JPH036420B2 - - Google Patents

Info

Publication number
JPH036420B2
JPH036420B2 JP10582684A JP10582684A JPH036420B2 JP H036420 B2 JPH036420 B2 JP H036420B2 JP 10582684 A JP10582684 A JP 10582684A JP 10582684 A JP10582684 A JP 10582684A JP H036420 B2 JPH036420 B2 JP H036420B2
Authority
JP
Japan
Prior art keywords
radiator
infrared
less
heat
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10582684A
Other languages
Japanese (ja)
Other versions
JPS60251323A (en
Inventor
Masao Maki
Akio Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10582684A priority Critical patent/JPS60251323A/en
Publication of JPS60251323A publication Critical patent/JPS60251323A/en
Publication of JPH036420B2 publication Critical patent/JPH036420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/24Radiant bodies or panels for radiation heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱輻射加熱源として、主として、調
理分野に適用するための赤外線輻射体に関するも
のである。また、暖房などにも利用可能である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an infrared radiator for application as a thermal radiant heating source, primarily in the field of cooking. It can also be used for heating purposes.

従来例の構成とその問題点 一般にグリルなどの輻射加熱調理器では、要求
させる性質は下記の点である。
Conventional configurations and their problems In general, radiant heating cookers such as grills require the following properties.

(1) 食品の内部まで早く熱が通り、早く仕上るこ
と。
(1) Heat can reach the inside of the food quickly and it can be finished quickly.

(2) 食品の表面がほどよくこげること。(2) The surface of the food should be moderately burnt.

がポイントである。is the point.

電気、ガスを熱源として、金属などの基体を加
熱して、輻射体とする場合、その輻射率が小さい
ため、その表面に被覆を形成して、輻射特性を改
善する方法が用いられる。
When heating a substrate such as metal using electricity or gas as a heat source to form a radiator, its emissivity is low, so a method is used to form a coating on its surface to improve its radiation characteristics.

その際に、熱(即ち赤外線)輻射体として、ど
のような波長特性のものが、前記の火通りと焦げ
の観点から望ましいかという点については、不明
な点が多い。これは、食品の赤外線に対する、反
射・透過・吸収特性がよく分つていないためであ
る。
At that time, there are many unknown points as to what kind of wavelength characteristics the heat (ie, infrared rays) radiator should have from the viewpoint of the above-mentioned cooking and charring. This is because the reflection, transmission, and absorption characteristics of foods for infrared rays are not well understood.

近年、遠赤外線の輻射熱源としての利用が言わ
れ始めている。たとえば、波長が5〜6μm以下
では、放射率が40%以下で、8μm以上では70%
以上と大きい遠赤外線放射体などが、熱効率が良
く、被加熱物の色によるむらがなく、物体の内部
まで均一に加熱しうることなどの特徴があること
が主張されている。ほとんどの有機物質は前記の
遠赤外線領域に吸収帯を持つている。光と物質と
の相互作用に関して、吸収係数と、光の浸透する
平均的深さ(即ち、光子の平均自由行路)との関
係は反比例することが知られている。即ち吸収係
数が大きければ、光の浸透深さは浅くなる。可視
光でも、吸収係数の小さな透明物質の場合、光は
よく浸透到達し、吸収係数の大きな不透明物質と
なると浸透深さが浅くなることは、誰もが知つて
いる。先に挙げた遠赤外線の特徴のうち、同じ被
加熱物を対象とした場合、良く吸収し熱効率が良
いことと、物体の内部まで均一に加熱しうる(即
ち、内部まで早く熱が浸透する)こととは、相反
することである。即ち、遠赤外線領域に強い吸収
帯をもつている有機物質については、光が良く吸
収されることと、中まで良く入ることとは、矛盾
していることである。
In recent years, use of far-infrared rays as a radiant heat source has begun to be talked about. For example, at wavelengths of 5 to 6 μm or less, the emissivity is 40% or less, and at wavelengths of 8 μm or more, it is 70%.
It is claimed that far-infrared radiators and the like that are larger than the above have characteristics such as high thermal efficiency, no unevenness depending on the color of the heated object, and the ability to uniformly heat the inside of the object. Most organic substances have an absorption band in the far-infrared region. Regarding the interaction between light and matter, it is known that the relationship between the absorption coefficient and the average depth of light penetration (ie, the mean free path of photons) is inversely proportional. That is, the larger the absorption coefficient, the shallower the light penetration depth. Even with visible light, we all know that light penetrates well into a transparent material with a small absorption coefficient, and that the penetration depth becomes shallow in an opaque material with a large absorption coefficient. Among the characteristics of far infrared rays mentioned above, when the object to be heated is the same, it absorbs well and has good thermal efficiency, and it can heat the object evenly to the inside (that is, the heat penetrates quickly to the inside). That is the opposite. That is, for organic substances that have a strong absorption band in the far-infrared region, there is a contradiction between being able to absorb light well and allowing light to penetrate well into the material.

したがつて、前記遠赤外線輻射体を調理分野に
適用すると、遠赤外線によつて、表面近傍は良く
加熱されるが、余り中には火は通らないことにな
る。これでは、表面が焦げるばかりで、早く調理
することは難しい。そのためには、食品の赤外線
に対する吸収・透過特性を良く評価する必要があ
る。そこで、我々は、食品の主成分である水の吸
収係数を評価した結果、3μm以下で吸収係数が
小さくなること、また、10μm以上でも吸収係数
がやや小さいことをうまく利用する考えに到つ
た。
Therefore, when the far-infrared radiator is applied to the cooking field, the far-infrared rays will heat the area near the surface well, but the fire will not penetrate much inside. This will only burn the surface and make it difficult to cook quickly. To this end, it is necessary to carefully evaluate the infrared absorption and transmission characteristics of foods. Therefore, as a result of evaluating the absorption coefficient of water, which is the main component of food, we came up with the idea of making good use of the fact that the absorption coefficient is small at 3 μm or less, and that the absorption coefficient is somewhat small even at 10 μm or more.

そのために、赤外線輻射の波長選択性をうまく
コントロールすることが大切である。この様な考
え方は従来にない。
Therefore, it is important to skillfully control the wavelength selectivity of infrared radiation. This kind of thinking has never existed before.

このための条件として、 (1) 800℃〜950℃の温度に耐え、耐熱性が優れて
いること。
The conditions for this are: (1) It must withstand temperatures between 800℃ and 950℃ and has excellent heat resistance.

(2) 加熱時の即熱性に優れていること。(2) Excellent instant heating properties.

(3) 金属などより成る基体と、その上に形成の放
射材との密着が高く、特に冷熱サイクル下の使
用において、剥離や割れ等を生じないこと。
(3) The base made of metal or the like and the radiation material formed thereon must have high adhesion, and no peeling or cracking will occur, especially when used under cold and hot cycles.

(4) 機械的な衝撃に強いこと。(4) Must be resistant to mechanical shock.

(5) 製造が容易で安価なこと。(5) It is easy and inexpensive to manufacture.

一方、従来の赤外線放射体には、赤外線ランプ
発熱線をセラミツク放射物質に埋込んだいわゆる
埋込ヒータ、および金属から成る熱放射体表面に
セラミツク放射物質を溶射法によりコーテイング
した溶射ヒータなどがある。
On the other hand, conventional infrared radiators include so-called embedded heaters in which an infrared lamp heat-generating line is embedded in a ceramic radiant material, and thermal spray heaters in which the surface of a metal heat radiator is coated with a ceramic radiant material using a thermal spraying method. .

しかし、赤外線ランプは、加熱時の即熱性には
優れているが、5μm以上の長波長の赤外線、即
ち遠赤外線が放射されないため効率が悪いばかり
でなく、機械的衝撃に弱く、寿命が短い欠点があ
つた。
However, although infrared lamps are excellent in heating quickly, they are not only inefficient because they do not emit infrared rays with long wavelengths of 5 μm or more, that is, far infrared rays, but they are also susceptible to mechanical shock and have a short lifespan. It was hot.

また埋込ヒータは、500℃以上の温度で使用す
ると放射層にクラツクが発生する他に、速熱性が
劣り機械的衝撃に対して弱くかつ、製造法が複雑
で高価になる欠点があつた。
In addition, embedded heaters suffer from cracks in the emissive layer when used at temperatures above 500°C, and also have disadvantages such as poor heating speed, vulnerability to mechanical shock, and complicated and expensive manufacturing methods.

溶射ヒータは、金属の基板とセラミツク放射材
料との密着は単に機械的結合のため、前処理法や
溶射条件を厳密に管理しないと、セラミツク層が
剥離したり、クラツクを生じたり、冷熱サイクル
に劣るという欠点に加えて、コストが高い難点が
あつた。
In thermal spray heaters, the close contact between the metal substrate and the ceramic radiant material is simply a mechanical bond, so if the pretreatment method and thermal spray conditions are not strictly controlled, the ceramic layer may peel off, cracks may occur, or thermal cycles may In addition to the disadvantage of being inferior, there was also the disadvantage of high cost.

発明の目的 本発明は、以上の従来の欠点を除去するために
なされたもので、800〜950℃において、食品のス
ピード加熱に最適の波長特性の赤外線を放射し、
冷熱使用に対しても剥離やクラツクがなく、機械
的衝撃に強く、さらに安価で生産性に優れた赤外
線放射体を提供するものである。
Purpose of the Invention The present invention has been made to eliminate the above-mentioned drawbacks of the conventional technology.
The object of the present invention is to provide an infrared radiator that does not peel or crack even when used in cold or hot conditions, is resistant to mechanical shock, is inexpensive, and has excellent productivity.

発明の構成 この目的を達成するために、本発明は、ポリボ
ロシロキサン樹脂の硬化体に対して、重量比に
て、15%以下のCo・Al酸化物および30%以下の
TiO2、および100%以上のZrO2もしくはZrSiO4
を主成分とする化合物を含む硬化体を形成するこ
とにより、赤外線放射率がほぼ3μm以下では80
%以上、3〜6μm付近で50%以下で、8μm以上
では80%以上となる輻射特性を有する赤外線放射
体が得られる。
Structure of the Invention In order to achieve this object, the present invention provides a cured product of polyborosiloxane resin containing 15% or less of Co/Al oxide and 30% or less of Co/Al oxide by weight.
TiO 2 and more than 100% ZrO 2 or ZrSiO 4
By forming a cured product containing a compound whose main component is
% or more, 50% or less in the vicinity of 3 to 6 μm, and 80% or more in the vicinity of 8 μm or more.

実施例の説明 第1図に、本発明の放射体の断面の概念図を示
す。金属などからなる基体1の上に、放射体被膜
2が形成されている。放射体2はバインダーとし
てのポリボロシロキサン樹脂の硬化体3と、少な
くとも3種類の放射材料4,5,6から成る。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows a conceptual diagram of a cross section of a radiator of the present invention. A radiator coating 2 is formed on a base 1 made of metal or the like. The radiator 2 consists of a cured body 3 of polyborosiloxane resin as a binder and at least three types of radiant materials 4, 5, and 6.

ガス燃焼器に組込む場合には、セラミツクから
成るハニカム構造の表面燃燃焼バーナ(いわゆる
「シユバンク」式バーナ)に直接放射体を塗布し
て形成しても良いし、金網、ラス網、パンチング
メタルの表面に放射体を塗布したものを別に設け
られたバーナにより加熱する方法を用いても良
い。
When incorporated into a gas combustor, a surface combustion burner with a honeycomb structure made of ceramic (so-called "shubank" type burner) may be directly coated with a radiator, or it may be formed using wire mesh, lath mesh, or punched metal. A method may also be used in which a radiator is coated on the surface and heated using a separately provided burner.

第2図に、電気ヒータの系に適用した実施例を
示す。第2図において、鉄、アルミあるいはステ
ンレスなどのパイプの基体1の中に、両端に電極
ターミナル3を有する線状発熱体4を押通し、
MgOなどの耐熱性充填剤5を充填し、両端を気
密材6でシールした構造を有するヒータにおい
て、基体1の表面に、本発明の放射体層2を形成
している。
FIG. 2 shows an embodiment applied to an electric heater system. In FIG. 2, a linear heating element 4 having electrode terminals 3 at both ends is pushed into a base 1 of a pipe made of iron, aluminum or stainless steel,
In a heater having a structure in which a heat-resistant filler 5 such as MgO is filled and both ends are sealed with an airtight material 6, a radiator layer 2 of the present invention is formed on the surface of a base 1.

第1図、第2図の放射体2は、ポリボロシロキ
サン樹脂の硬化体を結合剤として用い、赤外線放
射体が3μm以下では80%以上、3〜6μm付近で
50%以下で、8μm以上では80%となる輻射特性
を有する。
The radiator 2 in Figs. 1 and 2 uses a cured polyborosiloxane resin as a binder, and the infrared radiator is 80% or more when the diameter is 3 μm or less, and 80% or more when the diameter is around 3 to 6 μm.
It has a radiation characteristic of 50% or less and 80% for 8 μm or more.

ポリボロシロキサン樹脂は、例えば のような構造のポリマーを主成分とするものであ
る。このバインダーは、“セミ無機ポリマー”と
しての特性を有し、室温状態では、有機高分子と
同様の性状で、塗料化などの操作性の面で優れて
いる。加熱すると、その有機物は分解して、Si、
B、Oを骨格としてセラミツク化する。完全なセ
ラミツク化は600℃にて行なわれる。
Polyborosiloxane resins are, for example, The main component is a polymer with a structure like this. This binder has properties as a "semi-inorganic polymer" and has properties similar to organic polymers at room temperature, and is excellent in terms of operability such as when used as a paint. When heated, the organic matter decomposes into Si,
Ceramic is formed using B and O as the skeleton. Complete ceramicization takes place at 600°C.

放射層の膜厚は、5〜30μmと薄いため放射層
の熱抵抗が小さく、速熱性に優れている。
Since the thickness of the emissive layer is as thin as 5 to 30 μm, the emissive layer has low thermal resistance and is excellent in rapid heating properties.

ポリボロシロキサン樹脂をベースとして有機塗
料と同様の通常の塗装法により被覆を形成するた
め、基体表面の前処理は、通常の脱脂のみでよく
複雑な前処理を必要としない。またスプレー法な
どの方法にて容易に被覆形成できるため、生産性
に優れている。
Since the coating is formed using a polyborosiloxane resin as a base and is applied using a conventional coating method similar to that used for organic paints, pretreatment of the substrate surface requires only conventional degreasing and no complicated pretreatment is required. Moreover, since the coating can be easily formed by a method such as a spray method, productivity is excellent.

放射層は、5〜30μmと薄膜であるにも拘ら
ず、赤外線放射率が、ほぼ3μm以下では80%以
上、3〜6μmでは50%以下、8μm以上では80%
以上となる輻射特性を示す。
Although the emissive layer is a thin film with a thickness of 5 to 30 μm, its infrared emissivity is approximately 80% or more at 3 μm or less, 50% or less at 3 to 6 μm, and 80% at 8 μm or more.
The above radiation characteristics are shown.

このような輻射特性にする理由は、食品に対す
る赤外線の光学的特性の配慮に基づく。食品は、
でん粉、炭水化物、蛋白質、脂肪などから構成さ
れ複雑であるが、相当量の水分を含み、その赤外
線に対する光学的性質は類似している。
The reason for such radiation characteristics is based on consideration of the optical characteristics of infrared rays for foods. The food is
Although it is complex, consisting of starch, carbohydrates, proteins, and fats, it contains a considerable amount of water, and its optical properties against infrared rays are similar.

可視光に対しては、食品の色による独自の反射
特性を有する。1μm〜3μmまでの近赤外線に対
しては、短波長側の反射があるものの、優れた透
過性を示す。即ち、この波長の光は、食品の内部
で、良く浸透する。3μm〜6μmの光は、良く食
品に吸収される。但し、この光はエネルギーが強
いため、やや表面が焦げ過ぎる。6μm〜10μmの
光を同様によく食品に吸収されるが、3μm〜6μ
mと比較するとエネルギーが弱いため、ほど良く
焦げる。
When it comes to visible light, foods have unique reflection characteristics depending on their color. Although there is some reflection on the short wavelength side for near-infrared rays of 1 μm to 3 μm, it exhibits excellent transmittance. That is, light of this wavelength penetrates well inside the food. Light of 3 μm to 6 μm is well absorbed by food. However, since this light has a strong energy, it burns the surface a little too much. Light of 6μm to 10μm is similarly well absorbed by food, but light of 3μm to 6μm
Compared to m, the energy is weaker, so it burns just fine.

10μm以上の光は、比較的食品の内部まで浸透
するが、1μm〜3μmの近赤外線ほど浸透力があ
る訳ではない。この様な食品の性質から、ほぼ
3μm以下では80%以上、3〜6μmでは50%以下、
8μm以上では80%以上となる輻射特性の輻射体
を食品の輻射加熱に用いると、内部まで早く熱が
浸透して調理が早くできると共に、表面がほど良
く焦げて良い加熱調理ができる。
Light of 10 μm or more can penetrate relatively deep into food, but it is not as penetrating as near-infrared light of 1 μm to 3 μm. Due to the nature of these foods, almost all
80% or more for 3 μm or less, 50% or less for 3 to 6 μm,
When a radiant with a radiation characteristic of 80% or more is used for radiant heating of foods with a diameter of 8 μm or more, the heat penetrates quickly to the inside, allowing for faster cooking, and the surface is nicely charred, resulting in good cooking.

本発明の放射体は、膜厚が30μmを越えると
850℃から水中投入するヒートシヨツクを受けた
とき、放射層が割れる。
The radiator of the present invention has a film thickness of more than 30 μm.
The radiation layer cracks when subjected to a heat shock placed underwater at a temperature of 850℃.

本発明の放射体の温度は、少なくとも800℃以
上、950℃程度までに設定することが必要である。
The temperature of the radiator of the present invention needs to be set to at least 800°C or higher and up to about 950°C.

放射層の形成は、ボールミル等にて、放射材料
を溶剤とともにポリボロシロキサン樹脂バインダ
ー中に分散させ塗料化の後、スプレーにて基体上
に塗料を塗布後350℃、30分、750℃、30分の焼成
で得られる。
The emissive layer is formed by dispersing the emissive material in a polyborosiloxane resin binder together with a solvent using a ball mill, etc. to form a paint, and then spraying the paint onto the substrate. Obtained by firing for minutes.

放射体は、硬度6Hの硬いセラミツク質の被膜
で、約1000℃までの優れた耐熱性と、非常に優秀
な素地との密着性を有している。特に850degの
厳しい冷熱サイクル下でも良好な密着性をもつて
いる。
The radiator is a hard ceramic coating with a hardness of 6H, which has excellent heat resistance up to approximately 1000℃ and excellent adhesion to the substrate. In particular, it has good adhesion even under severe heating and cooling cycles of 850 degrees.

以下、具体例を示す。 A specific example will be shown below.

ポリボロシロキサン樹脂系バインダーとして、
昭和電線電纜(株)の無機ポリマー「SMP−32」を
用いた。このバインダーは、600℃でセラミツク
化して安定化するが、その間の熱分解により、初
期の2/3の重量が失われ、残渣は1/3となる。
As a polyborosiloxane resin binder,
The inorganic polymer "SMP-32" from Showa Electric Cable Co., Ltd. was used. This binder turns into a ceramic and stabilizes at 600°C, but due to thermal decomposition during that time, 2/3 of its initial weight is lost and the residue is reduced to 1/3.

8μm以上の輻射率を高める目的で、約7μm付
近で吸収係数がふたけた増大する特性を有する
ZrO2、もしくはZrSiO4化合物を用いる。これ等
のジルコニア系化合物の添加により、これ等の化
合物は7μm以下では、透明で、8μm以上では、
不透明な性質を有する。これ等のジルコニア系化
合物を単独で用いる場合には、これ等の化合物の
屈折率が2.2と高いため、15%程度の表面反射が
あり、輻射率は85%が上限となつてしまうのに対
して、ポリボロシロキサン樹脂バインダーに分散
させて用いる場合には、ボロシロキサン樹脂の屈
折率が1.5程度であるため、表面反射は4%程度
となり高輻射体が得られる。8μm以上の波長域
では、輻射性質は、鏡面反射により支配され、表
面反射が輻射特性を関係する。
In order to increase the emissivity above 8μm, it has the characteristic that the absorption coefficient increases significantly near about 7μm.
ZrO 2 or ZrSiO 4 compound is used. By adding these zirconia-based compounds, these compounds become transparent at 7 μm or less, and transparent at 8 μm or more.
It has opaque properties. When these zirconia-based compounds are used alone, the refractive index of these compounds is as high as 2.2, so there is surface reflection of about 15%, and the upper limit of the emissivity is 85%. When used dispersed in a polyborosiloxane resin binder, since the refractive index of the borosiloxane resin is about 1.5, the surface reflection is about 4% and a high-emissivity body can be obtained. In the wavelength range of 8 μm or more, the radiation properties are dominated by specular reflection, and the radiation properties are related to surface reflection.

次に3μm以下の近赤外線域での輻射率を高く
するため、赤外線波長域で比較的透明で、屈折率
が高い材料を添加する。TiO2は、屈折率が2.8と
高く、当条件を満足する。当TiO2の粒径を0.5〜
1μmの範囲とすれば、3μm以下の近赤外域の散
乱が増大する。3μm以下の散乱が増えても、吸
収がなければ、輻射は増えない。近赤外域に吸収
をもつ材料の例として、Co・Al酸化物を用いる。
これ等は、スピネル構造の青色化合物で、1〜
2μmの近赤外線領域に吸収をもつている。これ
等の化合物の粒径は、0.1〜1.5μmの範囲が望ま
しい。これ等の3者の材料の配合比が波長選択の
点から重要である。
Next, in order to increase the emissivity in the near-infrared region of 3 μm or less, a material that is relatively transparent in the infrared wavelength region and has a high refractive index is added. TiO 2 has a high refractive index of 2.8 and satisfies this condition. The particle size of TiO2 is 0.5~
If the range is 1 μm, scattering in the near-infrared region of 3 μm or less will increase. Even if scattering of 3 μm or less increases, radiation will not increase unless there is absorption. Co/Al oxide is used as an example of a material that absorbs in the near-infrared region.
These are blue compounds with a spinel structure, from 1 to
It has absorption in the near-infrared region of 2 μm. The particle size of these compounds is preferably in the range of 0.1 to 1.5 μm. The blending ratio of these three materials is important from the viewpoint of wavelength selection.

Co・Al酸化物は、ポリボロシロキサン樹脂の
硬化体に対して、15wt%以下で用いるのが望ま
しい。
It is desirable to use the Co/Al oxide in an amount of 15 wt% or less based on the cured product of the polyborosiloxane resin.

これ以上となると、3〜6μmの輻射率が増大
する。TiO2は、同様に30wt%以下が望ましい。
これ以上となると、3〜6μmの輻射率が増大す
るに加えて、8μm以上の輻射率が低下するため
である。
If it exceeds this value, the emissivity of 3 to 6 μm increases. Similarly, TiO 2 is preferably 30wt% or less.
This is because if it exceeds this, the emissivity of 3 to 6 μm increases, and the emissivity of 8 μm or more decreases.

ZrO2もしくはZrSiO4を主成分とする化合物は、
同様に100%以上が望ましい。300%を越えると強
度が弱くなる。
Compounds whose main component is ZrO 2 or ZrSiO 4 are
Similarly, 100% or more is desirable. If it exceeds 300%, the strength will become weaker.

SMP−32を100重量部、ZrO2を50重量部、
TiO2を5重量部、CO・Al・Oxを2.5重量部、溶
剤としてトルエンを150重量部にて塗料を調合し、
約15μmの膜厚にて、ステンレス板〔SUS 430〕
上に塗布して、350℃、30分、750℃、30分焼成し
被膜を得た。
100 parts by weight of SMP-32, 50 parts by weight of ZrO 2 ,
A paint was prepared using 5 parts by weight of TiO 2 , 2.5 parts by weight of CO・Al・Ox, and 150 parts by weight of toluene as a solvent.
Stainless steel plate [SUS 430] with a film thickness of approximately 15μm
It was coated on top and baked at 350°C for 30 minutes and then at 750°C for 30 minutes to obtain a film.

当試料の750℃における分光輻射特性を第3図
に示す。第3図において、7は従来のステンレス
板の場合、8は前記の放射体の場合の特性であ
る。
Figure 3 shows the spectral radiation characteristics of this sample at 750°C. In FIG. 3, 7 is the characteristic in the case of a conventional stainless steel plate, and 8 is the characteristic in the case of the above-mentioned radiator.

次に前記塗料を、ステンレスパイプから成るヒ
ータ(100V、600W、長さ480mm、直径12mm)の
表面に15μmの膜厚にて塗布焼成した、当放射体
を用いて、約10cm角、厚さ2cmのマグロの肉片を
5cmの高さから加熱して、SUSの場合と、肉の
加熱状況を比較した。ヒータの直下部分で、熱の
浸透速度は、ステンレスの場合、10分で5mmであ
るのに対して、同じ時間で11mmと倍以上の浸透性
を示し、表面にもほど良い焦げが得られたことか
ら、短時間の調理性に優れていることが実証され
た。
Next, the paint was applied to the surface of a heater made of stainless steel pipe (100V, 600W, length 480mm, diameter 12mm) to a film thickness of 15μm and fired. A piece of tuna meat was heated from a height of 5 cm, and the heating situation of the meat was compared with that of SUS. In the area directly under the heater, the penetration rate of heat was 5 mm in 10 minutes with stainless steel, but the penetration rate was 11 mm in the same time, which was more than double that, and the surface was also well charred. This proves that it has excellent cooking properties in a short time.

発明の効果 以上のように本発明の赤外線放射体によれば、 (1) 独特の赤外線輻射選択性を有し、食品の短時
間加熱性に優れている。
Effects of the Invention As described above, the infrared radiator of the present invention (1) has unique infrared radiation selectivity and is excellent in short-time heating properties of foods.

(2) 5〜30μmと薄膜のため、即熱性に優れ、
1000℃までに耐え得る。
(2) Because it is a thin film with a thickness of 5 to 30 μm, it has excellent quick heating properties.
Can withstand up to 1000℃.

(3) 基体との密着性が高く、特に耐冷熱サイクル
性が優れている。
(3) High adhesion to the substrate, especially excellent cold and heat cycle resistance.

(4) 硬度が6Hと硬く、機械的衝撃に強い。(4) It has a hardness of 6H and is resistant to mechanical shock.

(5) スプレー法にて塗布できるため、生産性に優
れ、複雑な前処理も必要とせず安価である。
(5) Since it can be applied by spraying, it is highly productive, does not require complicated pretreatment, and is inexpensive.

などの効果を有する。It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による放射体の断面
図、第2図は本発明の一実施例によるシーズヒー
タのパイプ表面に放射体を形成させた装置の一部
断面図、第3図は本発明の一実施例の放射体の赤
外線分光輻射特性図である。 2……放射体、3……ポリボロシロキサン樹脂
の硬化体。
FIG. 1 is a cross-sectional view of a radiator according to an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of a device in which a radiator is formed on the pipe surface of a sheathed heater according to an embodiment of the present invention, and FIG. is an infrared spectral radiation characteristic diagram of a radiator according to an embodiment of the present invention. 2... Radiator, 3... Cured body of polyborosiloxane resin.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリボロシラン樹脂の硬化体に対して、重量
比にて、15%以下のCo・Al酸化物および30%以
下のTiO2、および100%以上のZrO2もしくは
ZrSiO4を主成分とする化合物を含む赤外線放射
体。
1 Based on the weight ratio of the cured product of polyborosilane resin, 15% or less of Co/Al oxide, 30% or less of TiO 2 , and 100% or more of ZrO 2 or
An infrared emitter containing a compound whose main component is ZrSiO4 .
JP10582684A 1984-05-25 1984-05-25 Infrared-ray radiant body Granted JPS60251323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10582684A JPS60251323A (en) 1984-05-25 1984-05-25 Infrared-ray radiant body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10582684A JPS60251323A (en) 1984-05-25 1984-05-25 Infrared-ray radiant body

Publications (2)

Publication Number Publication Date
JPS60251323A JPS60251323A (en) 1985-12-12
JPH036420B2 true JPH036420B2 (en) 1991-01-30

Family

ID=14417858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10582684A Granted JPS60251323A (en) 1984-05-25 1984-05-25 Infrared-ray radiant body

Country Status (1)

Country Link
JP (1) JPS60251323A (en)

Also Published As

Publication number Publication date
JPS60251323A (en) 1985-12-12

Similar Documents

Publication Publication Date Title
JP2009070812A (en) Heat emission heating cooker using heat dissipation film
US3363090A (en) Electric heating element
AU2016303117B2 (en) A heatable cavity for a kitchen appliance having a low emissivity coating
US4824730A (en) IR Radiation heating element
JPH036420B2 (en)
JPH1183027A (en) Structure of heating cooker coated film, and oven range having the coated film structure
JPS61179881A (en) Infrared radiator with metallic base material and its production
JPH0351975B2 (en)
JPH0155380B2 (en)
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
JPH0684270B2 (en) Infrared radiation coating
JPH0363192B2 (en)
JPH01300105A (en) Road surface heater
JPS5934233B2 (en) far infrared radiation device
JP3168456B2 (en) How to apply fluororesin to ceramic pots
JPH0248817B2 (en) SEKIGAISENKANETSUCHORIKIKI
JPS6066029A (en) Cooking heater
JPH0337103B2 (en)
JPS60251322A (en) Radiant body
JPS6196688A (en) Infrared ray radiating body
JPS5826794B2 (en) far infrared radiation device
JP2009104973A (en) Infrared radiation coating
JPH01190784A (en) Reversible temperature-indicating pigment and its use
JPS6199290A (en) Radiant body
JPS62150683A (en) High efficiency far-infrared radiator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees