JPH0364222B2 - - Google Patents

Info

Publication number
JPH0364222B2
JPH0364222B2 JP63075190A JP7519088A JPH0364222B2 JP H0364222 B2 JPH0364222 B2 JP H0364222B2 JP 63075190 A JP63075190 A JP 63075190A JP 7519088 A JP7519088 A JP 7519088A JP H0364222 B2 JPH0364222 B2 JP H0364222B2
Authority
JP
Japan
Prior art keywords
joined
materials
pressure
energization
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63075190A
Other languages
Japanese (ja)
Other versions
JPH01249278A (en
Inventor
Kazuya Kuryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP7519088A priority Critical patent/JPH01249278A/en
Priority to EP89902550A priority patent/EP0389625A1/en
Priority to PCT/JP1989/000172 priority patent/WO1989007999A1/en
Publication of JPH01249278A publication Critical patent/JPH01249278A/en
Priority to KR1019890701979A priority patent/KR900700230A/en
Publication of JPH0364222B2 publication Critical patent/JPH0364222B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は抵抗発熱を利用した抵抗拡散接合法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a resistance diffusion bonding method that utilizes resistance heating.

(従来の技術) 従来のこの種の技術は第3図に示す様に対向す
る電極101a,101bの間に被接合材102
a,102bの間に低溶融点金属103例えば
Si、B等を含有するろー材等を挟入して配設し、
加圧装置104で電極101a,101bを加圧
することにより被接合材を加圧した状態で電源1
05より電極101a,101bに通電し抵抗熱
で低融点金属103を溶融させ低融点金属103
が含有するSi、B等の拡散成分を拡散させて接合
するものであり、この加圧力と加熱する電流の時
間的変化を示すと第4図の如くで、低融点金属1
03の溶融する前の状態の時も溶融が終わつて拡
散成分を拡散させる時も一定である。
(Prior art) As shown in FIG. 3, this type of conventional technology uses a bonded material 102 between opposing electrodes 101a and 101b.
For example, a low melting point metal 103 is placed between a and 102b.
A filter medium containing Si, B, etc. is inserted and arranged,
While the material to be welded is pressurized by pressurizing the electrodes 101a and 101b with the pressurizing device 104, the power source 1 is turned on.
Electricity is applied to the electrodes 101a and 101b from 05 to melt the low melting point metal 103 with resistance heat.
The bonding process is performed by diffusing diffusion components such as Si and B contained in the metal, and the temporal changes in the pressing force and heating current are shown in Figure 4.
It is constant both in the state before melting as shown in 03 and when the diffusing components are diffused after melting.

(発明が解決しようとする課題) 上記の様な従来技術のものは加熱電流も加圧力
も大きいため変形が大きくなる問題がある。
(Problems to be Solved by the Invention) The prior art as described above has a problem of large deformation because the heating current and pressing force are large.

(課題を解決するための手段及び作用) 互いに平行な平面又は曲面からなる接合面を有
する被接合材の接合面間に低溶融金属を挟入し、
接合面で低溶融金属を加圧した状態で被接合材に
通電し、通電により生ずる抵抗発熱で低溶融金属
を溶融して被接合材同士を接合する抵抗拡散接合
法において、1次圧力で加圧して1次通電を通電
して、被接合材の変位を計測し、該計測値に基い
て前記1次圧力より小さい2次圧力で加圧し前記
1次通電より小さい2次通電をすることを特徴と
した抵抗拡散接合法とした。
(Means and effects for solving the problem) A low-melting metal is inserted between the joining surfaces of materials to be joined, which have joining surfaces consisting of planes or curved surfaces parallel to each other,
In the resistance diffusion welding method, which applies electricity to the materials to be joined while pressurizing the low-melting metal at the joint surface, the resistance heat generated by the current application melts the low-melting metal and joins the materials. Pressure is applied and primary energization is applied, the displacement of the material to be welded is measured, and based on the measured value, pressure is applied with a secondary pressure smaller than the primary pressure and secondary energization is applied smaller than the primary energization. The characteristic resistance diffusion bonding method was adopted.

(実施例) 本発明の一実施例を第1図から第2図に基いて
説明する。
(Example) An example of the present invention will be described based on FIGS. 1 and 2.

第1図は本発明を実施する抵抗溶接装置を示す
ブロツク図である。第1図において、対向する電
極1a,1bの間に被接合材2a,2bを対向し
て配置する。被接合材2a,2bの接合面は対向
して配置した場合互いに平行(接触した時〓間が
生じないことである)であれば平面でも曲面でも
いずれの形状の面でも良い。被接合面2aと被接
合面2bのそれぞれ接合面の間にNi形アモルフ
アスろー材3が挟入してある。電極1aの上部に
例えば油圧式加圧装置を配置し、更に電極1a,
1bに電流を流す電源5、電流の位相を制御する
電流制御装置6、制御装置9の信号を増幅する増
幅器7,8が配置されている。11は変位計であ
り、電極1aに取り付けられた基準板10の変位
を測定して制御装置9に信号を送るものである。
FIG. 1 is a block diagram showing a resistance welding apparatus for implementing the present invention. In FIG. 1, materials to be joined 2a and 2b are placed facing each other between opposing electrodes 1a and 1b. The joining surfaces of the materials to be joined 2a and 2b may be of any shape, such as flat or curved surfaces, as long as they are parallel to each other (no gap occurs when they come into contact) when they are placed facing each other. A Ni-type amorphous flow material 3 is inserted between the joint surfaces 2a and 2b, respectively. For example, a hydraulic pressure device is placed above the electrode 1a, and the electrodes 1a,
A power supply 5 for passing current through 1b, a current control device 6 for controlling the phase of the current, and amplifiers 7 and 8 for amplifying signals from the control device 9 are arranged. A displacement meter 11 measures the displacement of the reference plate 10 attached to the electrode 1a and sends a signal to the control device 9.

次に動作を説明する。 Next, the operation will be explained.

制御装置9に設定してある1次圧力設定信号に
より加圧装置4は電極1aを1次圧力で加圧して
被接合材2a,2bのそれぞれの接合面の間に挟
入してあるNi系アモルフアスろー材3を加圧す
る。次に制御装置9に設定してある1次通電信号
により電源5から1次通電が電極1a,1b更に
被接合材2a,2bを介してNi系アモルフアス
ろー材3に通電され抵抗発熱によりNi系アモル
フアスろー材3は溶融し、被接合材2a,2bの
接合面の間から排出され始め、このため電極1a
の変位が大きくなりこれに伴つて基準板10の変
位も大きくなる。変位計11は基準板10の変位
を測定して信号を制御装置9に発進し、制御装置
9は変位が大きくなる変極点を感知して設定して
ある2次圧力信号を増幅器8に、また2次通電設
定信号を増幅器7にそれぞれ発信する。増幅器8
は2次圧力設定信号を増幅して設定した2次加圧
力で加圧装置4を作動させる。増幅器7は2次通
電設定信号を増幅して電流制御装置6に発信し、
電流制御装置6は設定したサイクルと電流量即ち
2次通電を電源5に指令し、電源5より電極1
a,1b及び被接合材2a,2bを介して2次通
電がろ−材3に通電される。2次圧力は1次圧力
より小さく設定し、2次通電は接合境界面の温度
がろ−材3の溶融点よりやや高い温度を保つ程度
で良いので1次通電より小さい電流である。第2
図は第1図に示す抵抗溶接装置を用いて直径12
mm、長さ100mmで材質S43Cの丸棒を抵抗拡散接合
を実施している場合の各工程毎の加圧力、電流、
変位、接合境界面の温度を示す図である。
In response to the primary pressure setting signal set in the control device 9, the pressurizing device 4 presses the electrode 1a with the primary pressure to release the Ni-based material sandwiched between the bonding surfaces of the materials 2a and 2b. The amorphous flow medium 3 is pressurized. Next, in response to the primary energization signal set in the control device 9, primary energization is applied from the power supply 5 to the Ni-based amorphous brazing material 3 via the electrodes 1a, 1b and the materials to be joined 2a, 2b, and the Ni is heated by resistance. The amorphous flow medium 3 melts and begins to be discharged from between the joint surfaces of the materials 2a and 2b, and therefore the electrode 1a
The displacement of the reference plate 10 increases, and the displacement of the reference plate 10 also increases accordingly. The displacement meter 11 measures the displacement of the reference plate 10 and sends a signal to the control device 9, and the control device 9 senses the inflection point where the displacement becomes large and sends a set secondary pressure signal to the amplifier 8. A secondary energization setting signal is transmitted to each amplifier 7. amplifier 8
amplifies the secondary pressure setting signal and operates the pressurizing device 4 with the set secondary pressurizing force. The amplifier 7 amplifies the secondary energization setting signal and sends it to the current control device 6,
The current control device 6 instructs the power supply 5 to perform a set cycle and current amount, that is, secondary energization, and the power supply 5 instructs the electrode 1
Secondary current is applied to the filter material 3 via a, 1b and the welded materials 2a, 2b. The secondary pressure is set to be lower than the primary pressure, and since the secondary energization is sufficient to maintain the temperature of the joint interface at a temperature slightly higher than the melting point of the filter material 3, the current is smaller than that of the primary energization. Second
The figure shows a diameter of 12 mm using the resistance welding equipment shown in Figure 1.
mm, length 100 mm, and resistance diffusion bonding is performed on a round bar made of S43C.
FIG. 3 is a diagram showing displacement and temperature at a bonding boundary surface.

第1工程で丸棒と丸棒との間にNi系アモルフ
アスろー材を挟入してセツテイングし、第2工程
で550Kgで1次加圧し、18500A、17サイクルの1
次通電をする、この間接合面の温度は上昇するた
め丸棒は熱膨張し、上部の電極の位置は僅かに上
昇する。
In the first step, a Ni-based amorphous flow medium is inserted between the round bars and set, and in the second step, the primary pressure is applied at 550 kg, and 18500 A is applied for 17 cycles.
Next, electricity is applied.During this time, the temperature of the joint surface rises, causing thermal expansion of the round bar, and the position of the upper electrode rises slightly.

第3工程の最初でろー材が溶融し始めるので電
極の下方への変位は急に大きくなる。ここで2次
加圧力100Kgで加圧し、5000A、30サイクルの2
次通電をする。1次通電より小さい電流の2次通
電を通電しているため接合境界面の温度はろ−材
の溶融点よりやや高い温度に保持されろ−材は接
合面から排出される。第4工程では第3工程と同
じ圧力で加圧しながら同じ電流を通電するため接
合境界面の温度はろ−材の溶融点よりやや高い温
度に保持され拡散成分は拡散する、その後加圧と
通電を止める。
Since the filter medium begins to melt at the beginning of the third step, the downward displacement of the electrode suddenly increases. Here, pressurize with a secondary pressure of 100Kg, 5000A, 30 cycles 2
Next, turn on the power. Since the secondary current is applied with a smaller current than the primary current, the temperature of the joint boundary surface is maintained at a temperature slightly higher than the melting point of the filter material, and the filter material is discharged from the joint surface. In the fourth step, the same current is applied while applying the same pressure as in the third step, so the temperature at the joint interface is maintained at a temperature slightly higher than the melting point of the filter material, and the diffusing components are diffused. stop.

なお、第3工程で2次通電を止めてしまつた場
合の接合境界面の温度を測定すると第2図の2次
通電なしの場合は点線で示す様になり、ろー材の
融点より低い温度となり、ろー材3が排出され
ず、拡散も行われないない。
In addition, when measuring the temperature of the joint interface when the secondary energization is stopped in the third step, it is as shown by the dotted line in Figure 2 without the secondary energization, and the temperature is lower than the melting point of the filter medium. Therefore, the filter medium 3 is not discharged and no diffusion occurs.

以上の様な条件で抵抗拡散接合を行つた結果変
形量は0.5mmとなり従来の方法の1/7の変形量とな
り、接合部の強度は従来の方法と同等の強度が得
られた。
As a result of performing resistance diffusion bonding under the above conditions, the amount of deformation was 0.5 mm, which was 1/7 of that of the conventional method, and the strength of the bonded portion was equivalent to that of the conventional method.

以上述べた実施例ではろー材にNi系アモルフ
アスを使用したがBNi−2を使用しても同等の結
果が得られた。
In the examples described above, Ni-based amorphous amorphous was used as the filter medium, but similar results were obtained using BNi-2.

(発明の効果) 以上説明した様に、この発明によれば接合部の
ろ−材は排出されるためろ−材と被接合材との合
金層は非常に薄くなるので接合部の強度は被接合
材に近いものとなり、また変形量の非常に少ない
抵抗拡散接合を行うことができる。
(Effects of the Invention) As explained above, according to the present invention, since the filter material at the joint is discharged, the alloy layer between the filter material and the material to be joined becomes very thin, so the strength of the joint is reduced. It is similar to a bonding material, and resistance diffusion bonding with very little deformation can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する抵抗溶接装置のブロ
ツク図、第2図は工程毎の加圧力、電流、変位、
接合境界面の温度を示す図、第3図は従来技術を
示す図、第4図は加圧力と電流の変化を示す図で
ある。 1a,1b……電極、2a,2b……被接合
材、9……制御装置、11……変位計。
Fig. 1 is a block diagram of a resistance welding device that implements the present invention, and Fig. 2 shows the pressure, current, displacement, and
FIG. 3 is a diagram showing the prior art, and FIG. 4 is a diagram showing changes in pressing force and current. 1a, 1b...electrode, 2a, 2b...material to be joined, 9...control device, 11...displacement meter.

Claims (1)

【特許請求の範囲】[Claims] 1 互いに平行な平面又は曲面からなる接合面を
有する被接合材の接合面間に低溶融金属を挟入
し、接合面で低溶融金属を加圧した状態で被接合
材に通電し、通電により生ずる抵抗発熱で低溶融
金属を溶融して被接合材同士を接合する抵抗拡散
接合法において、1次圧力で加圧して1次通電を
通電して、被接合材の変位を計測し、該計測値に
基いて前記1次圧力より小さい2次圧力で加圧し
前記1次通電より小さい2次通電をすることを特
徴とした抵抗拡散接合法。
1. A low-melting metal is inserted between the joining surfaces of materials to be joined that have joining surfaces consisting of planes or curved surfaces parallel to each other, and electricity is applied to the materials to be joined while the low-melting metal is pressurized at the joining surface. In the resistance diffusion bonding method, in which materials to be joined are joined by melting a low-melting metal using the generated resistance heat generation, the displacement of the materials to be joined is measured by applying primary pressure and applying primary current. A resistance diffusion bonding method characterized in that the pressure is applied at a secondary pressure lower than the primary pressure based on the value, and the secondary energization is applied lower than the primary energization.
JP7519088A 1988-02-29 1988-03-29 Resistance diffusion joining method Granted JPH01249278A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7519088A JPH01249278A (en) 1988-03-29 1988-03-29 Resistance diffusion joining method
EP89902550A EP0389625A1 (en) 1988-02-29 1989-02-21 Process for resistance diffusion junction
PCT/JP1989/000172 WO1989007999A1 (en) 1988-02-29 1989-02-21 Process for resistance diffusion junction
KR1019890701979A KR900700230A (en) 1988-02-29 1989-10-26 Resistance diffusion bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7519088A JPH01249278A (en) 1988-03-29 1988-03-29 Resistance diffusion joining method

Publications (2)

Publication Number Publication Date
JPH01249278A JPH01249278A (en) 1989-10-04
JPH0364222B2 true JPH0364222B2 (en) 1991-10-04

Family

ID=13569029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7519088A Granted JPH01249278A (en) 1988-02-29 1988-03-29 Resistance diffusion joining method

Country Status (1)

Country Link
JP (1) JPH01249278A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689647B2 (en) * 1989-10-09 1997-12-10 三菱自動車工業株式会社 Welding method
KR960040537A (en) * 1995-05-15 1996-12-17 윤종용 Electric resistance welder
JP5625597B2 (en) * 2010-08-04 2014-11-19 Jfeスチール株式会社 Indirect spot welding method
DE102012212202A1 (en) * 2011-12-20 2013-06-20 Siemens Aktiengesellschaft Method for connecting workpieces and connecting device
JP2014217854A (en) * 2013-05-07 2014-11-20 株式会社電元社製作所 Resistance welding device and projection welding method
JP2020143711A (en) * 2019-03-05 2020-09-10 日立オートモティブシステムズ株式会社 Method for manufacturing damper
CN116275448B (en) * 2023-05-15 2023-09-08 杭州沈氏节能科技股份有限公司 Diffusion welding method based on displacement control and welded product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156574A (en) * 1983-02-25 1984-09-05 Hitachi Ltd Resistance joining method of inside part of member
JPS61135476A (en) * 1984-12-05 1986-06-23 Mitsubishi Electric Corp Reflow soldering device
JPS61289964A (en) * 1985-06-18 1986-12-19 Fuji Electric Co Ltd Brazing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156574A (en) * 1983-02-25 1984-09-05 Hitachi Ltd Resistance joining method of inside part of member
JPS61135476A (en) * 1984-12-05 1986-06-23 Mitsubishi Electric Corp Reflow soldering device
JPS61289964A (en) * 1985-06-18 1986-12-19 Fuji Electric Co Ltd Brazing method

Also Published As

Publication number Publication date
JPH01249278A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
US4529115A (en) Thermally assisted ultrasonic welding apparatus and process
JPH0364222B2 (en)
JP2002283060A (en) Pulsed electrical welding method for amorphous alloy material and welding member
JPH08109359A (en) Method for bonding metallic plate
JP7531028B1 (en) Joining device and method for joining dissimilar materials
JPH03148425A (en) Heater device for heat sealing
JPH03216282A (en) Distortionless combined joining method
JP2833198B2 (en) Cast iron joining method
JPS6171188A (en) Resistance welding method of laminated palte
JP2861314B2 (en) Resistance welding method using amorphous foil
JPS5852473B2 (en) Welding method for steel materials, etc.
JPH0361540B2 (en)
JPS6072686A (en) Welding method of chain ring
JPH0615464A (en) Diffusion brazing method
KR101077995B1 (en) Ultrasonic Welding Method
JPH067958A (en) Welding method for aluminum alloy material and different material
JPS59202189A (en) Joining method of iron and copper by resistance heating
JPS5945087A (en) Eutectic press welding method
JPH05146B2 (en)
JPS5985386A (en) Welding method by feedback device for spot welding
JPH0139334B2 (en)
JPH0364231B2 (en)
JPS6380966A (en) Soldering device
JPS6046885A (en) Press welding method of galvanized steel sheet by resistance heating
JPS62273840A (en) Manufacture of honeycomb structure