and thermally analyzed. It varies depending on each deposit, but 514 to 570'C
It can be seen that it has a eutectic point. If such a eutectic point is equal to or exceeds the tube surface temperature of the superheater tube, severe corrosion due to molten salt will proceed.
これと同様の腐食が、蒸気温度を高め排熱回収の効率化
を図ろうとしている都市ごみや産業廃棄物の焼却炉にお
いても発生ずることになる。Similar corrosion occurs in municipal and industrial waste incinerators, which are attempting to raise the steam temperature and improve the efficiency of waste heat recovery.
以上のような問題点にたいしては、従来の伝熱管材料で
は対処できないため、現状では各装置メーカで独自の耐
食材を選定し、実機に適用している。しかし、回収ボイ
ラを例にとっても、高温高圧化を図るため、所定の50
0°C以上に、蒸気温度を長時間維持して運転した結果
、予想以上に伝熱管の腐食が進行していることが確認さ
れたことから、残念ながら、従来通りの480 ’C程
度に、蒸気温度を下げて運転しているのが現状である。The above-mentioned problems cannot be addressed with conventional heat transfer tube materials, so currently each equipment manufacturer selects its own corrosion-resistant material and applies it to actual equipment. However, taking a recovery boiler as an example, in order to achieve high temperature and high pressure, a predetermined 50%
As a result of maintaining the steam temperature above 0°C for a long time, it was confirmed that the corrosion of the heat transfer tubes had progressed more than expected. Currently, it is operated at a lower steam temperature.
このように、アルカリ塩による腐食環境に対しては、ま
だ耐食性に優れ、しかも経済的な伝熱管材料は開発され
ていない。この最大の理由は腐食環境が一様でないこと
にある。すなわち、ボイラや焼却炉ごとに付着物の組成
が異なり、加えて運転条件によっても大きく変化するこ
とになる。このようなことから、材料評価を行うための
腐食媒体の設定ができない、といったプラント特有の困
難な問題をかかえている。As described above, an economical heat exchanger tube material with excellent corrosion resistance in a corrosive environment caused by alkali salts has not yet been developed. The main reason for this is that the corrosive environment is not uniform. In other words, the composition of deposits differs depending on the boiler or incinerator, and also varies greatly depending on the operating conditions. As a result, plants are faced with difficult problems such as the inability to set a corrosive medium for material evaluation.
上記従来技術は高温高圧型回収ボイラにおける高温腐食
に対する防食技術に関しては、未解決のまま運用されて
いるため、所定の高温蒸気が安定に供給されないという
問題がある。Since the above-mentioned conventional technology is operated without solving the problem of corrosion prevention technology against high-temperature corrosion in a high-temperature, high-pressure recovery boiler, there is a problem that a predetermined high-temperature steam cannot be stably supplied.
本発明の目的は、上記問題を解決し、高温蒸気を安定に
供給できる、高温高圧型回収ボイラを提供することにあ
る。An object of the present invention is to provide a high-temperature, high-pressure recovery boiler that can solve the above problems and stably supply high-temperature steam.
〔課題を解決するための手段]
上記目的は、アルカリ金属の硫酸塩ならびに塩化物に基
づく共融塩による高温腐食環境下で用いられNiおよび
Crを含有する耐高温腐食伝熱管において、Niを12
〜30wt%、Crを18〜30wt%、Moを2wt
%以上を含み、残部が実質的にFeよりなることを特徴
とする耐高温腐食伝熱管により、また前記伝熱管表面に
Ni含有量58重量%以上からなる高Ni基合金を被覆
してなることを特徴とする耐高温腐食伝熱管により達成
される。[Means for Solving the Problems] The above object is to provide a high temperature corrosion resistant heat exchanger tube containing Ni and Cr that is used in a high temperature corrosion environment due to eutectic salts based on alkali metal sulfates and chlorides.
~30wt%, Cr 18~30wt%, Mo 2wt
% or more, with the remainder substantially consisting of Fe, and the heat exchanger tube surface is coated with a high Ni-base alloy having a Ni content of 58% or more by weight. This is achieved by using high-temperature corrosion-resistant heat exchanger tubes that are characterized by:
アルカリ金属の硫酸塩と塩化物の共融塩による腐食の場
合、それぞれの塩が各合金元素と反応することになる。In the case of corrosion due to eutectic salts of alkali metal sulfates and chlorides, each salt will react with each alloying element.
とりわけ、硫酸塩はNiと、塩化物はCrとの反応が進
む。従って、これら元素の割合を適正化することにより
、共融塩による合金鋼の腐食を著しく軽減することがで
きる。In particular, sulfate reacts with Ni, and chloride reacts with Cr. Therefore, by optimizing the proportions of these elements, corrosion of alloy steel due to eutectic salt can be significantly reduced.
本発明の具体的実施例について説明するが、その前に、
まず上記の回収ボイラやゴミ焼却炉における腐食環境が
いかに複雑なものであるかを、実験データを用いて説明
する必要がある。Specific embodiments of the present invention will be explained, but before that,
First, it is necessary to use experimental data to explain how complex the corrosive environments in the recovery boilers and garbage incinerators are.
第1図で、回収ボイラの過熱器管付着物の示差熱分析結
果を示したが、いずれも600°C以下の温度で共融点
が見られる。このような温度域における共融点は、ゴミ
焼却炉における高温腐食(例えば、火力発電第164号
昭和45年5月号)においても見られ、両者の共通点と
して、伝熱管表面の付着物にNaとKの硫酸塩と塩化物
が含まれていることが上げられる。FIG. 1 shows the results of differential thermal analysis of the deposits on the superheater tubes of the recovery boiler, and in all cases, a eutectic point is observed at a temperature of 600°C or less. The eutectic point in such a temperature range is also seen in high-temperature corrosion in garbage incinerators (for example, Thermal Power Generation No. 164, May 1972), and the common feature of both is that Na deposits on the heat transfer tube surface Contains sulfate and chloride of K and K.
第1表は、回収ボイラ付着物の化学分析結果と熱分析結
果を示したものである。Table 1 shows the results of chemical analysis and thermal analysis of the deposits on the recovery boiler.
以下余白
第 1
表
各ボイラとも、付着物は管壁側とガス側にそれぞれ区分
して分析したが、この区分による成分含有量で、最も差
の大きいものは0℃であり、共通して管壁側に多いこと
がわかる。Margins below Table 1 For each boiler, deposits were analyzed by dividing them into the tube wall side and the gas side, but the largest difference in component content between these divisions was at 0°C; It can be seen that there are many on the wall side.
なお、管壁側とガス側の区分は、第13図に示す通りで
あり、管壁側にCi分が多いのは、火炉内でNa CP
、は萬気状態になっているものが、伝熱管の表面で冷却
され液体となり、さらに固体となる選択的付着が生して
いるためである。The division between the tube wall side and the gas side is as shown in Fig. 13, and the reason why there is a large amount of Ci on the tube wall side is due to Na CP in the furnace.
, is due to the selective adhesion of what is in an airy state to being cooled on the surface of the heat exchanger tube, becoming a liquid, and then becoming a solid.
表中には、各試料の共融点も示しであるが、これに関し
ては、付着物の区分による差は見られなく、各ボイラ間
において、その差が大きいことを示している。The table also shows the eutectic point of each sample, and there is no difference in this depending on the classification of deposits, indicating that there is a large difference between the boilers.
次に、これらの付着物が鋼材に対してどの程度の腐食を
生じさせるか試験した結果について説明する。Next, the results of a test to determine the degree of corrosion caused by these deposits on steel materials will be explained.
第2図は、試験片に5TBA24S (長さ10mmX
幅IGmmX厚さ2闇)を用い、この表面に腐食媒体と
して第1表に示した各種付着物を塗布したものを、55
0°Cに保持した電気炉で20h加熱した後、腐食生成
物を除去し、各試料の腐食量を求めた結果を示す。Figure 2 shows that the test piece is 5TBA24S (length 10mm
55 mm (width IG mm x thickness 2 mm), and the various deposits shown in Table 1 were applied as a corrosive medium to this surface.
After heating for 20 hours in an electric furnace maintained at 0°C, corrosion products were removed, and the results of determining the amount of corrosion of each sample are shown.
各種付着物による5TBA24材の腐食量を比較すると
、ボイラAとC4こ比べ、ボイラBの腐食があまり進行
していないことがわかる。これはボイラBの付着物は試
験温度の550°Cより高い590°C台に共融点があ
るためであり、この腐食が熔融塩による腐食であること
を端的に示している。Comparing the amount of corrosion of the 5TBA24 material due to various deposits, it can be seen that the corrosion of boiler B has not progressed much compared to boilers A and C4. This is because the deposits on boiler B have a eutectic point in the 590°C range, which is higher than the test temperature of 550°C, which clearly shows that this corrosion is due to molten salt.
さらに腐食が進行しているボイラAとCの付着物を腐食
媒体にした場合でも、管壁側付着物による方が、より腐
食量が大きいことが注目される。これは、先の第1表で
示したように、管壁側の付着物にはCI!、量が多く含
まれていたことに深く関係している。Furthermore, even when the deposits on the boilers A and C, where corrosion has progressed, are used as the corrosive medium, it is noted that the amount of corrosion caused by the deposits on the tube wall side is larger. As shown in Table 1 above, this means that there is no CI! , is deeply related to the fact that it was contained in large amounts.
これら付着物による腐食は溶融塩による腐食であるとす
れば、付着物中に含まれる溶融塩の絶対量がガス側と管
壁側で違う筈である。このことを証明するためにボイラ
Aの付着物の熱分析を行った結果を第3図に示す。図か
ら明らかなように、520°C付近の溶融を示す吸熱ピ
ークは管壁側の付着物の方が大きく、鋼材に対する腐食
性の差を顕著に表している。このような差もまた、Ci
すなわち塩化物の含有量が大きく関与していることは疑
いのないことである。If the corrosion caused by these deposits is due to molten salt, then the absolute amount of molten salt contained in the deposits should be different between the gas side and the tube wall side. In order to prove this, the results of a thermal analysis of the deposits in boiler A are shown in FIG. As is clear from the figure, the endothermic peak indicating melting at around 520°C is larger for the deposits on the pipe wall side, which clearly shows the difference in corrosiveness with respect to steel materials. Such a difference also makes Ci
In other words, there is no doubt that the chloride content plays a large role.
以上のように、付着物の組成によって、鋼材に対する腐
食性が大きく変化することがわかったが、このことは、
回収ボイラやゴミ焼却炉の高温腐食に対する耐食材の選
定を著しく困難なものにしていた。As mentioned above, it was found that the corrosiveness of steel materials changes greatly depending on the composition of the deposits.
This has made it extremely difficult to select materials that are resistant to high-temperature corrosion for recovery boilers and garbage incinerators.
従って、従来は上記のような複雑な腐食環境を十分に認
識せずに、材料評価を実施してきたため、適切な材料選
定がなされなく、目的の高温蒸気が得られない、という
技術的な欠陥を抱えていた。Therefore, in the past, material evaluations have been conducted without fully recognizing the complex corrosive environment described above, resulting in technical flaws such as not being able to select appropriate materials and not being able to obtain the desired high-temperature steam. I was holding it.
そこで発明者らは、以下に説明する実験例により、新し
い事実の発見とそれに基づく材料選定法により、実用に
耐えうる新材料を見出すに至った。Accordingly, the inventors have discovered a new material that can be put to practical use by discovering new facts and selecting a material based on the findings through the experimental examples described below.
実験例1
第4図は、各種合成ダストを用いた鋼材の腐食試験結果
を示したものである。これは、実際のボイラにおける伝
熱管付着物が、先に説明したように、著しく均一性に欠
けるため、耐食材の評価のための腐食媒体となりえない
ことから、再現性の高い台底ダストを採用したものであ
る。媒体の合成にあたっては、試薬のNaz SO4、
K、SO、、NaCj2およびKCIを用いた。調製法
は共融点が540°C(管壁温度)以下の温度となるよ
う各試薬の混合割合を変化させた混合物を作り、それぞ
れを−旦溶融させた後、冷却、粉砕し、台底ダストとし
た。第2表に腐食試験に使用した7種類の台底ダストの
組成割合と共溶点を示す。Experimental Example 1 FIG. 4 shows the results of corrosion tests on steel materials using various synthetic dusts. This is because the deposits on heat transfer tubes in actual boilers are extremely inconsistent, as explained earlier, and cannot be used as a corrosive medium for corrosion resistance evaluation. This is what was adopted. In the synthesis of the medium, the reagent Naz SO4,
K, SO, , NaCj2 and KCI were used. The preparation method is to make a mixture by changing the mixing ratio of each reagent so that the eutectic point is below 540°C (tube wall temperature), melt each reagent, cool it, crush it, and collect the bottom dust. And so. Table 2 shows the composition ratios and co-solubilization points of the seven types of bottom dust used in the corrosion test.
0
第 2
表
これらの合成ダストを使用し、5TBA24(2−1/
4Cr)イ、5US347 (18C’r8Ni)口
、5US310 (25Cr−2ONi ) ハ、お
よび30Cr−5ONi鋼二の4鋼種について、それぞ
れの腐食量を調べた。550°C20hの試験結果を第
4図に示すが、この結果を鋼種別に見てみると、5TB
A2’4材イの腐食量はSUS系の材料に比べて多く、
特に合成ダストCとDにおいて顕著である。SUS材ロ
バと30Cr−5ONi鋼二では、後者の方が耐食性に
優れているが、合成ダスl−Bにおいて異常に腐食間が
多くなっている。このような傾向は5US347材口で
も合成ダストBで見られる。これらの結果は、腐食媒体
すなわちダスト組成の設定ならびに選択次第で、耐食材
の選定に誤りが生しることを物語っている。0 Table 2 Using these synthetic dusts, 5TBA24 (2-1/
The amount of corrosion was investigated for four steel types: 4Cr) A, 5US347 (18C'r8Ni), 5US310 (25Cr-2ONi) C, and 30Cr-5ONi steel II. The test results at 550°C for 20 hours are shown in Figure 4. Looking at the results by steel type, 5TB
The amount of corrosion of A2'4 material is greater than that of SUS material.
This is particularly noticeable in synthetic dusts C and D. Between the SUS material and the 30Cr-5ONi steel 2, the latter has better corrosion resistance, but the synthetic steel 1-B has an abnormally large number of corrosion gaps. Such a tendency is also seen in synthetic dust B for 5US347 material. These results demonstrate that errors can occur in the selection of corrosion-resistant materials depending on the setting and selection of the corrosive medium, that is, the dust composition.
実験例2
上記のように、耐食材の選定にあたっては、腐食媒体と
しての合成ダストの組成が重要である。Experimental Example 2 As mentioned above, the composition of synthetic dust as a corrosive medium is important in selecting a corrosion resistant material.
このため、第3表に示した各合成ダストの組成を見てみ
ると、まず、SUS材に対して強い腐食性を示した合成
ダス)Bは、塩化物の量が硫酸塩より多いことが特徴で
あり、他の合成ダストは、逆に硫酸塩が多くなっている
。これらから判断して、SUS系の材料評価には、大き
く2種類の合成ダストを腐食媒体として採用すべきであ
ることがわかる。この観点から、腐食媒体として第2表
に示した合成ダストから、硫酸塩のもつとも多い合成1
2
ダストAと上記の塩化物を多く含む合成ダス)Bの二つ
を選び、市販の各種SUS材ならびに合金鋼の耐食性試
験を実施した。Therefore, when we look at the composition of each synthetic dust shown in Table 3, we find that synthetic dust (B), which was highly corrosive to SUS materials, has a higher amount of chloride than sulfate. However, other synthetic dusts have a high content of sulfates. Judging from these results, it can be seen that roughly two types of synthetic dust should be employed as corrosive media in the evaluation of SUS-based materials. From this point of view, from the synthetic dusts shown in Table 2 as corrosive media, we selected synthetic 12 dust A, which contains a lot of sulfates, and synthetic dust B, which contains a lot of chlorides, and used various commercially available SUS materials. We also carried out corrosion resistance tests on alloy steel.
第5図は、合成ダスl−Aを用いた場合の腐食試験結果
である。FIG. 5 shows the results of a corrosion test using synthetic dust 1-A.
供試鋼材の腐食量を鋼材中のCr量との関係で示しであ
るが、硫酸塩を多く含む合成ダスI−Aでは、Cr含有
量を多く含むほど耐食性がよくなる傾向を示している。The amount of corrosion of the test steel material is shown in relation to the amount of Cr in the steel material. Synthetic steel I-A containing a large amount of sulfate shows a tendency that the higher the Cr content, the better the corrosion resistance.
これに対して、第6図は合成ダストBを用いた場合の腐
食試験である。第5図と同様に、供試鋼材の腐食量を鋼
材中のCr量との関係で示しであるが、この場合は、鋼
材中のCr量が約30%以上になると、逆に腐食量が急
激に増加する現象が現れている。このことは、ダスト中
に塩化物が多いため、鋼材中のCr成分が腐食されるこ
とを示している。次にこれらの結果を鋼材中のNi量で
整理し直したのが第7図および第8図である。On the other hand, FIG. 6 shows a corrosion test using synthetic dust B. Similarly to Figure 5, the amount of corrosion in the steel material is shown in relation to the amount of Cr in the steel material, but in this case, when the amount of Cr in the steel material is about 30% or more, the amount of corrosion increases. A rapidly increasing phenomenon is emerging. This indicates that since there are many chlorides in the dust, the Cr component in the steel material is corroded. Next, these results are rearranged according to the amount of Ni in the steel material, as shown in FIGS. 7 and 8.
第7図は、合成ダス)Aの場合で、鋼材中をのNi量が
増すに従い、腐食は減少の傾向を示すが、Ni量が30
%以上含んでいても必ずしも耐食性がよいとはいえない
。同様なことは第8図の合成ダスl−Bにおいても見ら
れ、この場合は、Ni量が30%以上における腐食の増
加傾向が先の合成ダストAよりも顕著に現れている。こ
れはダスト中の塩化物が多いためと考えられる。このよ
うに、NaとKの硫酸塩および塩化物の共融塩による腐
食の場合、耐食性の点から鋼材中のCrとNi量をそれ
ぞれ25%前後の含有量に限定できることを示している
。Figure 7 shows the case of composite steel (A). As the amount of Ni in the steel material increases, corrosion tends to decrease, but when the amount of Ni is 30
% or more, it cannot necessarily be said that the corrosion resistance is good. The same thing can be seen in the synthetic dust I-B shown in FIG. 8, and in this case, the tendency for corrosion to increase when the Ni content is 30% or more is more pronounced than in the synthetic dust A. This is thought to be due to the large amount of chloride in the dust. This shows that in the case of corrosion caused by eutectic salts of Na and K sulfates and chlorides, the amounts of Cr and Ni in the steel material can be limited to around 25% each from the viewpoint of corrosion resistance.
しかし、この系のように激しい腐食環境下では、上記2
成分だけで耐食性が維持されるわ&Jではなく、特に第
3の合金成分が重要な役割を果たすことになる。第7図
および第8図で、図中に示した黒丸のデータは、Crと
Niに次く成分として、Moを1%以上含む鋼種である
。白丸で示したMOを含まないものより、耐食性に優れ
た鋼種が多いことがわかる。However, in a severely corrosive environment like this system, the above
Corrosion resistance is not maintained by the ingredients alone, but the third alloy ingredient in particular plays an important role. In FIGS. 7 and 8, the data indicated by black circles are steel types that contain 1% or more of Mo as a component next to Cr and Ni. It can be seen that there are many steel types that have better corrosion resistance than those that do not contain MO, which are indicated by white circles.
Mo添加の効果は、硫酸塩の多い合成ダスト穴ならびに
塩化物の多い合成ダストBの両者に有効3
4
であることば、第7図および第8図に示した結果で明ら
かである。The effect of Mo addition is effective for both the sulfate-rich synthetic dust holes and the chloride-rich synthetic dust B34, which is clear from the results shown in FIGS. 7 and 8.
実験例3
以上の実験例で明らかなように、NaとKの硫酸塩およ
び塩化物の共融塩による腐食環境においては、鋼材中の
CrとNi量を25%前後に制限できること、さらに、
第3戒分としてMOの添加が有効であることが判明した
。そこで、これらの結果に基づき、上記3成分を主体に
した新しい合金鋼を調製し、その耐食性を評価した。Experimental Example 3 As is clear from the above experimental examples, in a corrosive environment due to eutectic salts of Na and K sulfates and chlorides, it is possible to limit the amount of Cr and Ni in the steel material to around 25%.
The addition of MO was found to be effective as the third precept. Therefore, based on these results, a new alloy steel mainly composed of the above three components was prepared and its corrosion resistance was evaluated.
第9図は、NiとCrの各種組合せに対して、第3戊分
としてのMoの添加量を任意に変化させた合金鋼を、合
成ダストBを用いて腐食試験した結果である。FIG. 9 shows the results of a corrosion test using synthetic dust B on alloy steels in which the amount of Mo added as the third component was arbitrarily changed for various combinations of Ni and Cr.
Moの効果を確認するため、12NilSCr系から3
4Ni2SCr系まで幅広く材料を調製したが、耐食性
の評価では、各鋼種ともMoを2%以」二含む材料がい
ずれも優れていることがわかる。先の実験例2で、市販
の材料を評価した結果では、NiとCrはそれぞれ25
%前後が好ましいものと予想されたが、むしろ第3戒分
であるMOの含有量が、NaとKの硫酸塩ならびに塩化
物の共融塩による腐食環境において、重要な役割を占め
ることが明らかである。In order to confirm the effect of Mo, 3 from 12NilSCr system
A wide range of materials were prepared, including 4Ni2SCr, and in the evaluation of corrosion resistance, it was found that materials containing 2% or more of Mo were superior for each steel type. In the previous Experimental Example 2, the results of evaluating commercially available materials showed that Ni and Cr were each 25
% was expected to be preferable, but it is clear that the content of MO, which is the third commandment, plays an important role in a corrosive environment with eutectic salts of Na and K sulfates and chlorides. It is.
特に、第8図にある1 2Ni 18Cr2.2M。In particular, 12Ni18Cr2.2M shown in FIG.
鋼は、5US316材に近いものであるが、この5US
316材は、かっては、Na、SO,とバナジウム化合
物が混在する重油焚きボイラの過熱器管材として注目さ
れたが、実際に使用した場合、合金元素としてのMoが
耐食性を阻害することになり、現在ではほとんど使用さ
れていないものである。The steel is similar to 5US316 material, but this 5US
316 material once attracted attention as a superheater tube material for heavy oil-fired boilers containing a mixture of Na, SO, and vanadium compounds, but when it was actually used, Mo as an alloying element impeded corrosion resistance. It is hardly used now.
また、Ni量を30%以上にした35N+25Cr系の
場合では、耐食性を維持するためにはMO量を4.9%
以上必要であることがわかる。In addition, in the case of 35N + 25Cr system with Ni content of 30% or more, the MO content must be 4.9% to maintain corrosion resistance.
It turns out that the above is necessary.
実験例4
合金鋼中のNi量を増加させ、より耐食性を高めようと
すると、さらに多くのMOを添加する必要があることを
、市販の高Ni基合金鋼を用いて確認したのが、第10
図に示す腐食試験結果であ5
6
る。Experimental Example 4 Using a commercially available high Ni-based alloy steel, we confirmed that in order to increase the amount of Ni in alloy steel to further improve its corrosion resistance, it was necessary to add even more MO. 10
The corrosion test results are shown in the figure.
ハステロイC、ハステロイHおよびインコネル625と
も耐食性は、相当改善されているものの、Moを8%以
上添加し、Niが約60%と非常に高価な材料となって
いる。Although the corrosion resistance of Hastelloy C, Hastelloy H, and Inconel 625 has been considerably improved, they are very expensive materials, with 8% or more of Mo added and about 60% of Ni.
実験例5
次に、従来回収ボイラの過熱器管として使用されている
ものと、本発明による材料とを長時間の腐食試験による
耐食性を比較した結果を第11図に示す。Experimental Example 5 Next, FIG. 11 shows the results of a long-term corrosion test comparing the corrosion resistance of a material conventionally used as a superheater tube for a recovery boiler and a material according to the present invention.
図中のAは5US347材で、Bは13Ni2SCr1
Mo系の材料である。これらは国内のボイラで実績のあ
るもので、特に後者は高温での塩化水素などに対して優
れた耐食性を示すことで知られている。Cはカナダの回
収ボイラで採用されている、インコロイ800の相当材
の34N、i2aCr1Mo材であり、MOが付加され
ている。A in the figure is 5US347 material, B is 13Ni2SCr1
It is a Mo-based material. These have a proven track record in boilers in Japan, and the latter in particular is known for its excellent corrosion resistance against hydrogen chloride and the like at high temperatures. C is a 34N, i2aCr1Mo material, which is equivalent to Incoloy 800 and is used in Canadian recovery boilers, to which MO is added.
比較材としてのA、BおよびCに対して、本発明による
材料は、Dが12Ni 18Cr2.2Mo材、Eが2
0 N i 20 Cr 2.5 M o材ならびにF
が25 N + 25 Cr 2. Z M o材であ
る。以上の各材料を比較すると、従来のものが経時的に
腐食量が増大していくのに対し、Moを2%以上添加し
た材料は、Dを除き経時的な腐食量の増加は極めて軽微
であり、優れた耐食性を示すことがわかる。In contrast to the comparative materials A, B and C, the material according to the invention has D as 12Ni 18Cr2.2Mo material and E as 2
0 N i 20 Cr 2.5 Mo material and F
is 25 N + 25 Cr 2. It is ZMo material. Comparing each of the above materials, the amount of corrosion increases over time for the conventional materials, whereas the increase in the amount of corrosion over time for the materials containing 2% or more of Mo is extremely slight, except for D. It can be seen that it shows excellent corrosion resistance.
また第9図で示したように、Niが30%以上になると
Moの添加量を増加させる必要があり、耐食性ならびに
経済性の点から、NaとKの硫酸塩ならびに塩化物の共
融塩による腐食環境における耐食合金鋼として、Ni1
2%以上30%以下、Cr18%以上30%以下、およ
びMo2%以上含むものが好ましく、加えて高温環境下
で使用する伝熱管としての加工性、溶接性およびしん性
等を確保するための合金成分の添加は、当然ながら拒む
ものではない。Furthermore, as shown in Figure 9, when the Ni content exceeds 30%, it is necessary to increase the amount of Mo added, and from the viewpoint of corrosion resistance and economy, it is necessary to use eutectic salts of Na and K sulfates and chlorides. As a corrosion-resistant alloy steel in a corrosive environment, Ni1
An alloy containing 2% or more and 30% or less, Cr 18% or more and 30% or less, and Mo 2% or more is preferable, and in addition, it is an alloy to ensure workability, weldability, toughness, etc. as a heat exchanger tube used in a high-temperature environment. Naturally, the addition of ingredients is not prohibited.
実験例6
先に示した第11図の実施例では、従来材に比べて、M
oを2%以上含むNi−Cr合金鋼の耐食性が、長時間
の評価でも優れていることが明らかになっている。これ
は後者の方が強固な耐食性7
8
被膜が形成されていることを示している。従って、第1
0図で示した高Ni基合金鋼の場合も強固な耐食性被膜
が形成されるものと考えてよい。このことから、強固な
耐食性被膜が形成される材料を、上記合金鋼の表面に加
工することにより、耐食性が改善されることが予想され
る。第12図は、各種合金鋼の表面に、第10図に示し
たNi含有量58%以上の高Ni基合金鋼相当材の溶射
(約300μm)を施し、腐食性の強い合成ダストBを
腐食媒体として、これらの耐食性を100hの長時間で
評価したものである。Experimental Example 6 In the example shown in Fig. 11 shown earlier, M
It has been revealed that the corrosion resistance of Ni-Cr alloy steel containing 2% or more of o is excellent even in long-term evaluations. This indicates that a stronger corrosion-resistant 7 8 film was formed in the latter case. Therefore, the first
It can be considered that a strong corrosion-resistant coating is also formed in the case of the high Ni-base alloy steel shown in Figure 0. From this, it is expected that corrosion resistance will be improved by processing the surface of the alloy steel with a material that forms a strong corrosion-resistant coating. Figure 12 shows that a material equivalent to high Ni-based alloy steel with a Ni content of 58% or more shown in Figure 10 is thermally sprayed (approximately 300 μm) onto the surface of various alloy steels to remove highly corrosive synthetic dust B. The corrosion resistance of these media was evaluated over a long period of 100 hours.
図中の破線で示したAは第11図のAと同し5US34
7材の腐食量(第11図のA)を示したものである。同
じく破線Bは、5US347材を基材にインコネル62
5 (60,3N i −22,I Cr 8.5
7Mo)相当材を溶射したものである。A indicated by a broken line in the figure is the same as A in Figure 11. 5US34
The amount of corrosion of 7 materials (A in Figure 11) is shown. Similarly, broken line B is Inconel 62 with 5US347 material as the base material.
5 (60,3N i -22, I Cr 8.5
7Mo) equivalent material was thermally sprayed.
短時間での腐食量はインコネル625と匹敵する耐食性
を示しているが、100hでの腐食量は増加の傾向を示
している。これに対して、Cは12Ni−18Cr−2
,2Mo合金鋼の腐食カーフ(第11図のD)で、Dは
前記Cの材料にハステロイC(58,2N i −16
,I Cr −16,6M o )相当材を溶射し、E
は同様にインコネル625相当材の溶射を施したもので
ある。これらを比較すると、優れた耐食性被膜を形成す
るNi含有量58%以上の高Ni合金鋼相当材を溶射し
ても、その基材が5US347程度の耐食性では長時間
の使用には耐えられず、少なくとも、実施例で明らかな
ように、12Ni−18Cr−2,2Mo合金鋼以上の
耐食性を有する基材を用いなくてはその効果を期待する
ことはできない。The amount of corrosion in a short time shows corrosion resistance comparable to Inconel 625, but the amount of corrosion in 100 hours shows an increasing tendency. On the other hand, C is 12Ni-18Cr-2
, 2Mo alloy steel (D in Figure 11), D is the material of C with Hastelloy C (58,2N i -16
, I Cr -16,6M o ) equivalent material was thermally sprayed, and E
Similarly, a material equivalent to Inconel 625 was thermally sprayed. Comparing these, even if a material equivalent to high Ni alloy steel with a Ni content of 58% or more is thermally sprayed to form an excellent corrosion-resistant coating, if the base material has a corrosion resistance of about 5US347, it will not be able to withstand long-term use. At least, as is clear from the examples, the effect cannot be expected unless a base material having corrosion resistance higher than 12Ni-18Cr-2,2Mo alloy steel is used.
なお、本発明に関連する公知例として、回収ボイラにお
けるオーステナイトステンレス鋼の高温腐食挙動につい
ての発表がある(第32同席食防食討論会予稿fiP3
62)。この例では、各種の合成ダストを用いて材料の
腐食性を比較した結果、特にMoは、0.5%以上添加
することにより著しく効果が認められた。しかし、1%
を越えると効果は小さく、2%までは減少傾向にあると
している。As a known example related to the present invention, there is a presentation on the high-temperature corrosion behavior of austenitic stainless steel in a recovery boiler (Preliminary of the 32nd Corrosion Prevention Symposium fiP3).
62). In this example, as a result of comparing the corrosive properties of materials using various synthetic dusts, it was found that the addition of Mo in an amount of 0.5% or more was particularly effective. However, 1%
The effect is small above 2%, and tends to decrease below 2%.
9
0
これに対して、本発明では、Moは2%以上添加しない
と効果がなく、上記とは基本的に異なる。90 On the other hand, in the present invention, there is no effect unless Mo is added in an amount of 2% or more, which is fundamentally different from the above.
これはボイラの実態、すなわち腐食環境としての過熱器
管の付着物の組成は常に変化することを考慮した評価方
法を採用したかどうかの差であろう。This may be due to whether or not an evaluation method was adopted that takes into account the actual state of boilers, that is, the constantly changing composition of deposits on superheater tubes as a corrosive environment.
さらに、今回の腐食環境として、伝熱管付着物の組成を
NaとKの硫酸塩ならびに塩化物に限定しているが、実
際には炭酸塩も含まれることになる。しかし、鋼材に対
する腐食性は硫酸塩と塩化物の方が激しく、このため材
料の評価選定を誤らせるものではない。Furthermore, in this corrosive environment, the composition of heat transfer tube deposits is limited to Na and K sulfates and chlorides, but in reality carbonates are also included. However, sulfates and chlorides are more corrosive to steel materials, and this should not lead to incorrect evaluation and selection of materials.
一方、付着物とは別にボイラ炉内の雰囲気ガスの影響も
本来無視できない。特に、HCnやSOXは付着物に大
量に含まれている硫酸塩と塩化物による高温腐食を加速
させることはよく知られている。しかし、この場合も、
腐食量に若干の増加が見られる程度で、材料選定には大
きく影響しない。On the other hand, in addition to deposits, the influence of atmospheric gas within the boiler furnace cannot be ignored. In particular, it is well known that HCn and SOX accelerate high-temperature corrosion due to sulfates and chlorides contained in large amounts in deposits. However, in this case too,
There is only a slight increase in the amount of corrosion, and it does not significantly affect material selection.
本発明によれば、アルカリ金属の硫酸塩と塩化物に基づ
く共融塩による高温腐食環境下において、従来技術で達
成しえなかった500°Cの蒸気を安定に供給できるボ
イラ伝熱管の提供が可能となり、その効果は、蒸気温度
の上昇によるタービン効率の向上に繋がり、これにより
、電力面での経済性確保が確実なものとなる。According to the present invention, it is possible to provide a boiler heat exchanger tube that can stably supply steam at 500°C, which could not be achieved with conventional technology, in a high-temperature corrosive environment caused by eutectic salts based on alkali metal sulfates and chlorides. The effect is that the turbine efficiency is improved by increasing the steam temperature, thereby ensuring economic efficiency in terms of electric power.
また、伝熱管材料も、NiとCrの量をそれぞれ30%
以下にできるため、材料費の著しい上昇はなく、蒸気温
度の上昇によるメリットにより、少なくとも1年以内で
材料費の回収は可能である。In addition, the amount of Ni and Cr in the heat exchanger tube material is 30% each.
Since the following can be achieved, there is no significant increase in material costs, and the material costs can be recovered within at least one year due to the benefits of increasing the steam temperature.
第1図は回収ボイラ過熱器管付着物の熱分析例を示す図
、第2図は各種付着物による低合金鋼の腐食試験側図、
第3図はガス側と管側の付着物についての熱分析図、第
4図は各種の合成ダストによる鋼材の腐食試験例を示す
図、第5図は合成ダスト穴による腐食試験結果を鋼材中
のCr量で整理した図、第6図は第5図と同様に合成ダ
ス)Bによる腐食試験結果を示す図、第7図と第8図は
第5図と第6図の試験結果を鋼材中のNi量でそ1
2
れぞれ整理した図、第9図はMo量を種々変化させた新
合金鋼の合成ダスl−Bによる腐食試験結果を示す図、
第10図は市販の高Ni−Cr合金鋼の耐食性比較図、
第11図は従来材と新合金鋼との長時間での耐食性比較
試験結果を示す図、第12図は各種合金鋼の表面に高N
i基合金を溶射したものの腐食試験結果を示す図、第1
3図は回収ボイラ過熱器管のダスト付着状況を示す図で
ある。Figure 1 is a diagram showing an example of thermal analysis of recovery boiler superheater tube deposits, Figure 2 is a side view of a corrosion test of low alloy steel due to various deposits,
Figure 3 is a thermal analysis diagram of deposits on the gas side and pipe side, Figure 4 is a diagram showing examples of corrosion tests on steel materials using various types of synthetic dust, and Figure 5 is the results of corrosion tests using synthetic dust holes in steel materials. Figure 6 is a diagram showing the corrosion test results using synthetic dust B, similar to Figure 5, and Figures 7 and 8 are the results of the tests in Figures 5 and 6 for steel materials. Fig. 9 is a diagram showing the results of corrosion tests using synthetic dust I-B of new alloy steels with various amounts of Mo,
Figure 10 is a comparison diagram of corrosion resistance of commercially available high Ni-Cr alloy steel.
Figure 11 shows the results of a long-term corrosion resistance comparison test between conventional materials and new alloy steel, and Figure 12 shows the high N content on the surface of various alloy steels.
Figure 1 showing the results of corrosion tests for materials sprayed with i-based alloys.
FIG. 3 is a diagram showing the state of dust adhesion on the recovery boiler superheater tube.
Claims (2)
融塩による高温腐食環境下で用いられNiおよびCrを
含有する耐高温腐食伝熱管において、Niを12〜30
wt%、Crを18〜30wt%、Moを2wt%以上
を含み、残部が実質的にFeよりなることを特徴とする
耐高温腐食伝熱管。(1) In high-temperature corrosion-resistant heat exchanger tubes containing Ni and Cr that are used in high-temperature corrosive environments due to eutectic salts based on alkali metal sulfates and chlorides, Ni is 12 to 30%
18 to 30 wt% of Cr, 2 wt% or more of Mo, and the remainder substantially consists of Fe.
その伝熱管表面にNi含有量58重量%以上からなる高
Ni基合金を被覆してなることを特徴とする耐高温腐食
伝熱管。(2) In the high temperature corrosion resistant heat exchanger tube according to claim (1),
A high-temperature corrosion-resistant heat exchanger tube characterized in that the surface of the heat exchanger tube is coated with a high Ni-based alloy having a Ni content of 58% by weight or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20007189A JPH0364432A (en) | 1989-08-01 | 1989-08-01 | High temperature corrosion-resistant heat transfer tube and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20007189A JPH0364432A (en) | 1989-08-01 | 1989-08-01 | High temperature corrosion-resistant heat transfer tube and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0364432A true JPH0364432A (en) | 1991-03-19 |
Family
ID=16418364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20007189A Pending JPH0364432A (en) | 1989-08-01 | 1989-08-01 | High temperature corrosion-resistant heat transfer tube and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0364432A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6400353B1 (en) | 1997-09-18 | 2002-06-04 | Tsuken Electric Industrial Co., Ltd. | Pointing device |
-
1989
- 1989-08-01 JP JP20007189A patent/JPH0364432A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6400353B1 (en) | 1997-09-18 | 2002-06-04 | Tsuken Electric Industrial Co., Ltd. | Pointing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arivarasu et al. | Hot-corrosion resistance of dissimilar AISI 4340 and AISI 304L weldments in the molten salt environment at 600 C | |
JP2008545889A5 (en) | ||
Seong et al. | High-temperature corrosion of recuperators used in steel mills | |
Elliott | Choose materials for high-temperature environments | |
EP0760018A1 (en) | AUSTENITIC Ni-BASED ALLOY WITH HIGH CORROSION RESISTANCE, GOOD WORKABILITY AND STRUCTURE STABILITY | |
JPH0364432A (en) | High temperature corrosion-resistant heat transfer tube and its manufacture | |
US5620805A (en) | Alloy and multilayer steel tube having corrosion resistance in fuel combustion environment containing V, Na, S and Cl | |
JPH0517841A (en) | Alloy having corrosion resistance in combustion environment in which v, na, s and cl are present and multiple layered steel tube | |
JPH09279293A (en) | Steel excellent in exhaust gas corrosion resistance | |
Khantisopon et al. | High-temperature corrosion investigations of deposit containing eutectic KCl-K2SO4 mixture on AISI 1015 and SS304 steels | |
JPH05117816A (en) | Alloy steel having corrosion resistance at high temperature and superheater tube | |
Cha | High temperature corrosion of superheater materials below deposited biomass ashes in biomass combusting atmospheres | |
JPH046247A (en) | Steel for waste incineration furnace boiler | |
Daniel et al. | Furnace-wall corrosion in refuse-fired boilers | |
Pint et al. | Alloy selection for high temperature heat exchangers | |
Alves | Material selection and recent case histories with nickel alloys | |
Elliott | A practical guide to high-temperature alloys | |
Otsuka et al. | A corrosion mechanism for the fireside wastage of superheater materials in waste incinerators | |
Grubb et al. | A 6% Mo stainless steel for flue gas desulfurization | |
JPH0559497A (en) | High temperature corrosion resistance material for waste incineration furnace | |
Shamanna et al. | Fireside corrosion of selected alloys by ash recovered from coal-water slurry combustion | |
Agarwal | Corrosion control with Ni-Cr-Mo alloys | |
Singh | Oxidation and corrosion behavior of 904l super austenitic stainless steel in biomass ash environment | |
Koch et al. | Materials testing in synthetic FGD environments. Final report | |
JP2004184045A (en) | Heat exchanger |