JPH036418A - Inter-vehicle distance detector - Google Patents

Inter-vehicle distance detector

Info

Publication number
JPH036418A
JPH036418A JP14179389A JP14179389A JPH036418A JP H036418 A JPH036418 A JP H036418A JP 14179389 A JP14179389 A JP 14179389A JP 14179389 A JP14179389 A JP 14179389A JP H036418 A JPH036418 A JP H036418A
Authority
JP
Japan
Prior art keywords
vehicle
light
optical system
preceding vehicle
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14179389A
Other languages
Japanese (ja)
Inventor
Hiroko Maekawa
前川 ひろ子
Hiroyoshi Suzuki
鈴木 尋善
Kenji Ogawa
賢二 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14179389A priority Critical patent/JPH036418A/en
Publication of JPH036418A publication Critical patent/JPH036418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To enable detection of an angle of projection of an optical system and a distance and thereby to detect precisely the distance of a preceding vehicle to a driver's own vehicle and the direction thereof by a method wherein the optical system of the driver's own vehicle is so rotated automatically as to follow the direction of advance of the preceding vehicle and a pulse light is projected, reflected by a reflector and sensed. CONSTITUTION:An optical system 4 is rotated so that a pulse light of a specified code projected from a projector 10 is reflected by a reflector 2 of a preceding vehicle and then detected by a light-sensing unit 11. An angle of the optical system 4 at the time when the reflected light from the reflector 2 of the preceding vehicle is detected is detected by a vehicle angle detecting circuit 28 and the direction of the preceding vehicle to a driver's own vehicle is measured therefrom. Next, positions whereat the reflected light from the preceding vehicle are imaged in photoelectric converters 15 and 17 inside a light-sensing optical system 7 at that time are detected by an imaging position calculating circuit 25 and the distance and direction of the preceding vehicle to the driver's own vehicle can be measured therefrom.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、自動車の車間距離検出装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an inter-vehicle distance detection device for an automobile.

〔従来の技術〕[Conventional technology]

従来、投光器と受光器とを一定の基線長隔てて配置し、
投光器からパルス光を被測定物に向けて投光し、反射光
を回転する受光器で検出したときの受光器の角度を検出
することにより、被測定物までの距離を検出する測距装
置は広く知られており、これはカメラの自動焦点距離装
置などに利用されている。
Conventionally, the emitter and receiver were placed apart by a certain baseline length,
A distance measuring device that detects the distance to the object by emitting pulsed light from a projector toward the object and detecting the reflected light by a rotating receiver detects the angle of the receiver. It is widely known and is used in automatic focusing devices for cameras, etc.

第7図に上記装置の原理図を示す。図において、10お
よび11は基線長りを隔てて配置した投光器と受光器、
12は投光器10の前面に設けた投光レンズ、13は受
光器11の前面に設けた受光レンズ、19はこの受光レ
ンズ13と距離りを隅てている被測定物を示す。ここで
、Lはり、―θとして求めることができる。
FIG. 7 shows a diagram of the principle of the above device. In the figure, 10 and 11 are a light projector and a light receiver arranged with a baseline length apart;
Reference numeral 12 indicates a light projecting lens provided on the front surface of the light projector 10, 13 indicates a light receiving lens provided on the front surface of the light receiver 11, and 19 indicates an object to be measured located at a distance from the light receiving lens 13. Here, L can be determined as −θ.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような上記の測距装置では、投光器
10の光軸上に被測定物がなければならず、例えばカメ
ラの場合は行為者自身がカメラを移動させることによっ
て実現可能であるが、車両運転中に運転者がいちいち投
光器1oの光軸上に先行車両がくるよう投光器の位置を
調節することになれば運転者の負担が大きく、安全運行
の妨げになる。しかし投光器10を固定すると、先行車
両がカーブを曲がって進行方向を変化させた場合、従来
装置では車間距離の検出が困難である。
However, in such a distance measuring device, the object to be measured must be on the optical axis of the projector 10. For example, in the case of a camera, this can be realized by moving the camera by the operator himself, but it can be realized by moving the camera himself. If the driver has to adjust the position of the floodlight 1o so that the preceding vehicle is on the optical axis of the floodlight 1o while driving, the burden on the driver will be large and this will impede safe driving. However, when the projector 10 is fixed, it is difficult for the conventional device to detect the inter-vehicle distance when the preceding vehicle turns a curve and changes its traveling direction.

この発明は上記のような課題を解消するためになされた
もので、先行車両の進行方向の変化に関係なく常に先行
車両までの距離および方向を検出することのできる車間
距離検出装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide an inter-vehicle distance detection device that can always detect the distance and direction to the preceding vehicle regardless of changes in the traveling direction of the preceding vehicle. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる車間距離検出装置は、進行方向に向け
て特定のコードをもつパルス光を投射する投光器、この
投光器より投射されたパルス光の先行車両後部のリフレ
クタによる反射光を検出する受光器からなる投光光学系
と、上記反射光を集光する集光レンズと集光した光の結
像面上に配置された光電変換器からなる受光光学系とを
、各々の光軸がほぼ同軸上にあるとみなせるように近接
させかつ、所定基線長隔てて設置した光学系と、この光
学系と自車両の車両軸のなす角度を調整する駆動系とで
構成される車間距離検出装置において、上記駆動系を回
動させる回動手段と、上記受光光学系の光電変換器上の
結像位置を検出する結像位置検出手段と、上記光学系と
自車両の車両軸のなす角度を検出する車両軸角度検出手
段とを備え、上記回動手段により駆動系を所定角度の範
囲内で回動させて上記受光器の出力により光学系の光軸
方向を先行車両のリフレクタに合せ、そのときの上記結
像位置検出手段の出力と車両軸角度検出手段の出力によ
り先行車両までの車間距離と方向を計測するものである
The inter-vehicle distance detection device according to the present invention includes a light projector that projects pulsed light having a specific code in the direction of travel, and a light receiver that detects the reflected light of the pulsed light projected from the projector by a reflector at the rear of the preceding vehicle. A light emitting optical system consisting of a light emitting optical system, a light receiving optical system consisting of a condensing lens that condenses the reflected light, and a photoelectric converter placed on the imaging plane of the condensed light are arranged so that their respective optical axes are approximately coaxial. In the inter-vehicle distance detection device, which is composed of an optical system installed close to each other and separated by a predetermined baseline length so that it can be assumed that the a rotating means for rotating the drive system; an imaging position detecting means for detecting the imaging position on the photoelectric converter of the light receiving optical system; and a vehicle detecting the angle between the optical system and the vehicle axis of the own vehicle. and a shaft angle detection means, the drive system is rotated within a predetermined angle range by the rotation means, and the optical axis direction of the optical system is aligned with the reflector of the preceding vehicle by the output of the light receiver, and the above-mentioned at that time The inter-vehicle distance and direction to the preceding vehicle are measured based on the output of the imaging position detection means and the output of the vehicle axis angle detection means.

〔作 用〕[For production]

この発明による車間距離検出装置は、投光器から投射さ
れた特定のコードを持つパルス光が先行車両のリフレク
タに反射したのち受光器に検出されるよう、駆動系に電
気信号を送り、上記回動手段により光学系を回転させる
。先行車両のリフレクタによる反射光が検出された時の
光学系の角度を車両軸角度検出手段により検出して先行
車両の自車両に対する方向を計測し、その時の先行車両
による反射光が受光光学系内の光電変換器上に結像した
位置を結像位置検出手段により検出して先行車両の自車
両間に対する距離を計測する。
The inter-vehicle distance detection device according to the present invention sends an electric signal to the drive system so that the pulsed light having a specific code projected from the light projector is reflected by the reflector of the preceding vehicle and then detected by the light receiver, and the rotating means The optical system is rotated by The angle of the optical system when the reflected light from the reflector of the preceding vehicle is detected is detected by the vehicle axis angle detection means to measure the direction of the preceding vehicle with respect to the own vehicle, and the reflected light from the preceding vehicle at that time is detected within the light receiving optical system. The position of the image formed on the photoelectric converter is detected by the image position detection means, and the distance between the preceding vehicle and the own vehicle is measured.

従って、この発明による自動車用車間距離検出装置では
、従来の測距装置において行為者が実施していた光学系
の光軸と被測定物を合わせる調整動作を自動的に行う為
、先行車両の進行方向が変化しても、その変化に追随し
て装置が回動し、常に先行車両の自車両に対する距離と
方向を計測できる。
Therefore, in the automobile inter-vehicle distance detecting device according to the present invention, since the adjustment operation to align the optical axis of the optical system and the object to be measured, which was performed by the operator in the conventional distance measuring device, is automatically performed, the progress of the preceding vehicle is Even if the direction changes, the device rotates to follow the change and can always measure the distance and direction of the preceding vehicle relative to the own vehicle.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図はこの発明による車間距離検出装置の構成口を示し、
図において、1は先行車両、2a。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the configuration of the inter-vehicle distance detection device according to the present invention,
In the figure, 1 is the preceding vehicle, and 2a.

2bは先行車両1の後部に備えであるリフレクタである
。3は自車両で、4はこの自車両3の前部中心Oに備え
られた光学系、5はこの光学系4を回動駆動する駆動系
である。8はCPU、9は車間距離表示装置で、インス
ッルメントパネル付近に設けである。
2b is a reflector provided at the rear of the preceding vehicle 1. Reference numeral 3 designates the host vehicle, 4 an optical system provided at the front center O of the host vehicle 3, and 5 a drive system for rotationally driving the optical system 4. 8 is a CPU, and 9 is a vehicle distance display device, which is installed near the instrument panel.

上記のように構成した車間距離検出装置は、光学系4か
ら先行車両1のリフレクタ2a及び2bに向けて特定の
パルスコードを持つパルス信号が発光され、その反射光
を受光した時の光学系4と先行車両1のリフレクタ2a
及び2bを結ぶ線PO,QOと、車体幅を表す線A A
’の垂線2との角度θa、θbを計測し、かつ上記の線
PO,QOの距離La、Lbを計測することによって、
先行車両1の後面中心Rと自車両3の前面中心Oを結ぶ
線ROと垂線lのなず角を先行車両の自車両に対する方
向を示す車両軸角度θ、線ROの距離りを先行車両と自
車両間の車間距離として求めるようにしている。
In the inter-vehicle distance detection device configured as described above, a pulse signal having a specific pulse code is emitted from the optical system 4 toward the reflectors 2a and 2b of the preceding vehicle 1, and the optical system 4 receives the reflected light. and the reflector 2a of the preceding vehicle 1
Lines PO and QO connecting 2b and 2b, and a line A representing the vehicle body width
' By measuring the angles θa and θb with the perpendicular 2 and the distances La and Lb between the lines PO and QO,
The angle between the line RO and the perpendicular l that connects the rear center R of the preceding vehicle 1 and the front center O of the own vehicle 3 is the vehicle axis angle θ indicating the direction of the preceding vehicle with respect to the own vehicle, and the distance between the line RO and the preceding vehicle is It is calculated as the inter-vehicle distance between the own vehicles.

第2図は、第1図に示した実施例の装置の光学系4とそ
の周辺部の構成図である。光学系4は、特定のパルスコ
ードを持つパルス信号を発光するLED14と投光レン
ズ12を備えた投光器10と、反射光の光量を検出する
光電変換素子15と受光レンズ13を備えた受光器11
からなる投光光学系6と、所定距離り隔てて配置された
集光レンズ16の焦点面上に集光された反射光の結像位
置を検出する光電変換素子17を備えた受光光学系7と
で構成される。駆動系5は、光学系4を回動作させるD
Cモータ31と、DCモータ31の位置を検出するポテ
ンショメータ32とで構成される。
FIG. 2 is a configuration diagram of the optical system 4 and its peripheral parts of the apparatus of the embodiment shown in FIG. The optical system 4 includes a light projector 10 that includes an LED 14 that emits a pulse signal having a specific pulse code and a light projecting lens 12, and a light receiver 11 that includes a photoelectric conversion element 15 that detects the amount of reflected light and a light receiving lens 13.
a light receiving optical system 7 including a photoelectric conversion element 17 that detects the imaging position of the reflected light focused on the focal plane of the condensing lens 16 arranged at a predetermined distance apart. It consists of The drive system 5 rotates the optical system 4.
It is composed of a C motor 31 and a potentiometer 32 that detects the position of the DC motor 31.

次にこの発明の車間距離検出装置の動作について説明す
る。
Next, the operation of the inter-vehicle distance detection device of the present invention will be explained.

制御回路20内のタイミング回路21に同期した発光回
路22のパルス信号により、光学系4の投光器10内に
あるLED14を発光させ、投光レンズ12を介して所
定立体角となるよう車両の進行方向に向かって光線を照
射して、図にあるように先行車両1のリフレクタ2を含
む照射範囲18となった場合、リフレクタ2に反射した
光線は、投光器10とほぼ同軸上に配置された受光器1
1内に入射し、その反射光線は受光レンズ13によって
集光され、その光量が光電変換素子15により光電変換
され、受光回路23において光量信号として検出される
。照射範囲内でリフレクタ2以外の部分で拡散反射した
光線が、集光レンズ16の光軸中心と光電変換素子17
の有効受光長の中心を一致させて配置しである受光光学
系7に入射すると、集光レンズ16により集光され、光
電変換素子17上に結像した位置信号が結像位置算出回
路25において検出される。CPU8では、ポテンショ
メータ32によって検出されるモータ位置信号が車両角
度検出回路28にて変換される車両角度θnが予め定め
である限界車両角度θmin 。
A pulse signal from the light emitting circuit 22 synchronized with the timing circuit 21 in the control circuit 20 causes the LED 14 in the light projector 10 of the optical system 4 to emit light, and the direction of travel of the vehicle is determined through the light projecting lens 12 so as to form a predetermined solid angle. When a light beam is irradiated towards the vehicle and the irradiation range 18 includes the reflector 2 of the preceding vehicle 1 as shown in the figure, the light beam reflected by the reflector 2 will be reflected by the light receiver disposed approximately coaxially with the projector 10. 1
1, the reflected light beam is focused by the light receiving lens 13, the amount of light is photoelectrically converted by the photoelectric conversion element 15, and detected as a light amount signal by the light receiving circuit 23. The light rays that are diffusely reflected by parts other than the reflector 2 within the irradiation range reach the optical axis center of the condenser lens 16 and the photoelectric conversion element 17.
When the light enters the light-receiving optical system 7, which is arranged so that the centers of the effective light-receiving lengths of Detected. In the CPU 8, the vehicle angle θn at which the motor position signal detected by the potentiometer 32 is converted by the vehicle angle detection circuit 28 is a predetermined limit vehicle angle θmin.

θmax(θmin<θmax )内の範囲であれば、
上記の光量信号とタイミング回路21に同期したパルス
信号が入力されるホールド回路24において雑音処理さ
れた光量λnと、上記の結像位置信号とタイミング回路
21に同期したパルス信号が入力されるホールド回路2
6において雑音処理された結像位置Xnを計測して、上
記の光量信号及び位置信号に基づいてモーター31を回
動させる為、モータ駆動回路27にモータ駆動要求信号
を出力してモータを回動させる動作を繰り返す。
If the range is within θmax (θmin<θmax),
The light amount λn subjected to noise processing in the hold circuit 24 to which the above-mentioned light amount signal and a pulse signal synchronized with the timing circuit 21 are inputted, and a hold circuit to which the above-mentioned imaging position signal and a pulse signal synchronized with the timing circuit 21 are inputted. 2
In step 6, the noise-processed imaging position Xn is measured, and in order to rotate the motor 31 based on the above light amount signal and position signal, a motor drive request signal is output to the motor drive circuit 27 to rotate the motor. Repeat the action.

次に第3図の反射光La、  θb検検出サブルーノン
フローチャートにそって第1図における反射光の角度θ
aと、光学系4と先行車両1のリフレクタ2aの間の距
離Laの求め方を説明する。ここでは演算の簡略化の為
、角度A OA’を180°とし、方向ω−1で正の方
向、方向ω−−1で負の方向を表すものとする。
Next, the angle θ of the reflected light in Figure 1 is determined according to the reflected light La and θb detection subrunon flowchart in Figure 3.
A and how to determine the distance La between the optical system 4 and the reflector 2a of the preceding vehicle 1 will be explained. Here, in order to simplify calculations, it is assumed that the angle A OA' is 180°, and the direction ω-1 represents a positive direction, and the direction ω-1 represents a negative direction.

まず、ステップ41においてn=0とし、LED14を
パルス発光させる。次にステップ42で方向ωに所定角
度Δθだけモータ31を回動させ、ステップ43でポテ
ンショメータ32より現在のモータ位置を示す角度θn
を求める。続いてステップ44で光電変換素子15より
光量λnと、光電変換素子17より結像位置Xnを求め
る。ステップ45では現在のモータ駆動方向が正である
かを判定し、正であればステップ46へ、負であればス
テップ47へ進む。そしてステップ46では上記ステッ
プ43で計測した角度θnが予め定めた最大角度θma
xより大きいならばステップ49へ進み、そうでない場
合はステップ48にてnをインクリメントしてステップ
42へ戻る。続いてステップ47ではステップ43で計
測した角度θnが予め定めた最小角度θminより小さ
いならばステップ49へ進み、そうでない場合はステッ
プ48でnをインクリメントしてステップ42へ戻る。
First, in step 41, n=0 and the LED 14 emits pulsed light. Next, in step 42, the motor 31 is rotated by a predetermined angle Δθ in the direction ω, and in step 43, the angle θn indicating the current motor position is determined by the potentiometer 32.
seek. Subsequently, in step 44, the light amount λn from the photoelectric conversion element 15 and the imaging position Xn from the photoelectric conversion element 17 are determined. In step 45, it is determined whether the current motor drive direction is positive. If positive, the process proceeds to step 46; if negative, the process proceeds to step 47. Then, in step 46, the angle θn measured in step 43 is equal to the predetermined maximum angle θma.
If it is larger than x, the process advances to step 49; otherwise, n is incremented in step 48 and the process returns to step 42. Subsequently, in step 47, if the angle θn measured in step 43 is smaller than the predetermined minimum angle θmin, the process proceeds to step 49; otherwise, n is incremented in step 48, and the process returns to step 42.

かくしてステップ49では上記ステップ42〜48を実
行中に計測された光量λnの中の最大光量λにと予め定
められた所定光量λ0を比較し、λにの方が大きい場合
は反射光を検出したとみなしてステップ51へ進む。そ
うでない場合はステツブ53へ進み、検出不能フラグを
onしたのちステップ54へ進む。次にステップ51で
は、反射光の角度θaと光学系4と先行車両lのリフレ
クタ2a間の距離Laを求めた後、ステップ52へ進む
。反射光の角度θaは最大光量を検出したときの角度θ
にであり、光学系4と先行車両1のリフレクタ2a間の
距離Laは、結像位置X=Xkが反射光の通過する光路
であるから、 La、 Lb−F * D / (2* X)    
  ・=−■で求められる。但し、集光レンズ16の焦
点距離をF1同レンズの光軸間の距離をDとする。また
ステップ52では、検出不能フラグをoff シてステ
ップ54へ進み、ステップ54ではLHD14を消灯し
、モータ駆動の方向ωを(−1)倍して反転させて処理
を終える。
Thus, in step 49, a predetermined light amount λ0 is compared with the maximum light amount λ of the light amounts λn measured during execution of steps 42 to 48, and if λ is larger, reflected light is detected. The process proceeds to step 51. If not, the process proceeds to step 53, where the undetectable flag is turned on, and then the process proceeds to step 54. Next, in step 51, the angle θa of the reflected light and the distance La between the optical system 4 and the reflector 2a of the preceding vehicle l are determined, and then the process proceeds to step 52. The angle θa of reflected light is the angle θ when the maximum amount of light is detected.
The distance La between the optical system 4 and the reflector 2a of the preceding vehicle 1 is La, Lb-F*D/(2*X), since the imaging position X=Xk is the optical path through which the reflected light passes.
・=−■. However, the focal length of the condensing lens 16 is F1, and the distance between the optical axes of the same lens is D. Further, in step 52, the undetectable flag is turned off and the process proceeds to step 54. In step 54, the LHD 14 is turned off, the direction of motor drive is multiplied by (-1) and reversed, and the process ends.

リフレクタ2bについても同様の処理を行うことにより
、θb及びLbを求めることが出来る。
By performing similar processing for the reflector 2b, θb and Lb can be determined.

次に第4図に示した車間距離り検出ルーチンについて説
明する。
Next, the inter-vehicle distance detection routine shown in FIG. 4 will be explained.

まずステップ61及び62では、第3図に示した反射光
検出ザブルーチンを実行してLaとθa。
First, in steps 61 and 62, the reflected light detection subroutine shown in FIG. 3 is executed to determine La and θa.

Lbとθbを求める。次にステップ63では、検出不能
フラグがonされていればステップ65へ進み、検出不
能状態であることを表示装置9に表示して処理を終える
。そうでない場合はステップ64へ進み、以下に説明す
る原理によって、車間距離り及び車両軸の角度θを求め
、その結果を表示装置9に表示して処理を終える。
Find Lb and θb. Next, in step 63, if the undetectable flag is turned on, the process proceeds to step 65, where the display device 9 displays that the undetectable state is present, and the process ends. If not, the process proceeds to step 64, where the following distance and the angle θ of the vehicle axis are determined according to the principle described below, the results are displayed on the display device 9, and the process is completed.

第1図の三角形POQにおいて、線QOと線POとなす
角θCは既に求められているθaとθbの差であり、余
弦定理を用いて■弐より線PQの距離Lcが得られる。
In the triangle POQ of FIG. 1, the angle θC between the line QO and the line PO is the difference between θa and θb, which have already been determined, and the distance Lc of the line PQ can be obtained from 2 using the cosine theorem.

さらに線PQの距離Lcと正弦定理を用いて0式より線
PQと線POのなす角φaが得られる。
Further, using the distance Lc of the line PQ and the law of sine, the angle φa between the line PQ and the line PO can be obtained from equation 0.

Lc2=La”+Lb2−2*La*Lb*(@z (
l  θ a−θ bll  −−−・−■Lc10+
n(lθa−θbl)−Lb10+nφa     ”
” ”’■ここで線PQの中点をRとおいて、三角形F
ORにおいて、再び余弦定理を用いて下記の0式により
線ROの距離りが得られる。さらに正弦定理を用いて同
じく0式より線ROと線POのなす角1 Δφが得られ、垂線!と線ORのなす角θは0式より得
られる。
Lc2=La"+Lb2-2*La*Lb*(@z (
l θ a−θ bll −−−・−■Lc10+
n(lθa−θbl)−Lb10+nφa”
” ”'■Here, let R be the midpoint of line PQ, and draw triangle F.
In the OR, the distance of the line RO can be obtained using the cosine law again using the following formula 0. Furthermore, using the law of sine, the angle 1 Δφ between the line RO and the line PO can be obtained from the same equation 0, and the perpendicular line! The angle θ between the line OR and the line OR can be obtained from the formula 0.

L2= (Lc/2) 2+La2− (Lc/2)寧
La*(B  φ a      ”’  ”’ ■(
Lc/2)/m(Δφ)=L10Illφa     
   ・・・・・・■θ=θa−Δφ        
      ・・・・・・■本実族例では上記の原理に
よって所定の時間毎に検出された車間距¥ILと車両軸
の角度θを車間距離表示装置16に表示し、予め定めで
ある危険車間距離以下となった場合には警報音とともに
運転者に表示で知らせる衝突防止システム機能が付加さ
れており、又、外乱光等により検出不能となった場合は
エラー表示することにしている。
L2= (Lc/2) 2+La2- (Lc/2)NingLa*(B φ a ”'”' ■(
Lc/2)/m(Δφ)=L10Illφa
・・・・・・■θ=θa−Δφ
......■ In this example, the following distance IL and the angle θ of the vehicle axis detected at predetermined intervals based on the above principle are displayed on the following distance display device 16, and the predetermined dangerous distance is displayed on the following distance display device 16. A collision prevention system function has been added that notifies the driver with an audible alarm and a display if the distance is less than that, and an error message will be displayed if detection becomes impossible due to external light disturbance, etc.

又、この発明の車間距離検出装置は、上記の反射光La
、  θa検検出サブルーチンを実行して得られたLa
とθa、Lbとθbより、先行車両lのリフレクタ2a
及び2bの位置を表す点P及び点Qが、自車両3の前部
中心Oからみてどの位置にあるかを知ることができる為
、第1図の線A A’をY軸、垂線lをY軸、原点をO
として、下記の0式より綿PQとY軸のなす角度ψ(−
90°〜90°)を算出2 すれば、先行車両の車体の向きを求めることが出来る。
Further, the inter-vehicle distance detection device of the present invention uses the reflected light La
, La obtained by executing the θa detection subroutine
From θa, Lb and θb, the reflector 2a of the preceding vehicle l
Since it is possible to know where points P and Q representing the positions of points P and 2b are located when viewed from the front center O of the own vehicle 3, the lines A and A' in FIG. Y axis, origin at O
From the following formula 0, the angle ψ(-
90° to 90°), the direction of the vehicle body of the preceding vehicle can be determined.

tllll(ψ)= (La*イθa−1−b*cIr
bθb)/ (La旬nθa−Lb*6(Bθb)  
−・・■但し、(La*繍θB−L、b”anθb)−
〇  ならば=9o6*(La*(yθa−Lb*(y
θb)/ l (La*、、θa−Ll)”C116θ
b)第5図は先行車両の車体方向と角度ψの関係を示す
概略図であり、例えば図において車間距離りと車両軸角
度θが同じであっても、先行車両の車体の向きが、(a
)ではψ=0°で直進、(b)ではψ〈0゜で右旋回、
と読み取り可能になる。従ってこの発明の車間距離検出
装置を自動追尾制御システムの部品として利用すれば、
先行車両の車体の向きの情報をシステムの車体方向制御
に提供できる為、先行車両の動きに応じた自車両の車体
制御が実現する。
tllll(ψ) = (La*Iθa-1-b*cIr
bθb)/(La season nθa−Lb*6(Bθb)
−・・■However, (La * embroidery θBL−L, b”anθb)−
〇 If =9o6*(La*(yθa−Lb*(y
θb)/l (La*,, θa−Ll)”C116θ
b) Fig. 5 is a schematic diagram showing the relationship between the vehicle body direction of the preceding vehicle and the angle ψ. For example, even if the following distance and the vehicle axis angle θ are the same in the figure, the direction of the preceding vehicle's body is a
), it goes straight at ψ=0°, and in (b), it turns right at ψ〈0°,
becomes readable. Therefore, if the inter-vehicle distance detection device of this invention is used as a component of an automatic tracking control system,
Since information about the direction of the vehicle in front can be provided to the system's vehicle direction control, it is possible to control the vehicle's body in accordance with the movement of the vehicle in front.

さらに、この発明の車間距離検出装置は、上記の0式よ
り得られる先行車両の左右のリフレクタ間の距離Lcに
よる先行車両の車種判別機能を付加することもできる。
Furthermore, the inter-vehicle distance detection device of the present invention can also have a function of determining the vehicle type of the preceding vehicle based on the distance Lc between the left and right reflectors of the preceding vehicle obtained from the above equation 0.

第6図は車種と先行車両の左右のリフレクタ間の距離L
cの関係を示す概略図であり、例えば(a)大型車の場
合にLc>Lxが成立し、(b)軽自動車の場合にLx
<Lc<Lyが成立するよう、所定値Lx、Lyを適切
に設定すれば、Lcによる先行車両の車種判別が可能に
なる。自動追尾制御システムにおいて、追尾する先行車
両の車種の確かめながら自動追尾制御を行い、途中で検
出する車種が変化した場合に割り込み車ありと判断して
自動追尾をやめる等、フェールセーフの判定要因の一つ
として利用すれば、システムの安全性の向上を図ること
ができる。
Figure 6 shows the distance L between the vehicle type and the left and right reflectors of the preceding vehicle.
FIG. 3 is a schematic diagram showing the relationship between (a) a large vehicle, Lc>Lx, and (b) a light vehicle, Lx.
If the predetermined values Lx and Ly are appropriately set so that <Lc<Ly holds true, it becomes possible to determine the vehicle type of the preceding vehicle based on Lc. In automatic tracking control systems, automatic tracking control is performed while checking the type of vehicle in front to be tracked, and if the detected vehicle type changes midway through, it is determined that there is an intervening vehicle and automatic tracking is stopped. If used as one, it is possible to improve the security of the system.

なお、実施例では、駆動系5内のモータ31をDCモー
タとしたが、絶対位置制御のおこなえるものであればス
テッピングモータなど他の種類のものでもよいし、より
簡易なシステムにおいては、第1図におけるリフレクタ
2a及び2bと自車両間の距離La及びLbと、リフレ
クタ2a及び2bと車両軸の角度θa及びθbのうち、
Laとθa或はLbとθbを求めて近似的に車間距離及
び車両軸の角度とみなして利用することもできる。
In the embodiment, the motor 31 in the drive system 5 is a DC motor, but other types such as a stepping motor may be used as long as it can perform absolute position control, and in a simpler system, the first Among the distances La and Lb between the reflectors 2a and 2b and the own vehicle in the figure, and the angles θa and θb between the reflectors 2a and 2b and the vehicle axis,
It is also possible to obtain La and θa or Lb and θb and use them as approximate values of the inter-vehicle distance and the angle of the vehicle axis.

〔発明の効果] 以上説明したように、この発明によれば、先行車両の進
行方向の変化に追随して自動的に自車両の光学系が回動
し、先行車両のリフレクタに照準を合わせて特定のコー
ドをもつパルス光を投光しリフレクタに反射させて受光
させ、これによって光学系の投射角度と距離を検出する
ことができ、先行車両の自車両に対する距離および方向
を精度よく検出できる効果がある。
[Effects of the Invention] As explained above, according to the present invention, the optical system of the own vehicle automatically rotates in accordance with changes in the direction of travel of the preceding vehicle, and aims at the reflector of the preceding vehicle. Pulsed light with a specific code is emitted, reflected by a reflector, and received. This allows the projection angle and distance of the optical system to be detected, and the effect of accurately detecting the distance and direction of the preceding vehicle relative to the own vehicle. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例による自動車の車間距離検出
装置の構成図、第2図は第1図に示したこの発明の実施
例である車間距離検出装置の駆動光学系とその周辺部の
概略図、第3図はリフレクタ2aと自車両間の距離La
及びリフレクタ2aと車両軸の角度θaの求め方のフロ
ーチャート図、第4図は車間距離りの検出サブルーチン
、第5図は、先行車両の車体方向と角度ψの関係を示す
概略図、第6図は車種と先行車両の左右のリフレクタ間
の距離Lcの関係を示す概略図、第7図は従来の測距装
置の原理図、である。 5 1・・・先行車両、2.2a、2b・・・リフレクタ、
3・・・自車両、4・・・光学系、5・・・駆動系、6
・・・投光光学系、7・・・受光光学系、8・・・CP
U、9・・・車間距離表示装置、10・・・投光器、1
1・・・受光器、12・・・投光レンズ、13・・・受
光レンズ、14・・・LED、15.17・・・光電変
換素子、16・・・集光レンズ、20・・・制御回路、
25・・・結像位置算出回路、28・・・車両角度検出
回路、31・・・DCモータ、32・・・ポテンショメ
ータ。 なお、図中同一符号は同−又は相当部分を示す。 6
FIG. 1 is a block diagram of an automobile inter-vehicle distance detection device according to an embodiment of the present invention, and FIG. 2 shows a driving optical system and its surroundings of the inter-vehicle distance detection device according to an embodiment of the invention shown in FIG. The schematic diagram, FIG. 3, shows the distance La between the reflector 2a and the host vehicle.
4 is a subroutine for detecting inter-vehicle distance, FIG. 5 is a schematic diagram showing the relationship between the vehicle body direction of the preceding vehicle and angle ψ, and FIG. 7 is a schematic diagram showing the relationship between the vehicle type and the distance Lc between the left and right reflectors of the preceding vehicle, and FIG. 7 is a principle diagram of a conventional distance measuring device. 5 1... Leading vehicle, 2.2a, 2b... Reflector,
3... Own vehicle, 4... Optical system, 5... Drive system, 6
... Light emitting optical system, 7... Light receiving optical system, 8... CP
U, 9... Inter-vehicle distance display device, 10... Floodlight, 1
DESCRIPTION OF SYMBOLS 1... Light receiver, 12... Light emitting lens, 13... Light receiving lens, 14... LED, 15.17... Photoelectric conversion element, 16... Condensing lens, 20... control circuit,
25... Imaging position calculation circuit, 28... Vehicle angle detection circuit, 31... DC motor, 32... Potentiometer. Note that the same reference numerals in the figures indicate the same or equivalent parts. 6

Claims (1)

【特許請求の範囲】[Claims] 進行方向に向けて特定のコードをもつパルス光を投射す
る投光器、この投光器より投射されたパルス光の先行車
両後部のリフレクタによる反射光を検出する受光器から
なる投光光学系と、上記反射光を集光する集光レンズと
集光した光の結像面上に配置された光電変換器からなる
受光光学系とを、各々の光軸がほぼ同軸上にあるとみな
せるように近接させかつ、所定基線長隔てて設置した光
学系と、この光学系と自車両の車両軸のなす角度を調整
する駆動系とで構成される車間距離検出装置において、
上記駆動系を回動させる回動手段と、上記受光光学系の
光電変換器上の結像位置を検出する結像位置検出手段と
、上記光学系と自車両の車両軸のなす角度を検出する車
両軸角度検出手段とを備え、上記回動手段により駆動系
を所定角度の範囲内で回動させて上記受光器の出力によ
り光学系の光軸方向を先行車両のリフレクタに合せ、そ
のときの上記結像位置検出手段の出力と車両軸角度検出
手段の出力により先行車両までの車間距離と方向を計測
することを特徴とする車間距離検出装置。
a light projection optical system consisting of a light projector that projects pulsed light with a specific code in the direction of travel; a light receiver that detects the reflected light of the pulsed light projected by the projector by a reflector at the rear of the preceding vehicle; and the reflected light. A condensing lens that condenses the condensed light and a light-receiving optical system consisting of a photoelectric converter placed on the imaging plane of the condensed light are placed in close proximity so that their respective optical axes can be considered to be substantially coaxial, and In an inter-vehicle distance detection device comprising an optical system installed at a predetermined baseline length apart, and a drive system that adjusts the angle formed between this optical system and the vehicle axis of the host vehicle,
A rotating means for rotating the drive system, an imaging position detection means for detecting an imaging position on the photoelectric converter of the light receiving optical system, and an angle formed by the optical system and the vehicle axis of the host vehicle. and vehicle axis angle detection means, the drive system is rotated within a predetermined angle range by the rotation means, and the optical axis direction of the optical system is aligned with the reflector of the preceding vehicle by the output of the light receiver, and the direction of the optical axis of the optical system is aligned with the reflector of the preceding vehicle. An inter-vehicle distance detecting device, characterized in that the inter-vehicle distance and direction to a preceding vehicle are measured by the output of the imaging position detecting means and the output of the vehicle axis angle detecting means.
JP14179389A 1989-06-02 1989-06-02 Inter-vehicle distance detector Pending JPH036418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14179389A JPH036418A (en) 1989-06-02 1989-06-02 Inter-vehicle distance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14179389A JPH036418A (en) 1989-06-02 1989-06-02 Inter-vehicle distance detector

Publications (1)

Publication Number Publication Date
JPH036418A true JPH036418A (en) 1991-01-11

Family

ID=15300278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14179389A Pending JPH036418A (en) 1989-06-02 1989-06-02 Inter-vehicle distance detector

Country Status (1)

Country Link
JP (1) JPH036418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016551A3 (en) * 2007-08-01 2009-04-09 Koninkl Philips Electronics Nv Vehicle positioning measurement system and method
US20180354527A1 (en) * 2017-06-09 2018-12-13 Subaru Corporation Vehicle control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016551A3 (en) * 2007-08-01 2009-04-09 Koninkl Philips Electronics Nv Vehicle positioning measurement system and method
US8174683B2 (en) 2007-08-01 2012-05-08 Koninklijke Philips Electronics N.V. Vehicle positioning measurement system and method
US20180354527A1 (en) * 2017-06-09 2018-12-13 Subaru Corporation Vehicle control device
US11608071B2 (en) * 2017-06-09 2023-03-21 Subaru Corporation Vehicle control device

Similar Documents

Publication Publication Date Title
KR930004881B1 (en) Detector of distance between vehicles
US5026153A (en) Vehicle tracking control for continuously detecting the distance and direction to a preceding vehicle irrespective of background dark/light distribution
JP4255682B2 (en) Reflector automatic tracking device
US6418775B1 (en) Method and apparatus for aligning a beam path for a beam-emitting sensor
JP2017150902A (en) On-vehicle laser radar device
JP2000504418A (en) Distance and / or position measuring device
KR20170114242A (en) Scanning lidar device having extended horizential view
WO2022179227A1 (en) Recharging alignment method and apparatus for sweeper, and sweeper
JPWO2020129720A5 (en)
JPH036418A (en) Inter-vehicle distance detector
JPH0933642A (en) Vehicle circumference detecting device
JPH04249706A (en) Distance detecting apparatus
JP2001318148A (en) Omnidirectional light-wave distance measuring instrument and travel control system
JP4141729B2 (en) Installation adjustment method for on-vehicle peripheral monitoring sensors
JPH11183174A (en) Position measuring apparatus for mobile
KR0153874B1 (en) Laser distance measurement apparatus for vehicle collision warning system
JP2717826B2 (en) Steering control device for self-propelled vehicles
JP3463130B2 (en) Distance measuring device
KR100494657B1 (en) Position and Pose Detection Method Using Slit Optics Beam for Moving Object
JPH04184113A (en) Detector of distance between vehicles
JPS603502A (en) Non-contacting type distance measuring method
JPH04167008A (en) Vehicle position detection device
JPH10227860A (en) Preceding vehicle judging device
JPH0610615B2 (en) Multi-directional distance measuring device
JP2002145133A (en) Trailer connection angle detector