JPH0933642A - Vehicle circumference detecting device - Google Patents

Vehicle circumference detecting device

Info

Publication number
JPH0933642A
JPH0933642A JP7184102A JP18410295A JPH0933642A JP H0933642 A JPH0933642 A JP H0933642A JP 7184102 A JP7184102 A JP 7184102A JP 18410295 A JP18410295 A JP 18410295A JP H0933642 A JPH0933642 A JP H0933642A
Authority
JP
Japan
Prior art keywords
target
point
vehicle
distance measurement
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7184102A
Other languages
Japanese (ja)
Other versions
JP3209392B2 (en
Inventor
Kazuma Kaneko
和磨 金子
Minoru Nishida
稔 西田
Masahei Akasu
雅平 赤須
Moichi Okamura
茂一 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18410295A priority Critical patent/JP3209392B2/en
Publication of JPH0933642A publication Critical patent/JPH0933642A/en
Application granted granted Critical
Publication of JP3209392B2 publication Critical patent/JP3209392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately discriminate between a static target such as a reflector and a moving target such as a vehicle when a vehicle is running on a curved road. SOLUTION: Assuming that a target corresponding to a first detection point disposed on a two-dimensional coordinates by a coordinate conversion means 2 is a static one, a prediction point at the next measuring time is calculated from a speed of a vehicle itself, variation of angle due to the rotation of the vehicle itself and a measuring time interval by means of a prediction position calculating means 14. A prediction range is set by referring to the prediction point by means of a prediction range setting means 7. When a second detection point exists within the prediction range, it is judged that a target corresponding to the second detection point is a static target by means of a static target judging means 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、障害物までの距離と方
向を測定した結果を使って、路側に設置されているリフ
レクタや看板等の静止物標と車両等の移動物標とを識別
する車両周辺検知装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention discriminates stationary targets such as reflectors and signboards installed on the road side from moving targets such as vehicles by using the results of measuring distances and directions to obstacles. The present invention relates to a vehicle surroundings detection device.

【0002】[0002]

【従来の技術】図12は例えば、特開平6−22214
3号公報に記載された従来のスキャンレーザレーダによ
る先行車両認識方法を利用した車両周辺検知装置を示す
構成図である。図12において、1は現在の物標までの
距離と方向を測定するスキャンレーザレーダからなる距
離測定手段、2は測定した極座標による距離と方向をX
Y座標へ変換する座標変換手段、3は車速センサ、4は
車速センサ3のデータから自車両の速度を算出する車速
算出手段である。なお、3及び4で車速測定手段5を構
成している。6は次回の測距時点における静止物標の予
測位置を算出する予測位置算出手段、7は予測位置算出
手段6が算出した予測位置に基づいて予測範囲を設定す
る予測範囲設定手段、8は検知した物標が静止物標か移
動物標かを判定する静止物標判定手段である。
2. Description of the Related Art FIG. 12 shows, for example, JP-A-6-22214.
It is a block diagram which shows the vehicle periphery detection apparatus using the prior vehicle recognition method by the conventional scan laser radar described in the 3rd publication. In FIG. 12, reference numeral 1 is a distance measuring means composed of a scan laser radar for measuring the distance and direction to the current target, and 2 is the measured distance and direction in polar coordinates.
Coordinate conversion means for converting to Y coordinates, 3 is a vehicle speed sensor, and 4 is a vehicle speed calculation means for calculating the speed of the own vehicle from the data of the vehicle speed sensor 3. The vehicle speed measuring means 5 is composed of 3 and 4. 6 is a predicted position calculation means for calculating the predicted position of the stationary target at the time of the next distance measurement, 7 is a prediction range setting means for setting a prediction range based on the predicted position calculated by the predicted position calculation means 6, and 8 is detection The target object determination means determines whether the target object is a stationary target or a moving target.

【0003】次に動作について説明する。図13は従来
の車両周辺検知装置の動作の流れを示すフローチャート
である。以下、図12及び図13に基づいて説明する。
装置が動作を開始すると、まずステップS1で処理に必
要なメモリ内容、フラグ、カウンタ等を初期化する。ス
テップS2では、距離測定手段1で計測した距離と方向
のデータを入力する。図14は距離測定手段1の検知領
域と検知領域の分割方法を示す説明図である。距離測定
手段1は角度20゜の検知領域を持ち、この検知領域を
40等分した0.5度の角度領域に対して左端から右端
まで順次方向を変えてスキャンする。検知領域の左端の
角度領域を方向1として順次右端の角度領域を方向40
とした各方向に対して、赤外レーザパルス光を発光して
から物標からの反射光を受光するまでに要した往復時間
から物体までの距離を測定する。スキャン周期を0.5
秒とすれば、距離測定手段1は0.5秒毎に40方向に
対する物標までの距離を繰り返し出力する。
Next, the operation will be described. FIG. 13 is a flowchart showing a flow of operations of the conventional vehicle periphery detection device. Hereinafter, description will be given with reference to FIGS. 12 and 13.
When the device starts operating, first, in step S 1 , memory contents, flags, counters, etc. necessary for processing are initialized. In step S 2, enter the distance and direction of the data measured by the distance measuring unit 1. FIG. 14 is an explanatory diagram showing a detection area of the distance measuring means 1 and a method of dividing the detection area. The distance measuring means 1 has a detection area with an angle of 20 °, and scans the detection area divided into 40 equal parts by changing the direction sequentially from the left end to the right end with respect to an angle area of 0.5 °. The angle region at the left end of the detection region is set as the direction 1, and the angle region at the right end is sequentially set as the direction 40.
In each direction, the distance to the object is measured from the round-trip time required from the emission of the infrared laser pulse light to the reception of the reflected light from the target. Scan cycle is 0.5
In seconds, the distance measuring unit 1 repeatedly outputs the distance to the target in 40 directions every 0.5 seconds.

【0004】距離測定手段1の構成及び動作については
例えば、特開平6−222143号公報に次のように記
載されている。半導体レーザ等からなる投光器により前
方にレーザ光が投射され、フォトトランジスタ等の受光
素子からなる受光器により前方の先行車両等の対象物か
らの反射光が受光され、演算回路により、レーザ光を照
射してから反射光を受光するまでの時間及び光速に基づ
き自車から対象物までの距離が算出される。このとき、
スキャニング手段により投光器からのレーザ光が走査さ
れて水平方向に所定の角度で広がる測距範囲内に所定の
操作角度、例えば1゜ごとにレーザ光が照射され、この
測距範囲内に対象物が存在すればこの対象物からの反射
光が受光器により受光され、走査角度毎の距離が演算回
路により算出される。
The structure and operation of the distance measuring means 1 are described, for example, in JP-A-6-222143 as follows. Laser light is projected forward by a projector such as a semiconductor laser, and light reflected by an object such as a preceding vehicle ahead is received by a light receiver including a light receiving element such as a phototransistor, and laser light is emitted by an arithmetic circuit. After that, the distance from the vehicle to the object is calculated based on the time from the reception of the reflected light and the speed of light. At this time,
The laser light from the light projector is scanned by the scanning means, and the laser beam is emitted at a predetermined operation angle, for example, every 1 ° within a range that spreads horizontally at a predetermined angle. If present, the reflected light from the object is received by the light receiver, and the distance for each scanning angle is calculated by the arithmetic circuit.

【0005】図14に示すように距離測定手段1で測定
したデータは、距離と方向の極座標で表されるデータで
ある。ステップS3では、座標変換手段2は極座標で表
された距離と方向のデータをXY座標上の位置に変換す
る。検知領域中の任意の方向をn、方向nに対する物体
までの距離をL[m]とすると、XY座標上の位置
(x,y)は、式(1)及び式(2)のように表され
る。 x=L×sin{0.5゜×(n−20)−0.25゜}・・・・・(1) y=L×cos{0.5゜×(n−20)−0.25゜}・・・・・(2) ステップS4では、車速算出手段4は車速センサ3が出
力する駆動軸の回転数に比例した車速パルスを入力す
る。ステップS5では、車速算出手段4は距離算出手段
1のスキャン周期0.5秒毎の車速パルスの数をカウン
トし、0.5秒当たりの車速パルス数から車速を算出す
る。JIS規格によれば、駆動軸が637rpmの時に
時速60kmであるので、駆動軸の1回転当たりの車速
パルス数が8パルスとすれば、0.5秒当たりの車速パ
ルス数Pの場合における車速V(km/h)は式(3)
により計算できる。 V=60×P×2/(637×8)・・・・・(3) ステップS6では、静止物標判定手段8は、予測範囲設
定手段7が設定した予測範囲と現在の測距時点における
検出点の位置を全検出点に渡って比較する。
As shown in FIG. 14, the data measured by the distance measuring means 1 is data represented by polar coordinates of distance and direction. In step S 3 , the coordinate conversion means 2 converts the distance and direction data represented by polar coordinates into positions on the XY coordinates. If an arbitrary direction in the detection area is n and the distance to the object with respect to the direction n is L [m], the position (x, y) on the XY coordinates is expressed by Equation (1) and Equation (2). To be done. x = L × sin {0.5 ° × (n−20) −0.25 °} (1) y = L × cos {0.5 ° × (n−20) −0.25 °} (2) In step S 4 , the vehicle speed calculation means 4 inputs a vehicle speed pulse output from the vehicle speed sensor 3 in proportion to the rotation speed of the drive shaft. In step S 5 , the vehicle speed calculation means 4 counts the number of vehicle speed pulses for every 0.5 seconds of the scanning cycle of the distance calculation means 1, and calculates the vehicle speed from the number of vehicle speed pulses per 0.5 seconds. According to the JIS standard, the speed is 60 km per hour when the drive shaft is 637 rpm, so if the number of vehicle speed pulses per rotation of the drive shaft is 8 pulses, the vehicle speed V when the vehicle speed pulse number P per 0.5 seconds is V (Km / h) is equation (3)
Can be calculated by V = 60 × P × 2 / (637 × 8) (3) In step S 6 , the stationary target determination unit 8 determines the prediction range set by the prediction range setting unit 7 and the current distance measurement time point. The positions of the detection points at are compared across all the detection points.

【0006】図15は予測範囲設定手段7が設定した予
測範囲を示す説明図である。図15において、9は予測
位置算出手段6が算出した予測位置、10は予測範囲設
定手段7が予測位置に基づいて設定した予測範囲であ
る。静止物標判定手段8は予測範囲内に検出点が存在す
るか否かを調べ、予測範囲内に存在する検出点の場合は
ステップS7へ進む。ステップS7において、静止物標判
定手段8は分岐条件に該当する全ての検出点が予測と一
致するので静止物標と判定する。いずれの予測範囲にも
入らない検出点の場合はステップS8へ進む。ステップ
8において、静止物標判定手段8は分岐条件に該当す
る全ての検出点が予測と一致しないので移動物標と判定
する。
FIG. 15 is an explanatory diagram showing the prediction range set by the prediction range setting means 7. In FIG. 15, 9 is a predicted position calculated by the predicted position calculating means 6, and 10 is a predicted range set by the predicted range setting means 7 based on the predicted position. The stationary target determination means 8 checks whether or not there is a detection point within the prediction range, and if the detection point is within the prediction range, the process proceeds to step S 7 . In step S 7 , the stationary target determination unit 8 determines that the target is a stationary target because all the detection points corresponding to the branching condition match the prediction. If the detection point does not fall within any of the prediction ranges, the process proceeds to step S 8 . In step S 8 , the stationary target determination unit 8 determines that the target is a moving target because all the detection points corresponding to the branching condition do not match the prediction.

【0007】ステップS9において、予測位置算出手段
6は現在の測距時点における検出点の位置と現在の自車
両の車速から次回の測距時点における検出点の予測位置
を算出する。現在の測距時点における検出点の位置を
(x1,y1)、次回の測距時点における検出点の予測位
置を(x2,y2)、現在の車速をV(km/h)、距離
測定手段1のスキャン周期を0.5秒とすると、自車両
が直進している場合、0.5秒の間に進む距離ΔL
(m)は式(4)により計算できる。 ΔL=V×1000m/3600秒×0.5・・・・・(4) 従って、自車両が直進しているので、次回の測距時点に
おける予測位置はX軸方向には変化せず、Y軸方向にΔ
Lだけ接近するため式(5)及び式(6)のようにな
る。 x2=x1 ・・・・・(5) y2=y1−ΔL・・・・・(6) ステップS10において、予測範囲設定手段7はステップ
9で算出した予測位置(x2,y2)に基づいて予測範
囲を設定する。図15に示すように予測位置(x2
2)を中心としてx方向とy方向に幅2ΔWの正方形
の範囲を予測範囲とする。幅ΔWは距離測定手段1の測
定距離のばらつき等の大きさに基づいて事前に決定して
おく。この処理を全ての検出点に対して行い、設定した
全予測範囲を記憶する。その後、ステップS2へ戻り同
様の処理手順を繰り返す。
In step S 9 , the predicted position calculating means 6 calculates the predicted position of the detection point at the next distance measurement time from the position of the detection point at the current distance measurement time and the current vehicle speed of the host vehicle. The position of the detection point at the current distance measurement point is (x 1 , y 1 ), the predicted position of the detection point at the next distance measurement point is (x 2 , y 2 ), the current vehicle speed is V (km / h), Assuming that the scanning cycle of the distance measuring means 1 is 0.5 seconds, if the host vehicle is traveling straight, the distance ΔL that advances in 0.5 seconds.
(M) can be calculated by the equation (4). ΔL = V × 1000 m / 3600 sec × 0.5 (4) Therefore, since the host vehicle is traveling straight, the predicted position at the time of the next distance measurement does not change in the X-axis direction, and Y Δ in the axial direction
Since L is approached, equations (5) and (6) are obtained. In x 2 = x 1 ····· (5 ) y 2 = y 1 -ΔL ····· (6) Step S 10, the expected range setting means 7 predicted position calculated in step S 9 (x 2 , Y 2 ) to set the prediction range. As shown in FIG. 15, the predicted position (x 2 ,
The range of a square having a width of 2ΔW in the x direction and the y direction centering on y 2 ) is set as the prediction range. The width ΔW is determined in advance on the basis of the magnitude of variation in the measured distance of the distance measuring means 1. This process is performed for all detection points, and the set total prediction range is stored. Then, the process returns to step S 2 and the same processing procedure is repeated.

【0008】[0008]

【発明が解決しようとする課題】従来の車両周辺検知装
置は以上のように、自車両が直進していることを前提に
して次回の測距時点における予測位置を算出し、この予
測位置と測定された検出点の位置とを比較することで静
止物標と移動物標とを識別するように構成していた。し
たがって、曲線路の走行時では直進を前提に算出した予
測位置よりも自車両の旋回に伴う角度変化に起因する角
度のずれが生じる。例えば、100km/hの速度で半
径300mの曲線路を走行中にスキャン周期0.5秒間
に自車両の旋回に伴って生ずる角度変化Δθは、(36
0゜/2π)×(100000m/3600秒)×0.
5秒/300mより約2.65度となる。この角度変化
により生ずる直進状態における予測位置と実際の位置の
ずれは、X軸方向で(100000m/3600秒)×
0.5秒×sin(2.65゜)=約0.64m、Y軸
方向で(100000m/3600秒)×0.5秒×
{1−cos(2.65゜)}=約0.015mとな
る。従って、Y軸方向の位置ずれは僅かであるが、X軸
方向の位置ずれは車幅の半分程度にも達する。このよう
に、実際の検出点の位置と予測位置が一致せず、路側の
リフレクタ等の静止物標と車両等の移動物標とを正しく
識別できないという問題点があった。
As described above, the conventional vehicle periphery detection device calculates the predicted position at the next distance measurement on the premise that the host vehicle is traveling straight ahead, and measures the predicted position and the measured position. The stationary target and the moving target are discriminated by comparing the positions of the detected points. Therefore, when the vehicle travels on a curved road, an angle deviation occurs due to an angle change caused by the turning of the host vehicle, rather than a predicted position calculated on the assumption that the vehicle is going straight. For example, the angle change Δθ that accompanies turning of the host vehicle during a scan cycle of 0.5 seconds while traveling on a curved road having a radius of 300 m at a speed of 100 km / h is (36
0 ° / 2π) × (100000m / 3600 seconds) × 0.
It becomes approximately 2.65 degrees from 5 seconds / 300 m. The deviation between the predicted position and the actual position in the straight traveling state caused by this angle change is (100,000 m / 3600 seconds) × in the X-axis direction.
0.5 sec x sin (2.65 °) = about 0.64 m, (100000 m / 3600 sec) in the Y-axis direction x 0.5 sec x
{1-cos (2.65 °)} = about 0.015 m. Therefore, the displacement in the Y-axis direction is slight, but the displacement in the X-axis direction reaches about half of the vehicle width. As described above, there is a problem in that the actual position of the detection point does not match the predicted position, and the stationary target such as a roadside reflector and the moving target such as a vehicle cannot be correctly identified.

【0009】この発明は上記のような問題点を解決する
ためになされたもので、曲線路を走行時にも路側のリフ
レクタ等の静止物標と車両等の移動物標を正しく識別で
きる車両周辺検知装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to correctly detect a stationary target such as a reflector on the road side and a moving target such as a vehicle even when traveling on a curved road. The purpose is to provide a device.

【0010】[0010]

【課題を解決するための手段】請求項1の発明に係る車
両周辺検知装置は、自車両を基点とした検知領域を所定
の角度で分割して分割検知領域を設定し、各分割検知領
域内で自車両の外部に存在する物標を検知して現在及び
次回の測距時点における物標までの距離を所定の測距時
間間隔で測定する距離測定手段と、測定した現在の測距
時点における物標の位置を第1の検出点とし、次回の測
距時点における物標の位置を第2の検出点としてそれぞ
れ2次元座標上に配置する座標変換手段と、自車両の速
度を測定する速度測定手段と、自車両の旋回に伴う角度
変化を測定する角度変化測定手段と、2次元座標上に配
置した第1の検出点に対応した物標が静止物標であると
仮定して、自車両の速度と角度変化と測距時間間隔とに
基づいて次回の測距時点における2次元座標上の予測点
を算出する予測位置算出手段と、予測点を基準とした予
測範囲を物標について設定する予測範囲設定手段と、第
2の検出点と予測範囲とを比較し、予測範囲内に存在す
る第2の検出点に対応した物標を静止物標と判定する静
止物標判定手段とを備えたものである。
According to a first aspect of the present invention, there is provided a vehicle surroundings detection device which divides a detection area having a host vehicle as a base point at a predetermined angle to set a division detection area, and sets the divided detection area in each divided detection area. The distance measuring means that detects a target existing outside the vehicle and measures the distance to the target at the time of the next and the next distance measurement at a predetermined distance measurement time interval, and the measured distance at the time of the current distance measurement. The position of the target is used as the first detection point, and the position of the target at the time of the next distance measurement is used as the second detection point. The coordinate conversion means is arranged on each of the two-dimensional coordinates, and the speed for measuring the speed of the host vehicle. Assuming that the measuring means, the angle change measuring means for measuring the angle change accompanying the turning of the host vehicle, and the target corresponding to the first detection point arranged on the two-dimensional coordinates are stationary targets, Next measurement based on vehicle speed, angle change and distance measurement time interval The predicted position calculation means for calculating the predicted point on the two-dimensional coordinates at the time point, the predicted range setting means for setting the predicted range based on the predicted point for the target, and the second detection point and the predicted range are compared. A stationary target determination unit that determines a target corresponding to the second detection point existing in the prediction range as a stationary target.

【0011】請求項2の発明に係る車両周辺検知装置
は、自車両を基点とした検知領域を所定の角度で分割し
て分割検知領域を設定し、各分割検知領域内で自車両の
外部に存在する物標を検知して現在及び次回の測距時点
における物標までの距離を所定の測距時間間隔で測定す
る距離測定手段と、測定した現在の測距時点における物
標の位置を第1の検出点とし、次回の測距時点における
物標の位置を第2の検出点としてそれぞれ2次元座標上
に配置する座標変換手段と、自車両の速度を測定する速
度測定手段と、自車両の旋回に伴う角度変化を測定する
角度変化測定手段と、2次元座標上に配置した第1の検
出点に対応した物標が静止物標であると仮定して、自車
両の速度と角度変化と測距時間間隔とに基づいて次回の
測距時点における2次元座標上の予測点を算出する予測
位置算出手段と、第2の検出点を基準とした予測範囲を
物標について設定する予測範囲設定手段と、予測点と予
測範囲とを比較し、予測範囲内に存在する予測点に対応
した物標を静止物標と判定する静止物標判定手段とを備
えたものである。
According to another aspect of the present invention, there is provided a vehicle periphery detection device, which divides a detection area having a host vehicle as a base point at a predetermined angle to set a division detection area, and sets the division detection area outside the own vehicle. The distance measuring means for detecting the existing target and measuring the distance to the target at the current and next distance measuring times at a predetermined distance measuring time, and the measured position of the target at the current distance measuring time Coordinate conversion means for arranging the position of the target at the time of the next distance measurement as the second detection point on each of the two-dimensional coordinates, a speed measurement means for measuring the speed of the own vehicle, and the own vehicle. Change measuring means for measuring the change in angle due to turning of the vehicle, and the speed and angle change of the host vehicle assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinate is a stationary target. 2 at the time of the next distance measurement based on the distance measurement time interval and The predicted position calculation means for calculating the predicted point on the original coordinates, the predicted range setting means for setting the predicted range based on the second detection point for the target, the predicted point and the predicted range are compared, and the predicted range A target object determination unit that determines a target object corresponding to a prediction point existing therein as a stationary target object is provided.

【0012】請求項3の発明に係る車両周辺検知装置
は、自車両を基点とした検知領域を所定の角度で分割し
て分割検知領域を設定し、各分割検知領域内で自車両の
外部に存在する物標を検知して現在及び次回の測距時点
における物標までの距離を所定の測距時間間隔で測定す
る距離測定手段と、測定した現在の測距時点における物
標の位置を第1の検出点とし、次回の測距時点における
物標の位置を第2の検出点としてそれぞれ2次元座標上
に配置する座標変換手段と、自車両の速度を測定する速
度測定手段と、自車両のハンドルの舵角を測定する舵角
測定手段と、2次元座標上に配置した第1の検出点に対
応した物標が静止物標であると仮定して、自車両の速度
とハンドルの舵角と測距時間間隔とに基づいて次回の測
距時点における2次元座標上の予測点を算出する予測位
置算出手段と、予測点を基準とした予測範囲を物標につ
いて設定する予測範囲設定手段と、第2の検出点と予測
範囲とを比較し、予測範囲内に存在する第2の検出点に
対応した物標を静止物標と判定する静止物標判定手段と
を備えたものである。
According to a third aspect of the present invention, there is provided a vehicle periphery detection device, which divides a detection area having a vehicle as a base point at a predetermined angle to set a division detection area, and sets the division detection area outside the vehicle. The distance measuring means for detecting the existing target and measuring the distance to the target at the current and next distance measuring times at a predetermined distance measuring time, and the measured position of the target at the current distance measuring time Coordinate conversion means for arranging the position of the target at the time of the next distance measurement as the second detection point on each of the two-dimensional coordinates, a speed measurement means for measuring the speed of the own vehicle, and the own vehicle. The steering angle measuring means for measuring the steering angle of the steering wheel, and the steering speed of the steering wheel of the host vehicle assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinate is a stationary target. Secondary at the time of the next distance measurement based on the angle and distance measurement time interval Within the prediction range, the predicted position calculation means for calculating the prediction point on the coordinates, the prediction range setting means for setting the prediction range based on the prediction point for the target, and the second detection point and the prediction range are compared. And a stationary target determination unit that determines a target corresponding to the second detection point existing in 1) as a stationary target.

【0013】請求項4の発明に係る車両周辺検知装置
は、自車両を基点とした検知領域を所定の角度で分割し
て分割検知領域を設定し、各分割検知領域内で自車両の
外部に存在する物標を検知して現在及び次回の測距時点
における物標までの距離を所定の測距時間間隔で測定す
る距離測定手段と、測定した現在の測距時点における物
標の位置を第1の検出点とし、次回の測距時点における
物標の位置を第2の検出点としてそれぞれ2次元座標上
に配置する座標変換手段と、自車両の速度を測定する速
度測定手段と、自車両のハンドルの舵角を測定する舵角
測定手段と、2次元座標上に配置した第1の検出点に対
応した物標が静止物標であると仮定して、自車両の速度
とハンドルの舵角と測距時間間隔とに基づいて次回の測
距時点における2次元座標上の予測点を算出する予測位
置算出手段と、第2の検出点を基準とした予測範囲を物
標について設定する予測範囲設定手段と、予測点と予測
範囲とを比較し、予測範囲内に存在する予測点に対応し
た物標を静止物標と判定する静止物標判定手段とを備え
たものである。
According to a fourth aspect of the present invention, there is provided a vehicle periphery detection device, which divides a detection area having a vehicle as a base point at a predetermined angle to set a division detection area, and sets the division detection area to the outside of the vehicle. The distance measuring means for detecting the existing target and measuring the distance to the target at the current and next distance measuring times at a predetermined distance measuring time, and the measured position of the target at the current distance measuring time Coordinate conversion means for arranging the position of the target at the time of the next distance measurement as the second detection point on each of the two-dimensional coordinates, a speed measurement means for measuring the speed of the own vehicle, and the own vehicle. The steering angle measuring means for measuring the steering angle of the steering wheel, and the steering speed of the steering wheel of the host vehicle assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinate is a stationary target. Secondary at the time of the next distance measurement based on the angle and distance measurement time interval The predicted position calculation means for calculating the predicted point on the coordinates, the predicted range setting means for setting the predicted range based on the second detection point for the target, the predicted point and the predicted range are compared, and within the predicted range And a stationary target determining means for determining a target corresponding to the prediction point existing in 1. as a stationary target.

【0014】請求項5の発明に係る車両周辺検知装置
は、自車両を基点とした検知領域を所定の角度で分割し
て分割検知領域を設定し、各分割検知領域内で自車両の
外部に存在する物標を検知して現在及び次回の測距時点
における物標までの距離を所定の測距時間間隔で測定す
る距離測定手段と、測定した現在の測距時点における物
標の位置を第1の検出点とし、次回の測距時点における
物標の位置を第2の検出点としてそれぞれ2次元座標上
に配置する座標変換手段と、自車両の速度を測定する速
度測定手段と、自車両のハンドルの舵角を測定する舵角
測定手段と、自車両の速度とハンドルの舵角に対応して
単位時間当たりに自車両の旋回に伴って生じる角度変化
を記憶した角度変化記憶手段と、2次元座標上に配置し
た第1の検出点に対応した物標が静止物標であると仮定
して、ハンドルの舵角に対応した角度変化と自車両の速
度と測距時間間隔とに基づいて次回の測距時点における
2次元座標上の予測点を算出する予測位置算出手段と、
予測点を基準とした予測範囲を物標について設定する予
測範囲設定手段と、第2の検出点と予測範囲とを比較
し、予測範囲内に存在する第2の検出点に対応した物標
を静止物標と判定する静止物標判定手段とを備えたもの
である。
According to a fifth aspect of the present invention, there is provided a vehicle periphery detection device, which divides a detection area having a vehicle as a base point at a predetermined angle to set a division detection area, and sets the division detection area outside the own vehicle. The distance measuring means for detecting the existing target and measuring the distance to the target at the current and next distance measuring times at a predetermined distance measuring time, and the measured position of the target at the current distance measuring time Coordinate conversion means for arranging the position of the target at the time of the next distance measurement as the second detection point on each of the two-dimensional coordinates, a speed measurement means for measuring the speed of the own vehicle, and the own vehicle. A rudder angle measuring means for measuring the rudder angle of the steering wheel, and an angle change storage means for memorizing an angular change that accompanies turning of the host vehicle per unit time corresponding to the speed of the host vehicle and the steering angle of the steering wheel, Pair with the first detection point placed on the two-dimensional coordinates Assuming that the target is a stationary target, the predicted point on the two-dimensional coordinate at the next distance measurement time is based on the angle change corresponding to the steering angle of the steering wheel, the speed of the own vehicle, and the distance measurement time interval. A predicted position calculating means for calculating
A prediction range setting means for setting a prediction range based on the prediction point for the target and the second detection point and the prediction range are compared, and a target corresponding to the second detection point existing in the prediction range is determined. A stationary target determination means for determining a stationary target is provided.

【0015】請求項6の発明に係る車両周辺検知装置
は、自車両を基点とした検知領域を所定の角度で分割し
て分割検知領域を設定し、各分割検知領域内で自車両の
外部に存在する物標を検知して現在及び次回の測距時点
における物標までの距離を所定の測距時間間隔で測定す
る距離測定手段と、測定した現在の測距時点における物
標の位置を第1の検出点とし、次回の測距時点における
物標の位置を第2の検出点としてそれぞれ2次元座標上
に配置する座標変換手段と、自車両の速度を測定する速
度測定手段と、自車両のハンドルの舵角を測定する舵角
測定手段と、自車両の速度とハンドルの舵角に対応して
単位時間当たりに自車両の旋回に伴って生じる角度変化
を記憶した角度変化記憶手段と、2次元座標上に配置し
た第1の検出点に対応した物標が静止物標であると仮定
して、ハンドルの舵角に対応した角度変化と自車両の速
度と測距時間間隔とに基づいて次回の測距時点における
2次元座標上の予測点を算出する予測位置算出手段と、
第2の検出点を基準とした予測範囲を物標について設定
する予測範囲設定手段と、予測点と予測範囲とを比較
し、予測範囲内に存在する予測点に対応した物標を静止
物標と判定する静止物標判定手段とを備えたものであ
る。
According to a sixth aspect of the present invention, there is provided a vehicle periphery detection device, which divides a detection area having a host vehicle as a base point at a predetermined angle to set a division detection area, and sets the division detection area to the outside of the own vehicle. The distance measuring means for detecting the existing target and measuring the distance to the target at the current and next distance measuring times at a predetermined distance measuring time, and the measured position of the target at the current distance measuring time Coordinate conversion means for arranging the position of the target at the time of the next distance measurement as the second detection point on each of the two-dimensional coordinates, a speed measurement means for measuring the speed of the own vehicle, and the own vehicle. A rudder angle measuring means for measuring the rudder angle of the steering wheel, and an angle change storage means for memorizing an angular change that accompanies turning of the host vehicle per unit time corresponding to the speed of the host vehicle and the steering angle of the steering wheel, Pair with the first detection point placed on the two-dimensional coordinates Assuming that the target is a stationary target, the predicted point on the two-dimensional coordinate at the next distance measurement time is based on the angle change corresponding to the steering angle of the steering wheel, the speed of the own vehicle, and the distance measurement time interval. A predicted position calculating means for calculating
Prediction range setting means for setting a prediction range based on the second detection point for the target and the prediction point and the prediction range are compared, and the target corresponding to the prediction point existing in the prediction range is set as the stationary target. And a stationary target object determining means.

【0016】請求項7の発明に係る車両周辺検知装置
は、自車両を基点とした検知領域を所定の角度で分割し
て分割検知領域を設定し、各分割検知領域内で自車両の
外部に存在する物標を検知して現在及び次回の測距時点
における物標までの距離を所定の測距時間間隔で測定す
る距離測定手段と、測定した現在の測距時点における物
標の位置を第1の検出点とし、次回の測距時点における
物標の位置を第2の検出点としてそれぞれ2次元座標上
に配置する座標変換手段と、自車両の速度を測定する速
度測定手段と、自車両のハンドルの舵角を測定する舵角
測定手段と、自車両の速度とハンドルの舵角に対応して
単位時間当たりに自車両の旋回に伴って生じる静止物標
の2次元座標上の位置変化量を記憶した位置変化量記憶
手段と、2次元座標上に配置した第1の検出点に対応し
た物標が静止物標であると仮定して、ハンドルの舵角に
対応した位置変化量と自車両の速度と測距時間間隔とに
基づいて次回の測距時点における2次元座標上の予測点
を算出する予測位置算出手段と、予測点を基準とした予
測範囲を物標について設定する予測範囲設定手段と、第
2の検出点と予測範囲とを比較し、予測範囲内に存在す
る第2の検出点に対応した物標を静止物標と判定する静
止物標判定手段とを備えたものである。
According to a seventh aspect of the present invention, there is provided a vehicle periphery detection device, which divides a detection area having a host vehicle as a base point at a predetermined angle to set a division detection area, and sets the division detection area outside the own vehicle. The distance measuring means for detecting the existing target and measuring the distance to the target at the current and next distance measuring times at a predetermined distance measuring time, and the measured position of the target at the current distance measuring time Coordinate conversion means for arranging the position of the target at the time of the next distance measurement as the second detection point on each of the two-dimensional coordinates, a speed measurement means for measuring the speed of the own vehicle, and the own vehicle. Angle measuring means for measuring the steering angle of the steering wheel of the vehicle, and the position change on the two-dimensional coordinates of the stationary target that occurs with the turning of the vehicle per unit time corresponding to the speed of the vehicle and the steering angle of the steering wheel. Position change amount storage means for storing the amount and two-dimensional coordinates Assuming that the target corresponding to the first detection point located at is a stationary target, based on the position change amount corresponding to the steering angle of the steering wheel, the speed of the own vehicle, and the distance measurement time interval, A predictive position calculating means for calculating a predictive point on the two-dimensional coordinate at the time of distance measurement, a predictive range setting means for setting a predictive range based on the predictive point for the target, and a second detection point and a predictive range. The stationary target determination means for comparing and determining the target corresponding to the second detection point existing in the prediction range as a stationary target is provided.

【0017】請求項8の発明に係る車両周辺検知装置
は、自車両を基点とした検知領域を所定の角度で分割し
て分割検知領域を設定し、各分割検知領域内で自車両の
外部に存在する物標を検知して現在及び次回の測距時点
における物標までの距離を所定の測距時間間隔で測定す
る距離測定手段と、測定した現在の測距時点における物
標の位置を第1の検出点とし、次回の測距時点における
物標の位置を第2の検出点としてそれぞれ2次元座標上
に配置する座標変換手段と、自車両の速度を測定する速
度測定手段と、自車両のハンドルの舵角を測定する舵角
測定手段と、自車両の速度とハンドルの舵角に対応して
単位時間当たりに自車両の旋回に伴って生じる静止物標
の2次元座標上の位置変化量を記憶した位置変化量記憶
手段と、2次元座標上に配置した第1の検出点に対応し
た物標が静止物標であると仮定して、ハンドルの舵角に
対応した位置変化量と自車両の速度と測距時間間隔とに
基づいて次回の測距時点における2次元座標上の予測点
を算出する予測位置算出手段と、第2の検出点を基準と
した予測範囲を物標について設定する予測範囲設定手段
と、予測点と予測範囲とを比較し、予測範囲内に存在す
る予測点に対応した物標を静止物標と判定する静止物標
判定手段とを備えたものである。
According to another aspect of the present invention, there is provided a vehicle periphery detection device, which divides a detection area having a host vehicle as a base point at a predetermined angle to set a division detection area, and sets the division detection area outside the own vehicle. The distance measuring means for detecting the existing target and measuring the distance to the target at the current and next distance measuring times at a predetermined distance measuring time, and the measured position of the target at the current distance measuring time Coordinate conversion means for arranging the position of the target at the time of the next distance measurement as the second detection point on each of the two-dimensional coordinates, a speed measurement means for measuring the speed of the own vehicle, and the own vehicle. Angle measuring means for measuring the steering angle of the steering wheel of the vehicle, and the position change on the two-dimensional coordinates of the stationary target that occurs with the turning of the vehicle per unit time corresponding to the speed of the vehicle and the steering angle of the steering wheel. Position change amount storage means for storing the amount and two-dimensional coordinates Assuming that the target corresponding to the first detection point located at is a stationary target, based on the position change amount corresponding to the steering angle of the steering wheel, the speed of the own vehicle, and the distance measurement time interval, A predictive position calculating means for calculating a predictive point on the two-dimensional coordinates at the time of distance measurement, a predictive range setting means for setting a predictive range based on the second detection point for the target, and a predictive point and a predictive range. A stationary target determination unit that compares the target and determines that the target corresponding to the prediction point existing in the prediction range is a stationary target is provided.

【0018】請求項9の発明に係る車両周辺検知装置
は、請求項1〜請求項8のいずれかに記載の車両周辺検
知装置において、静止物標判定手段は予測範囲内に存在
する現在の測距時点における物標を静止物標の候補と
し、所定の測定時間間隔後の次回の測距時点においても
静止物標の候補と判定されたときに物標を静止物標とす
るものである。
According to a ninth aspect of the present invention, there is provided a vehicle surroundings detecting apparatus according to any one of the first to eighth aspects, wherein the stationary target object judging means is presently within the prediction range. The target at the time of the distance is set as the candidate of the stationary target, and the target is set as the stationary target when it is determined as the candidate of the stationary target at the time of the next distance measurement after the predetermined measurement time interval.

【0019】[0019]

【作用】請求項1の発明においては、2次元座標上に配
置した第1の検出点に対応した物標が静止物標であると
仮定して、自車両の速度と自車両の旋回に伴う角度変化
と測距時間間隔とに基づいて次回の測距時点における予
測点を算出し、予測点を基準として設定した予測範囲内
に第2の検出点が存在すれば、第2の検出点に対応した
物標を静止物標と判定する。
According to the first aspect of the present invention, it is assumed that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, and the speed of the own vehicle and the turning of the own vehicle are accompanied. A prediction point at the next distance measurement time is calculated based on the angle change and the distance measurement time interval, and if the second detection point exists within the prediction range set with the prediction point as a reference, the second detection point is set. The corresponding target is determined to be a stationary target.

【0020】請求項2の発明においては、2次元座標上
に配置した第1の検出点に対応した物標が静止物標であ
ると仮定して、自車両の速度と自車両の旋回に伴う角度
変化と測距時間間隔とに基づいて次回の測距時点におけ
る予測点を算出し、第2の検出点を基準として設定した
予測範囲内に予測点が存在すれば、予測点に対応した物
標を静止物標と判定する。
According to the second aspect of the present invention, it is assumed that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, and the speed of the own vehicle and the turning of the own vehicle are accompanied. The predicted point at the next distance measurement time is calculated based on the angle change and the distance measurement time interval, and if the predicted point exists within the prediction range set with the second detection point as a reference, the object corresponding to the predicted point is obtained. The target is determined to be a stationary target.

【0021】請求項3の発明においては、2次元座標上
に配置した第1の検出点に対応した物標が静止物標であ
ると仮定して、自車両の速度とハンドルの舵角と測距時
間間隔とに基づいて次回の測距時点における予測点を算
出し、予測点を基準として設定した予測範囲内に第2の
検出点が存在すれば、第2の検出点に対応した物標を静
止物標と判定する。
In the third aspect of the invention, assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, the speed of the host vehicle and the steering angle of the steering wheel are measured. The predicted point at the time of the next distance measurement is calculated based on the distance time interval, and if the second detection point exists within the prediction range set with the predicted point as a reference, the target corresponding to the second detection point. Is determined as a stationary target.

【0022】請求項4の発明においては、2次元座標上
に配置した第1の検出点に対応した物標が静止物標であ
ると仮定して、自車両の速度とハンドルの舵角と測距時
間間隔とに基づいて次回の測距時点における予測点を算
出し、第2の検出点を基準として設定した予測範囲内に
予測点が存在すれば、予測点に対応した物標を静止物標
と判定する。
According to the invention of claim 4, assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, the speed of the host vehicle and the steering angle of the steering wheel are measured. The prediction point at the next distance measurement time is calculated based on the distance time interval, and if the prediction point exists within the prediction range set with the second detection point as a reference, the target corresponding to the prediction point is set as a stationary object. Judge as the mark.

【0023】請求項5の発明においては、2次元座標上
に配置した第1の検出点に対応した物標が静止物標であ
ると仮定して、自車両の車速とハンドルの舵角に対応し
た角度変化と自車両の速度と測距時間間隔とに基づいて
次回の測距時点における予測点を算出し、予測点を基準
として設定した予測範囲内に第2の検出点が存在すれ
ば、第2の検出点に対応した物標を静止物標と判定す
る。
According to the fifth aspect of the invention, assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinate is a stationary target, the target speed and the steering angle of the steering wheel correspond to each other. The predicted point at the next distance measurement time is calculated based on the angle change, the speed of the own vehicle, and the distance measurement time interval, and if the second detected point exists within the predicted range set with the predicted point as a reference, The target corresponding to the second detection point is determined as a stationary target.

【0024】請求項6の発明においては、2次元座標上
に配置した第1の検出点に対応した物標が静止物標であ
ると仮定して、自車両の速度とハンドルの舵角に対応し
た角度変化と自車両の速度と測距時間間隔とに基づいて
次回の測距時点における予測点を算出し、第2の検出点
を基準として設定した予測範囲内に予測点が存在すれ
ば、予測点に対応した物標を静止物標と判定する。
According to the sixth aspect of the invention, it is assumed that the target corresponding to the first detection point arranged on the two-dimensional coordinate is a stationary target, and the target corresponds to the speed of the host vehicle and the steering angle of the steering wheel. The predicted point at the next distance measurement time is calculated based on the angle change, the speed of the host vehicle, and the distance measurement time interval, and if the predicted point exists within the prediction range set with the second detection point as a reference, The target corresponding to the prediction point is determined as a stationary target.

【0025】請求項7の発明においては、2次元座標上
に配置した第1の検出点に対応した物標が静止物標であ
ると仮定して、自車両の速度とハンドルの舵角に対応し
た位置変化と自車両の速度と測距時間間隔とに基づいて
次回の測距時点における予測点を算出し、予測点を基準
として設定した予測範囲内に第2の検出点が存在すれ
ば、第2の検出点に対応した物標を静止物標と判定す
る。
According to the invention of claim 7, it is assumed that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, and it corresponds to the speed of the own vehicle and the steering angle of the steering wheel. The predicted point at the next distance measurement time is calculated based on the changed position, the speed of the own vehicle, and the distance measurement time interval, and if the second detected point exists within the predicted range set with the predicted point as a reference, The target corresponding to the second detection point is determined as a stationary target.

【0026】請求項8の発明においては、2次元座標上
に配置した第1の検出点に対応した物標が静止物標であ
ると仮定して、自車両の速度とハンドルの舵角に対応し
た位置変化と自車両の速度と測距時間間隔とに基づいて
次回の測距時点における予測点を算出し、第2の検出点
を基準として設定した予測範囲内に予測点が存在すれ
ば、予測点に対応した物標を静止物標と判定する。
According to the invention of claim 8, it is assumed that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, and it corresponds to the speed of the host vehicle and the steering angle of the steering wheel. The predicted point at the next distance measurement time is calculated based on the changed position, the speed of the host vehicle, and the distance measurement time interval, and if the predicted point exists within the prediction range set with the second detection point as a reference, The target corresponding to the prediction point is determined as a stationary target.

【0027】請求項9の発明においては、請求項1〜請
求項8のいずれかに記載の車両周辺検知装置において、
予測範囲内に存在する現在の測距時点における物標を静
止物標の候補とし、次回の測距時点においても静止物標
と静止物標判定手段が判定したときに静止物標とする。
According to a ninth aspect of the present invention, in the vehicle periphery detection device according to any one of the first to eighth aspects,
The target existing at the time of the current distance measurement existing within the prediction range is set as a candidate for the stationary target, and is set as the stationary target at the time of the next distance measurement when the stationary target is determined by the stationary target determination means.

【0028】[0028]

【実施例】【Example】

実施例1.図1は実施例1の発明による車両周辺検知装
置を示す構成図である。図1において、1〜5、7、8
は従来のものと同様である。11は車両に積載した角速
度センサで、光ファイバジャイロ等が利用できる。12
は角度変化算出手段で、角速度センサ11の信号により
スキャン周期の間に自車両に生じる角度変化を算出す
る。なお、11及び12で角度変化測定手段13を構成
している。14は予測位置算出手段である。
Embodiment 1 FIG. FIG. 1 is a configuration diagram showing a vehicle periphery detection device according to the first embodiment of the invention. In FIG. 1, 1-5, 7, 8
Is the same as the conventional one. Reference numeral 11 is an angular velocity sensor mounted on a vehicle, and an optical fiber gyro or the like can be used. 12
Is an angle change calculation means for calculating the angle change that occurs in the host vehicle during the scan cycle based on the signal from the angular velocity sensor 11. It should be noted that 11 and 12 constitute the angle change measuring means 13. 14 is a predicted position calculation means.

【0029】図2は実施例1による車両周辺検知装置の
動作の流れを示すフローチャートである。図1及び図2
において、ステップS1〜ステップS5は従来のもの(図
13参照)と同様である。即ち、ステップS1では、処
理に必要なメモリ内容、フラグ、カウンタ等を初期化す
る。ステップS2では、距離測定手段1で計測した距離
と方向のデータを入力する。ステップS3では、極座標
で表された距離と方向のデータを座標変換手段2でXY
座標上の位置に変換する。ステップS4では、車速セン
サ3が出力する駆動軸の回転数に比例した車速パルスを
入力する。ステップS5では、距離測定手段1のスキャ
ン周期、例えば0.5秒ごとの車速パルスの数をカウン
トし、0.5秒当たりの車速パルス数から車速を算出す
る。
FIG. 2 is a flow chart showing the flow of operation of the vehicle periphery detection device according to the first embodiment. 1 and 2
In steps S 1 ~ Step S 5 is similar to that of conventional (see FIG. 13). That is, in step S 1 , the memory contents, flags, counters, etc. necessary for the processing are initialized. In step S 2, enter the distance and direction of the data measured by the distance measuring unit 1. In step S 3 , the distance and direction data expressed in polar coordinates are converted into XY by the coordinate conversion means 2.
Convert to a coordinate position. In step S 4 , a vehicle speed pulse proportional to the rotation speed of the drive shaft output from the vehicle speed sensor 3 is input. In step S 5 , the scanning period of the distance measuring means 1, for example, the number of vehicle speed pulses every 0.5 seconds is counted, and the vehicle speed is calculated from the number of vehicle speed pulses per 0.5 seconds.

【0030】ステップS6では、角速度センサ11から
の角速度データを角度変化算出手段12へ入力する。ス
テップS7では、角度変化算出手段12は現在の測距時
点から次回の測距時点までのスキャン周期0.5秒間の
旋回に伴って自車両がどの位の角度変化を生じるかを算
出する。角度変化Δθ(rad)は、角速度ω(rad
/s)とスキャン周期とから式(7)により計算でき
る。 Δθ=0.5・ω・・・・・(7) ステップS8では、静止物体判定手段8は検出点の位置
と前回の測距時点で予め予測範囲設定手段7が設定した
予測範囲を全検出点について比較する。
In step S 6 , the angular velocity data from the angular velocity sensor 11 is input to the angle change calculation means 12. In step S 7, the angle change calculation means 12 calculates whether the vehicle with the current distance measuring point in the scan period of 0.5 seconds pivoting until the next distance measurement time arises how much change in the angle. The angular change Δθ (rad) is the angular velocity ω (rad
/ S) and the scan cycle, it can be calculated by the equation (7). In Δθ = 0.5 · ω ····· (7 ) Step S 8, the stationary object determination unit 8 the estimated range of predictable range setting means 7 is set by the distance measuring point position and the previous detection point total Compare the detection points.

【0031】図3は検出点と予測範囲との位置関係を示
す説明図である。図1及び図3において、15は扇形状
をした距離測定手段1の検知領域、16a〜16iは現
在の測距時点での検出点、17a〜17iは前回の測距
時点での検出点に基づいて算出した予測点、18a〜1
8iは予測点17a〜17iに基づいて予測範囲設定手
段7が設定した予測範囲、19a、19bは路側のガー
ドレール、20は検知領域15の中心である。
FIG. 3 is an explanatory diagram showing the positional relationship between the detection points and the prediction range. 1 and 3, reference numeral 15 is based on the detection area of the fan-shaped distance measuring means 1, 16a to 16i are detection points at the current distance measurement time, and 17a to 17i are detection points at the last distance measurement time. Predicted points calculated by
8i is a prediction range set by the prediction range setting means 7 based on the prediction points 17a to 17i, 19a and 19b are roadside guardrails, and 20 is the center of the detection region 15.

【0032】路側のガードレール19a、19b等に設
置されたリフレクタの場合、現在の測距時点での検出点
16a〜16gは予測範囲18a〜18g内であるので
ステップS9へ進む。そして、検知領域15の中心20
付近に存在する車両等の移動物体の場合は、現在の測距
時点での検出点16h、16iの位置が予測範囲18
h、18i外であるのでステップS10へ進む。ステップ
9において、静止物標判定手段8は、9個の全検出点
16a〜16iのうち現在の測距時点で7個の検出点1
6a〜16gについては予測範囲18a〜18g内にあ
るので、静止物標と判定する。ステップS10において、
静止物体判定手段8は、9個の全検出点16a〜16i
のうち現在の測距時点で2個の検出点16h、16iに
ついては予測範囲18h、18i外にあるので、移動物
標と判定する。ステップS11において、予測位置算出手
段14は、現在の測距時点における検出点16a〜16
iの位置、自車両の車速、自車両の角度変化、距離測定
手段1のスキャン周期を使って次回の測距時点における
予測位置を算出する。
The roadside guardrail 19a, the case of the installed reflector 19b or the like, detection points 16a~16g at the current distance measurement point proceeds to step S 9 so within the expected range 18a to 18g. Then, the center 20 of the detection area 15
In the case of a moving object such as a vehicle existing in the vicinity, the positions of the detection points 16h and 16i at the time of the current distance measurement are the prediction range 18
Since it is outside h and 18i, the process proceeds to step S 10 . In step S 9, stationary target determining means 8, 9 of all detection points seven detection point at the current distance measurement point of 16A~16i 1
Since 6a to 16g are within the prediction range 18a to 18g, it is determined to be a stationary target. In step S 10 ,
The stationary object determination means 8 has nine detection points 16a to 16i.
Of these, the two detection points 16h and 16i at the current distance measurement point are outside the prediction ranges 18h and 18i, so that they are determined to be moving targets. In step S 11, the predicted position calculating means 14, the detection point in the current ranging time 16a~16
The predicted position at the next distance measurement time is calculated using the position i, the vehicle speed of the host vehicle, the angle change of the host vehicle, and the scan cycle of the distance measuring means 1.

【0033】予測位置を算出する方法について説明す
る。図4は旋回時の予測位置の算出方法を示す説明図で
ある。図4において、21は現在の測距時点における検
出点、22は直進状態での次回の測距時点における予測
点、23は自車両の角度変化を考慮した次回の測距時点
における予測点である。直進状態での予測点22を算出
する方法は、従来と同様に現在の測距時点における検出
点の位置、自車両の車速及び距離測定手段1のスキャン
周期を使って式(6)により行う。そして、直進状態で
の予測点22を現在の検出点21を中心として自車両の
角度変化Δθだけ回転させる。ステップS7で算出した
角度変化Δθで自車両が進行方向に対して右方向への旋
回を行った場合、距離測定手段1が観測する検出点は図
4に示すように直進状態での予測位置22から左側に角
度Δθだけずれた予測点23の位置となる。
A method of calculating the predicted position will be described. FIG. 4 is an explanatory diagram showing a method of calculating the predicted position when turning. In FIG. 4, 21 is a detection point at the time of the current distance measurement, 22 is a prediction point at the time of the next distance measurement in a straight traveling state, and 23 is a prediction point at the time of the next distance measurement in consideration of the angle change of the vehicle. . The method of calculating the prediction point 22 in the straight traveling state is performed by the formula (6) using the position of the detection point at the current distance measuring point, the vehicle speed of the own vehicle, and the scan cycle of the distance measuring means 1 as in the conventional case. Then, the prediction point 22 in the straight traveling state is rotated about the current detection point 21 by the angle change Δθ of the host vehicle. When the host vehicle turns to the right with respect to the traveling direction by the angle change Δθ calculated in step S 7 , the detection point observed by the distance measuring means 1 is the predicted position in the straight traveling state as shown in FIG. It is the position of the prediction point 23 which is deviated to the left from 22 by the angle Δθ.

【0034】現在の測距時点における検出点の位置を
(x1,y1)、角度変化を考慮した次回の測距時点にお
ける予測位置を(x2,y2)、スキャン周期の間に自車
両が進行する距離をΔL、スキャン周期の間における自
車両の角度変化をΔθとすると予測点(x2,y2)は式
(8)及び式(9)のように計算できる。 x2=x1−ΔL・sin(Δθ)・・・・・(8) y2=y1−ΔL・cos(Δθ)・・・・・(9) ステップS12では、予測範囲設定手段7は、ステップS
11で算出した自車両の角度変化を考慮した予測位置(x
2,y2)を中心として従来例と同様の予測範囲を設定す
る。この処理を全検出点に対し行い予測範囲を記憶し、
ステップS2へ戻る。以降、同一の処理を繰り返す。
The position of the detection point at the current distance measuring point is (x 1 , y 1 ), and the predicted position at the next distance measuring point in consideration of the angle change is (x 2 , y 2 ). Assuming that the distance traveled by the vehicle is ΔL and the angular change of the host vehicle during the scan cycle is Δθ, the prediction point (x 2 , y 2 ) can be calculated as in equations (8) and (9). x 2 = x 1 −ΔL · sin (Δθ) (8) y 2 = y 1 −ΔL · cos (Δθ) (9) In step S 12 , the prediction range setting means 7 is used. Is step S
Predicted position considering angular change of the vehicle calculated in 11 (x
(2 , y 2 ) is set as the center and a prediction range similar to the conventional example is set. This process is performed for all detection points, the prediction range is stored,
Return to step S 2 . After that, the same processing is repeated.

【0035】この実施例では角速度センサ11のデータ
からスキャン周期の間に自車両に生じる角度変化を算出
し、直進状態での予測点22を算出した角度変化分を回
転させることにより予測点23を算出する。このため、
曲線路を走行時でも正確な予測点23を算出でき、静止
物標と移動物標とを静止物標判定手段8で精度よく識別
できる。
In this embodiment, the angle change occurring in the host vehicle during the scan cycle is calculated from the data of the angular velocity sensor 11, and the predicted point 22 in the straight traveling state is rotated to calculate the predicted angle 23. calculate. For this reason,
An accurate predicted point 23 can be calculated even when traveling on a curved road, and the stationary target and the moving target can be accurately discriminated by the stationary target determination means 8.

【0036】なお、上記実施例では予測範囲18a〜1
8iとして予測位置を中心とした正方形の予測範囲を用
いたが、縦横の比率が異なる長方形の予測範囲や、円形
の予測範囲を用いても良い。
In the above embodiment, the prediction ranges 18a-1
Although a square prediction range centered on the predicted position is used as 8i, a rectangular prediction range having a different aspect ratio and a circular prediction range may be used.

【0037】実施例2.図5は実施例2による車両周辺
検知装置を示す構成図である。図5において、1〜5、
7、8は従来のものと同様である。24はハンドルの舵
角を測定する舵角センサで、ハンドル軸に合わせて回転
するスリット板と発光素子と受光素子とを組み合わせた
フォトインタラプタ方式のものが広く自動車に利用され
ている。25は舵角センサ24の出力からハンドルの舵
角を算出する舵角算出手段である。なお、24及び25
で舵角測定手段26を構成している。27は角度変化テ
ーブルを記憶した角度変化記憶手段、28は予測位置算
出手段である。
Example 2. FIG. 5 is a configuration diagram showing a vehicle periphery detection device according to the second embodiment. In FIG. 5, 1 to 5,
7 and 8 are the same as the conventional ones. Reference numeral 24 is a rudder angle sensor for measuring the rudder angle of the steering wheel, and a photo interrupter type of a combination of a slit plate rotating according to the steering wheel axis, a light emitting element and a light receiving element is widely used in automobiles. Reference numeral 25 is a rudder angle calculating means for calculating the rudder angle of the steering wheel from the output of the rudder angle sensor 24. 24 and 25
The rudder angle measuring means 26 is constituted by. Reference numeral 27 is an angle change storage means that stores an angle change table, and 28 is a predicted position calculation means.

【0038】次に動作について説明する。図6は実施例
2による車両周辺検知装置の動作の流れを示すフローチ
ャートである。図6において、ステップS1〜ステップ
5までの動作は実施例1と同様である。ステップS6
は、舵角算出手段25は舵角センサ24が出力する舵角
データを入力する。ステップS7では、舵角算出手段2
5は舵角センサ24の信号からハンドルが中立位置から
左または右へ何度回転しているかを1度刻みで算出す
る。ステップS8〜ステップS10は実施例1のステップ
8〜ステップS10と同様の動作である。ステップS11
では、予測位置算出手段28は、現在の測距時点におけ
る検出点の位置、自車両の車速、ハンドルの舵角、距離
測定手段1のスキャン周期を使って次回の測距時点にお
ける検出点の予測点を算出する。
Next, the operation will be described. FIG. 6 is a flowchart showing the flow of the operation of the vehicle periphery detection device according to the second embodiment. In FIG. 6, the operation from step S 1 to step S 5 is the same as that in the first embodiment. In step S 6 , the steering angle calculation means 25 inputs the steering angle data output by the steering angle sensor 24. In step S 7 , the steering angle calculation means 2
Reference numeral 5 calculates from the signal of the steering angle sensor 24 how many times the steering wheel is rotating from the neutral position to the left or right in increments of 1 degree. Step S 8 ~ step S 10 is the same operation as steps S 8 ~ step S 10 of the first embodiment. Step S 11
Then, the predicted position calculation means 28 uses the position of the detection point at the current distance measurement point, the vehicle speed of the host vehicle, the steering angle of the steering wheel, and the scan cycle of the distance measurement means 1 to predict the detection point at the next distance measurement point. Calculate the points.

【0039】予測点を算出する方法について以下説明す
る。まず、予測位置算出手段28は、従来例と同様の方
法により直進状態での次回の測距時点における予測点を
算出する。次に、自車両の車速とハンドルの舵角に対応
して次回の測距時点までに自車両に生じる角度変化を予
め角度変化記憶手段27に記憶した角度変化テーブルを
使って角度変化を算出する。図7は車速と舵角に対する
角度変化の定性的特性を示す説明図である。図7におい
て、横軸は自車両の車速、縦軸はスキャン周期0.5秒
間当たりの自車両に生じる角度変化を示す。ハンドルの
舵角が30度で一定の場合、車速が大きくなるほど0.
5秒間当たりの自車両に生じる角度変化は大きくなる。
また、車速が50km/hで一定の場合、ハンドルの舵
角が大きくなるほど1秒間当たりの自車両に生じる角度
変化は大きくなる。この特性は車両毎に異なるので、各
車両毎に車速と舵角を測定し、図7の特性を測定した結
果に基づいて角度変化テーブルを予め決定しておく。最
後に、実施例1と同様の方法により直進状態での予測位
置を算出した角度変化に応じて回転移動して予測点を算
出する。ステップS12では、実施例1と同様にステップ
11で算出した予測点を中心として予測範囲設定手段7
で従来と同様の予測範囲を設定する。この処理を全検出
点に対して行って予測範囲を記憶し、ステップS2へ戻
る。以降、同一の処理を繰り返す。
A method of calculating the prediction point will be described below. First, the predicted position calculation means 28 calculates the predicted point at the next distance measurement time in the straight traveling state by the same method as the conventional example. Next, the angle change is calculated according to the vehicle speed of the own vehicle and the steering angle of the steering wheel by using the angle change table in which the angle change occurring in the own vehicle by the next distance measurement is stored in advance in the angle change storage means 27. . FIG. 7 is an explanatory diagram showing qualitative characteristics of angle changes with respect to vehicle speed and steering angle. In FIG. 7, the horizontal axis represents the vehicle speed of the host vehicle, and the vertical axis represents the angle change occurring in the host vehicle per scan cycle of 0.5 seconds. When the steering angle of the steering wheel is constant at 30 degrees, the higher the vehicle speed, the more the vehicle speed becomes.
The angle change that occurs in the host vehicle per 5 seconds becomes large.
Further, when the vehicle speed is constant at 50 km / h, the larger the steering angle of the steering wheel, the greater the angle change that occurs in the host vehicle per second. Since this characteristic varies from vehicle to vehicle, the vehicle speed and the steering angle are measured for each vehicle, and the angle change table is determined in advance based on the result of the characteristic measurement shown in FIG. Finally, by the same method as that of the first embodiment, the predicted position in the straight traveling state is rotationally moved according to the angle change, and the predicted point is calculated. In step S 12 , the prediction range setting means 7 is centered on the prediction point calculated in step S 11 as in the first embodiment.
Set the same prediction range as before. This process is performed for all detection points to store the prediction range, and the process returns to step S 2 . After that, the same processing is repeated.

【0040】この実施例では自車両の車速とハンドルの
舵角によってスキャン周期の間に自車両に生じる角度変
化を予め記憶した角度変化テーブルを使って角度変化を
算出し、直進状態での予測点を算出した角度変化分を回
転させることにより予測点を算出する。このため曲線路
を走行時でも正確な予測点を算出でき、静止物標と移動
物標とを静止物標判定手段8で精度よく識別できる車両
周辺検知装置が得られる。
In this embodiment, the angle change is calculated by using the angle change table in which the angle change that occurs in the own vehicle during the scanning cycle is previously stored according to the vehicle speed of the own vehicle and the steering angle of the steering wheel, and the predicted point in the straight traveling state is calculated. The predicted point is calculated by rotating the calculated angle change. Therefore, an accurate prediction point can be calculated even when traveling on a curved road, and a vehicle periphery detection device in which the stationary target and the moving target can be accurately discriminated by the stationary target determination means 8 can be obtained.

【0041】実施例3.図8は実施例3による車両周辺
検知装置の構成図である。図8において、1〜5、7、
8、24〜27は実施例1のものと同様である。29は
位置変化量テーブルを記憶した記憶手段で、距離測定手
段1のスキャン周期が既知の場合に、自車両の速度とハ
ンドルの舵角に対応したX軸方向の変化量ΔL×sin
(Δθ)及びY軸方向の変化量ΔL×cos(Δθ)を
予め計算した位置変化量テーブルを記憶している。30
は予測位置算出手段である。
Example 3. FIG. 8 is a configuration diagram of a vehicle periphery detection device according to the third embodiment. In FIG. 8, 1 to 5, 7,
8, 24 to 27 are the same as those in the first embodiment. A storage unit 29 stores a position change amount table, and when the scan cycle of the distance measuring unit 1 is known, the change amount ΔL × sin in the X-axis direction corresponding to the speed of the host vehicle and the steering angle of the steering wheel.
A position change amount table in which (Δθ) and a change amount ΔL × cos (Δθ) in the Y-axis direction are calculated in advance is stored. 30
Is a predicted position calculation means.

【0042】自車両の速度とスキャン周期が与えられて
いれば、スキャン周期の間に自車両が進む距離は実施例
1と同様の方法で一義的に決まる。また、自車両の速度
とハンドルの舵角が与えられていれば、実施例2に示す
角度変化テーブルによりスキャン周期の間に自車両に生
じる角度変化Δθもまた一義的に決まる。従って、現在
の測距時点における検出点の位置と次回の測距時点にお
ける予測点のX軸方向の変化量ΔL×sin(Δθ)及びY
軸方向の変化量ΔL×cos(Δθ)もまた一義的に決ま
る。予測位置算出手段30は、速度測定手段5で算出し
た車速と、舵角測定手段26で算出したハンドルの舵角
と、位置変化量記憶手段29の位置変化量テーブルとに
より、X軸方向及びY軸方向の変化量を算出する。そし
て、現在の測距時点における検出点の位置とX軸方向及
びY軸方向の変化量とから次回の測距時点における予測
点を算出する。予測範囲設定手段7は実施例2のステッ
プS12と同様に、予測点を中心として従来例と同様の予
測範囲を設定する。
Given the speed of the host vehicle and the scan cycle, the distance traveled by the host vehicle during the scan cycle is uniquely determined by the same method as in the first embodiment. Further, if the speed of the host vehicle and the steering angle of the steering wheel are given, the angle change Δθ that occurs in the host vehicle during the scan cycle is also uniquely determined by the angle change table shown in the second embodiment. Therefore, the amount of change ΔL × sin (Δθ) in the X-axis direction between the position of the detection point at the time of the current distance measurement and the predicted point at the time of the next distance measurement and ΔY
The amount of change ΔL × cos (Δθ) in the axial direction is also uniquely determined. The predicted position calculation means 30 uses the vehicle speed calculated by the speed measurement means 5, the steering angle of the steering wheel calculated by the steering angle measurement means 26, and the position change amount table of the position change amount storage means 29 to determine the X-axis direction and the Y direction. Calculate the amount of change in the axial direction. Then, the predicted point at the next distance measurement time is calculated from the position of the detection point at the current distance measurement time and the amount of change in the X-axis direction and the Y-axis direction. Expected range setting means 7 as in step S 12 of Example 2, to set the same expected range the conventional example around a predicted point.

【0043】この実施例では自車両の車速とハンドルの
舵角によって決まる検出点の位置から予測点までの位置
変化量を予め記憶した位置変化量テーブルを使って位置
変化量を算出し、検出点の位置と位置変化量により予測
点を算出する。このため曲線路を走行時でも簡単な演算
により精度のよい予測点を算出でき、静止物標と移動物
標とを精度よく識別できる。
In this embodiment, the position change amount is calculated using a position change amount table in which the position change amount from the position of the detection point determined by the vehicle speed of the own vehicle and the steering angle of the steering wheel to the predicted point is stored in advance, and the detection point is detected. The predicted point is calculated from the position and the amount of position change. Therefore, even when traveling on a curved road, a highly accurate prediction point can be calculated by a simple calculation, and a stationary target and a moving target can be accurately distinguished.

【0044】実施例4.図9は実施例4による車両周辺
検知装置を示す構成図である。図10及び図11は図9
の車両周辺検知装置の動作の流れを示すフローチャート
である。図9〜図11に基づいて静止物標判定方法につ
いて説明する。図9において、1〜5は従来のものと同
様であり、7、11〜14は実施例1のものと同様であ
る。31は静止物標判定手段で、ステップS8〜ステッ
プS12により静止物標判定を行う。
Embodiment 4 FIG. FIG. 9 is a configuration diagram showing a vehicle periphery detection device according to the fourth embodiment. 10 and 11 are shown in FIG.
3 is a flowchart showing a flow of operations of the vehicle periphery detection device of FIG. The stationary target object determination method will be described based on FIGS. 9 to 11. In FIG. 9, 1 to 5 are the same as the conventional one, and 7, 11 to 14 are the same as those of the first embodiment. 31 is a stationary target determining means performs the stationary target determination by step S 8 ~ step S 12.

【0045】図10及び図11において、ステップS1
〜ステップS7は実施例1と同様である。また、ステッ
プS13、S14は実施例1のS11、S12と同様である。静
止物標の判定が開始されると、ステップS8において、
静止物標判定手段31は実施例1と同一の方法により、
現在の測距時点における検出点の位置と、前回の測距時
点で予め予測範囲設定手段7が設定した予測範囲を全検
出点に渡って比較する。予測範囲内の検出点の場合はス
テップS9へ進み、予測範囲外の検出点の場合はステッ
プS12へ進む。ステップS9において、静止物標判定手
段31は該当検出点が予測範囲内であるので、予測範囲
の設定基準となった前回の検出点に設定されている静止
物標候補フラグを調べる。静止物標候補フラグが静止物
標候補であることを示す1の場合はステップS10へ進
み、静止物標候補フラグが静止物標候補でないことを示
す0の場合はステップS11へ進む。ステップS10におい
て、静止物標判定手段31は現在の測距時点における検
出点が予測範囲内であり、予測範囲の設定基準となった
前回の測距時点における検出点も静止物標候補であり、
2回連続して予測範囲内に存在しているので、該当検出
点を静止物標と判定する。そして、静止物標判定手段3
1は次回の静止物標判定用に該当検出点の静止物標候補
フラグを静止物標候補であることを示す1に設定する。
In FIGS. 10 and 11, step S 1
~ Step S 7 is the same as in Example 1. Further, steps S 13 and S 14 are the same as S 11 and S 12 of the first embodiment. If the determination of stationary target is started, in step S 8,
The stationary target determination means 31 is the same method as in the first embodiment.
The position of the detection point at the time of the current distance measurement is compared with the prediction range previously set by the prediction range setting means 7 at the time of the previous distance measurement over all the detection points. The process proceeds to step S 9 For detection points within the expected range, if the detection point outside the expected range the process proceeds to step S 12. In step S 9 , the stationary target determination means 31 examines the stationary target candidate flag set at the previous detection point that was the reference for setting the prediction range, because the corresponding detection point is within the prediction range. If the stationary target candidate flag is 1 indicating that it is a stationary target candidate, the process proceeds to step S 10 , and if the stationary target candidate flag is 0 indicating that it is not a stationary target candidate, the process proceeds to step S 11 . In step S 10, stationary target judging unit 31 is within the detection point is the expected range at the current distance measurement point, even the detection point in the distance measuring point of the last time was the criteria for setting the prediction range be the stationary target candidates ,
Since it exists within the prediction range two times in a row, the corresponding detection point is determined as a stationary target. And the stationary target determination means 3
1 sets the stationary target candidate flag of the corresponding detection point to 1 indicating the stationary target candidate for the next stationary target determination.

【0046】ステップS11において、静止物標判定手段
31は現在の測距時点における検出点が予測範囲内であ
るが、予測範囲の設定基準となった前回の測距時点にお
ける検出点が静止物標候補ではなく、2回連続して予測
範囲内に存在している条件を満たしていないので、該当
検出点を静止物標候補と判定する。そして、静止物標判
定手段31は次回の静止物標判定用に該当検出点の静止
物標候補フラグを静止物標候補であることを示す1に設
定する。ステップS12において、該当検出点が予測範囲
外であるので、静止物標判定手段31は実施例1と同様
に移動物標と判定する。この際、静止物標判定手段31
は次回の静止物標判定用に該当検出点の静止物標候補フ
ラグを静止物標候補でないことを示す0に設定する。
In step S 11 , the stationary object determination means 31 detects that the detection point at the time of the current distance measurement is within the prediction range, but the detection point at the time of the previous distance measurement, which is the reference for setting the prediction range, is the stationary object. Since it is not a target candidate and does not satisfy the condition of existing within the prediction range twice in a row, the corresponding detection point is determined as a stationary target candidate. Then, the stationary target determination means 31 sets the stationary target candidate flag of the corresponding detection point to 1 indicating that the target is a stationary target candidate for the next stationary target determination. In step S 12 , since the corresponding detection point is outside the prediction range, the stationary target determination means 31 determines that it is a moving target, as in the first embodiment. At this time, the stationary target determination means 31
For the next stationary target determination, the stationary target candidate flag of the corresponding detection point is set to 0 indicating that it is not a stationary target candidate.

【0047】実施例4ではスキャン周期の間に自車両に
生じる角度変化を考慮した予測範囲を設定し、2回の測
距時点に渡って連続して予測範囲内に検出点が存在する
場合に該当する検出点を静止物標と判定する。このため
曲線路を走行時でも静止物標と移動物標の識別結果に対
する信頼度が高い車両周辺検知装置が得られる。
In the fourth embodiment, the prediction range is set in consideration of the angle change occurring in the own vehicle during the scan cycle, and when the detection points continuously exist within the prediction range over two distance measuring times. The corresponding detection point is determined as a stationary target. Therefore, it is possible to obtain the vehicle periphery detection device having high reliability with respect to the discrimination result of the stationary target and the moving target even when traveling on a curved road.

【0048】実施例5.なお、上記実施例4では実施例
1の静止物標判定手段8を静止物標判定手段31を用い
たものを示したが、実施例2または実施例3の静止物標
判定手段8に代えて上記静止物標判定手段31を用いて
も良い。
Embodiment 5 FIG. In the fourth embodiment, the stationary target object determining means 8 of the first embodiment is shown to use the stationary target object determining means 31, but the stationary target object determining means 8 of the second or third embodiment is replaced. You may use the said stationary target determination means 31.

【0049】実施例6.また、上記実施例1〜5におい
て、次回の測距時点における2次元座標上の予測点を基
準として設定した予測範囲と、次回の測距時点における
物標の第2の検出点とを比較するものについて説明した
が、次回の測距時点における物標の第2の検出点を基準
として設定した予測範囲と、次回の測距時点における2
次元座標上の予測点とを比較し、予測範囲内に存在する
予測点に対応した物標を静止物標と判定するようにして
も同様の効果が期待できる。
Example 6. Further, in the above-described first to fifth embodiments, the prediction range set based on the prediction point on the two-dimensional coordinate at the time of the next distance measurement is compared with the second detection point of the target at the time of the next distance measurement. As described above, the prediction range set based on the second detection point of the target at the time of the next distance measurement and the 2
The same effect can be expected by comparing the prediction point on the dimensional coordinates and determining the target corresponding to the prediction point existing in the prediction range as the stationary target.

【0050】[0050]

【発明の効果】請求項1の発明によれば、自車両の速度
と曲線路での自車両の旋回に伴う角度変化と測距時間間
隔とを考慮して予測点を算出するので、曲線路を走行中
でも予測点を精度よく算出でき、静止物標の識別の精度
が向上する。
According to the first aspect of the present invention, the predicted point is calculated in consideration of the speed of the host vehicle, the angle change accompanying the turning of the host vehicle on the curved road, and the distance measurement time interval. The predicted point can be accurately calculated even while driving, and the accuracy of identifying the stationary target is improved.

【0051】請求項2の発明によれば、自車両の速度と
曲線路での自車両の旋回に伴う角度変化と測距時間間隔
とを考慮して予測点を算出するので、曲線路を走行中で
も予測点を精度よく算出でき、静止物標の識別の精度が
向上する。
According to the second aspect of the present invention, since the predicted point is calculated in consideration of the speed of the host vehicle, the angle change accompanying the turning of the host vehicle on the curved road, and the distance measurement time interval, the vehicle travels on the curved road. Above all, the prediction point can be calculated accurately, and the accuracy of identifying the stationary target is improved.

【0052】請求項3の発明によれば、自車両の速度と
ハンドルの舵角と測距時間間隔とを考慮して予測点を算
出するので、曲線路を走行中でも予測点を精度よく算出
でき、静止物標の識別の精度が向上する。
According to the third aspect of the present invention, the predicted point is calculated in consideration of the speed of the host vehicle, the steering angle of the steering wheel, and the distance measurement time interval. Therefore, the predicted point can be calculated accurately even while traveling on a curved road. The accuracy of identifying the stationary target is improved.

【0053】請求項4の発明によれば、自車両の速度と
ハンドルの舵角と測距時間間隔とを考慮して予測点を算
出するので、曲線路を走行中でも予測点を精度よく算出
でき、静止物標の識別の精度が向上する。
According to the invention of claim 4, the predicted point is calculated in consideration of the speed of the host vehicle, the steering angle of the steering wheel, and the distance measurement time interval. Therefore, the predicted point can be accurately calculated even while traveling on a curved road. The accuracy of identifying the stationary target is improved.

【0054】請求項5の発明によれば、ハンドルの舵角
及び自車両の車速に対応した角度変化と自車両の速度と
測距時間間隔とを考慮して予測点を算出するので、曲線
路を走行中でも予測点を精度よく算出でき、静止物標の
識別の精度が向上する。
According to the invention of claim 5, the predicted point is calculated in consideration of the angle change corresponding to the steering angle of the steering wheel and the vehicle speed of the host vehicle, the speed of the host vehicle, and the distance measurement time interval. The predicted point can be accurately calculated even while driving, and the accuracy of identifying the stationary target is improved.

【0055】請求項6の発明によれば、ハンドルの舵角
及び自車両の車速に対応した角度変化と自車両の速度と
測距時間間隔とを考慮して予測点を算出するので、曲線
路を走行中でも予測点を精度よく算出でき、静止物標の
識別の精度が向上する。
According to the invention of claim 6, the predicted point is calculated in consideration of the steering angle of the steering wheel, the angle change corresponding to the vehicle speed of the host vehicle, the speed of the host vehicle and the distance measurement time interval. The predicted point can be accurately calculated even while driving, and the accuracy of identifying the stationary target is improved.

【0056】請求項7の発明によれば、ハンドルの舵角
及び自車両の車速に対応した位置変化と自車両の速度と
測距時間間隔とを考慮して予測点を算出するので、曲線
路を走行中でも予測点を精度よく算出でき、静止物標の
識別の精度が向上する。
According to the seventh aspect of the invention, the predicted point is calculated in consideration of the position change corresponding to the steering angle of the steering wheel and the vehicle speed of the host vehicle, the speed of the host vehicle, and the distance measurement time interval. The predicted point can be accurately calculated even while driving, and the accuracy of identifying the stationary target is improved.

【0057】請求項8の発明によれば、ハンドルの舵角
及び自車両の車速に対応した位置変化と自車両の速度と
測距時間間隔とを考慮して予測点を算出するので、曲線
路を走行中でも予測点を精度よく算出でき、静止物標の
識別の精度が向上する。
According to the present invention, the predicted point is calculated in consideration of the position change corresponding to the steering angle of the steering wheel and the vehicle speed of the host vehicle, the speed of the host vehicle, and the distance measurement time interval. The predicted point can be accurately calculated even while driving, and the accuracy of identifying the stationary target is improved.

【0058】請求項9の発明によれば、請求項1〜請求
項8のいずれかに記載の車両周辺検知装置において、現
在の測距時点における物標を静止物標の候補とし、次回
の測距時点においても静止物標の候補と判定されたとき
に静止物標であるとするので、静止物標の識別に対する
信頼度が向上する。
According to the ninth aspect of the present invention, in the vehicle periphery detection device according to any of the first to eighth aspects, the target at the time of the current distance measurement is set as a candidate for the stationary target, and the next measurement is performed. Since it is assumed that the target is a stationary target even when it is determined to be a candidate for the stationary target even at the time of distance, the reliability for identifying the stationary target is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の発明を示す構成図である。FIG. 1 is a configuration diagram showing an invention of a first embodiment.

【図2】 実施例1のフローチャートである。FIG. 2 is a flowchart of the first embodiment.

【図3】 実施例1の検出点と予測範囲との位置関係を
示す説明図である。
FIG. 3 is an explanatory diagram showing a positional relationship between a detection point and a prediction range according to the first embodiment.

【図4】 実施例1の旋回時の予測位置の算出方法を示
す説明図である。
FIG. 4 is an explanatory diagram showing a method of calculating a predicted position when turning according to the first embodiment.

【図5】 実施例2の発明を示す構成図である。FIG. 5 is a configuration diagram showing an invention of a second embodiment.

【図6】 実施例2のフローチャートである。FIG. 6 is a flowchart of a second embodiment.

【図7】 車速と舵角に対する角度変化を示す説明図で
ある。
FIG. 7 is an explanatory diagram showing an angle change with respect to a vehicle speed and a steering angle.

【図8】 実施例3の発明を示す構成図である。FIG. 8 is a configuration diagram showing the invention of Example 3;

【図9】 実施例4の発明を示す構成図である。FIG. 9 is a configuration diagram showing the invention of Example 4;

【図10】 実施例4のフローチャートである。FIG. 10 is a flowchart of a fourth embodiment.

【図11】 実施例4のフローチャートである。FIG. 11 is a flowchart of a fourth embodiment.

【図12】 従来の車両周辺検知装置を示す構成図であ
る。
FIG. 12 is a configuration diagram showing a conventional vehicle periphery detection device.

【図13】 従来の車両周辺検知装置の動作の流れを示
すフローチャートである。
FIG. 13 is a flowchart showing a flow of operations of a conventional vehicle periphery detection device.

【図14】 距離測定手段の検知領域と検知領域の分割
方法を示す説明図である。
FIG. 14 is an explanatory diagram showing a detection area of the distance measuring means and a method of dividing the detection area.

【図15】 従来の車両周辺検知装置の予測範囲設定手
段が設定した予測範囲を示す説明図である。
FIG. 15 is an explanatory diagram showing a prediction range set by a prediction range setting means of a conventional vehicle periphery detection device.

【符号の説明】[Explanation of symbols]

1 距離測定手段、2 座標変換手段、5 速度測定手
段、7 予測範囲設定手段、8,31 静止物標判定手
段、13 角度変化測定手段、6,14,28,30
予測位置算出手段、27 角度変化記憶手段、29 位
置変化量記憶手段。
DESCRIPTION OF SYMBOLS 1 distance measuring means, 2 coordinate converting means, 5 speed measuring means, 7 prediction range setting means, 8, 31 stationary target determining means, 13 angle change measuring means, 6, 14, 28, 30
Predicted position calculation means, 27 angle change storage means, 29 position change amount storage means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡村 茂一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigekazu Okamura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 自車両を基点とした検知領域を所定の角
度で分割して分割検知領域を設定し、上記各分割検知領
域内で上記自車両の外部に存在する物標を検知して現在
及び次回の測距時点における上記物標までの距離を所定
の測距時間間隔で測定する距離測定手段と、測定した現
在の測距時点における上記物標の位置を第1の検出点と
し、次回の測距時点における上記物標の位置を第2の検
出点としてそれぞれ2次元座標上に配置する座標変換手
段と、上記自車両の速度を測定する速度測定手段と、上
記自車両の旋回に伴う角度変化を測定する角度変化測定
手段と、上記2次元座標上に配置した上記第1の検出点
に対応した上記物標が静止物標であると仮定して、上記
自車両の速度と角度変化と上記測距時間間隔とに基づい
て次回の測距時点における上記2次元座標上の予測点を
算出する予測位置算出手段と、上記予測点を基準とした
予測範囲を上記物標について設定する予測範囲設定手段
と、上記第2の検出点と上記予測範囲とを比較し、上記
予測範囲内に存在する上記第2の検出点に対応した上記
物標を静止物標と判定する静止物標判定手段とを備えた
車両周辺検知装置。
1. A detection area having its own vehicle as a base point is divided at a predetermined angle to set a division detection area, and a target existing outside the own vehicle is detected in each of the division detection areas, and the present detection is performed. And distance measuring means for measuring the distance to the target at the next distance measurement time point at a predetermined distance measurement time interval, and the measured position of the target object at the current distance measurement time point as the first detection point. Coordinate conversion means for arranging the position of the target at the time of distance measurement as a second detection point on the two-dimensional coordinates, speed measurement means for measuring the speed of the own vehicle, and accompanying turning of the own vehicle. Assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinate is a stationary target, the speed and angle change of the host vehicle are measured. And based on the distance measurement time interval above, Prediction position calculating means for calculating the prediction point on the two-dimensional coordinates in the two-dimensional coordinates, prediction range setting means for setting a prediction range based on the prediction point for the target, the second detection point and the prediction range And a stationary object determining unit that determines that the object corresponding to the second detection point existing in the prediction range is a stationary object.
【請求項2】 自車両を基点とした検知領域を所定の角
度で分割して分割検知領域を設定し、上記各分割検知領
域内で上記自車両の外部に存在する物標を検知して現在
及び次回の測距時点における上記物標までの距離を所定
の測距時間間隔で測定する距離測定手段と、測定した現
在の測距時点における上記物標の位置を第1の検出点と
し、次回の測距時点における上記物標の位置を第2の検
出点としてそれぞれ2次元座標上に配置する座標変換手
段と、上記自車両の速度を測定する速度測定手段と、上
記自車両の旋回に伴う角度変化を測定する角度変化測定
手段と、上記2次元座標上に配置した上記第1の検出点
に対応した上記物標が静止物標であると仮定して、上記
自車両の速度と角度変化と上記測距時間間隔とに基づい
て次回の測距時点における上記2次元座標上の予測点を
算出する予測位置算出手段と、上記第2の検出点を基準
とした予測範囲を上記物標について設定する予測範囲設
定手段と、上記予測点と上記予測範囲とを比較し、上記
予測範囲内に存在する上記予測点に対応した上記物標を
静止物標と判定する静止物標判定手段とを備えた車両周
辺検知装置。
2. A detection area based on the host vehicle is divided at a predetermined angle to set a division detection area, and a target existing outside the host vehicle is detected in each of the division detection areas to detect the target. And distance measuring means for measuring the distance to the target at the next distance measurement time point at a predetermined distance measurement time interval, and the measured position of the target object at the current distance measurement time point as the first detection point. Coordinate conversion means for arranging the position of the target at the time of distance measurement as a second detection point on the two-dimensional coordinates, speed measurement means for measuring the speed of the own vehicle, and accompanying turning of the own vehicle. Assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinate is a stationary target, the speed and angle change of the host vehicle are measured. And based on the distance measurement time interval above, Prediction position calculating means for calculating the prediction point on the two-dimensional coordinates, prediction range setting means for setting the prediction range based on the second detection point for the target, the prediction point and the prediction range And a stationary object determining unit that determines that the object corresponding to the prediction point existing in the prediction range is a stationary object.
【請求項3】 自車両を基点とした検知領域を所定の角
度で分割して分割検知領域を設定し、上記各分割検知領
域内で上記自車両の外部に存在する物標を検知して現在
及び次回の測距時点における上記物標までの距離を所定
の測距時間間隔で測定する距離測定手段と、測定した現
在の測距時点における上記物標の位置を第1の検出点と
し、次回の測距時点における上記物標の位置を第2の検
出点としてそれぞれ2次元座標上に配置する座標変換手
段と、上記自車両の速度を測定する速度測定手段と、上
記自車両のハンドルの舵角を測定する舵角測定手段と、
上記2次元座標上に配置した上記第1の検出点に対応し
た上記物標が静止物標であると仮定して、上記自車両の
速度と上記ハンドルの舵角と上記測距時間間隔とに基づ
いて次回の測距時点における上記2次元座標上の予測点
を算出する予測位置算出手段と、上記予測点を基準とし
た予測範囲を上記物標について設定する予測範囲設定手
段と、上記第2の検出点と上記予測範囲とを比較し、上
記予測範囲内に存在する上記第2の検出点に対応した上
記物標を静止物標と判定する静止物標判定手段とを備え
た車両周辺検知装置。
3. A detection area based on the host vehicle is divided at a predetermined angle to set a division detection area, and a target existing outside the host vehicle is detected in each of the division detection areas to detect the target. And distance measuring means for measuring the distance to the target at the next distance measurement time point at a predetermined distance measurement time interval, and the measured position of the target object at the current distance measurement time point as the first detection point. Coordinate conversion means for arranging the position of the target at the time of distance measurement as the second detection point on the two-dimensional coordinates, speed measurement means for measuring the speed of the own vehicle, and steering of the steering wheel of the own vehicle. Rudder angle measuring means for measuring the angle,
Assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, the speed of the host vehicle, the steering angle of the steering wheel, and the distance measurement time interval are A predicted position calculation means for calculating a predicted point on the two-dimensional coordinate at the time of the next distance measurement based on the following, a prediction range setting means for setting a prediction range based on the predicted point for the target, and the second. Vehicle detection with a stationary target determination unit that compares the detection point of the target object with the prediction range and determines the target corresponding to the second detection point existing in the prediction range as a stationary target. apparatus.
【請求項4】 自車両を基点とした検知領域を所定の角
度で分割して分割検知領域を設定し、上記各分割検知領
域内で上記自車両の外部に存在する物標を検知して現在
及び次回の測距時点における上記物標までの距離を所定
の測距時間間隔で測定する距離測定手段と、測定した現
在の測距時点における上記物標の位置を第1の検出点と
し、次回の測距時点における上記物標の位置を第2の検
出点としてそれぞれ2次元座標上に配置する座標変換手
段と、上記自車両の速度を測定する速度測定手段と、上
記自車両のハンドルの舵角を測定する舵角測定手段と、
上記2次元座標上に配置した上記第1の検出点に対応し
た上記物標が静止物標であると仮定して、上記自車両の
速度と上記ハンドルの舵角と上記測距時間間隔とに基づ
いて次回の測距時点における上記2次元座標上の予測点
を算出する予測位置算出手段と、上記第2の検出点を基
準とした予測範囲を上記物標について設定する予測範囲
設定手段と、上記予測点と上記予測範囲とを比較し、上
記予測範囲内に存在する上記予測点に対応した上記物標
を静止物標と判定する静止物標判定手段とを備えた車両
周辺検知装置。
4. A detection area based on the host vehicle is divided at a predetermined angle to set a division detection area, and a target existing outside the host vehicle is detected in each of the division detection areas to detect the target. And distance measuring means for measuring the distance to the target at the next distance measurement time point at a predetermined distance measurement time interval, and the measured position of the target object at the current distance measurement time point as the first detection point. Coordinate conversion means for arranging the position of the target at the time of distance measurement as the second detection point on the two-dimensional coordinates, speed measurement means for measuring the speed of the own vehicle, and steering of the steering wheel of the own vehicle. Rudder angle measuring means for measuring the angle,
Assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, the speed of the host vehicle, the steering angle of the steering wheel, and the distance measurement time interval are A predicted position calculating means for calculating a predicted point on the two-dimensional coordinate at the time of the next distance measurement based on the following; a predicted range setting means for setting a predicted range based on the second detection point for the target; A vehicle periphery detection device comprising: a stationary target determination unit that compares the predicted point with the predicted range and determines the target corresponding to the predicted point existing in the predicted range as a stationary target.
【請求項5】 自車両を基点とした検知領域を所定の角
度で分割して分割検知領域を設定し、上記各分割検知領
域内で上記自車両の外部に存在する物標を検知して現在
及び次回の測距時点における上記物標までの距離を所定
の測距時間間隔で測定する距離測定手段と、測定した現
在の測距時点における上記物標の位置を第1の検出点と
し、次回の測距時点における上記物標の位置を第2の検
出点としてそれぞれ2次元座標上に配置する座標変換手
段と、上記自車両の速度を測定する速度測定手段と、上
記自車両のハンドルの舵角を測定する舵角測定手段と、
上記自車両の速度とハンドルの舵角に対応して単位時間
当たりに上記自車両の旋回に伴って生じる角度変化を記
憶した角度変化記憶手段と、上記2次元座標上に配置し
た上記第1の検出点に対応した上記物標が静止物標であ
ると仮定して、上記ハンドルの舵角に対応した上記角度
変化と上記自車両の速度と上記測距時間間隔とに基づい
て次回の測距時点における上記2次元座標上の予測点を
算出する予測位置算出手段と、上記予測点を基準とした
予測範囲を上記物標について設定する予測範囲設定手段
と、上記第2の検出点と上記予測範囲とを比較し、上記
予測範囲内に存在する上記第2の検出点に対応した上記
物標を静止物標と判定する静止物標判定手段とを備えた
車両周辺検知装置。
5. A detection area based on the host vehicle is divided at a predetermined angle to set a division detection area, and a target existing outside the host vehicle is detected in each of the division detection areas to detect the target. And distance measuring means for measuring the distance to the target at the next distance measurement time point at a predetermined distance measurement time interval, and the measured position of the target object at the current distance measurement time point as the first detection point. Coordinate conversion means for arranging the position of the target at the time of distance measurement as the second detection point on the two-dimensional coordinates, speed measurement means for measuring the speed of the own vehicle, and steering of the steering wheel of the own vehicle. Rudder angle measuring means for measuring the angle,
An angle change storage unit that stores an angle change that accompanies the turning of the host vehicle per unit time corresponding to the speed of the host vehicle and the steering angle of the steering wheel, and the first change sensor arranged on the two-dimensional coordinates. Assuming that the target corresponding to the detection point is a stationary target, the next distance measurement is performed based on the angle change corresponding to the steering angle of the steering wheel, the speed of the own vehicle, and the distance measurement time interval. Prediction position calculating means for calculating the prediction point on the two-dimensional coordinates at a time point, prediction range setting means for setting a prediction range with the prediction point as a reference for the target, the second detection point and the prediction A vehicle periphery detection device including a stationary target determination unit that compares the range with a stationary target and determines that the target corresponding to the second detection point existing in the predicted range is a stationary target.
【請求項6】 自車両を基点とした検知領域を所定の角
度で分割して分割検知領域を設定し、上記各分割検知領
域内で上記自車両の外部に存在する物標を検知して現在
及び次回の測距時点における上記物標までの距離を所定
の測距時間間隔で測定する距離測定手段と、測定した現
在の測距時点における上記物標の位置を第1の検出点と
し、次回の測距時点における上記物標の位置を第2の検
出点としてそれぞれ2次元座標上に配置する座標変換手
段と、上記自車両の速度を測定する速度測定手段と、上
記自車両のハンドルの舵角を測定する舵角測定手段と、
上記自車両の速度とハンドルの舵角に対応して単位時間
当たりに上記自車両の旋回に伴って生じる角度変化を記
憶した角度変化記憶手段と、上記2次元座標上に配置し
た上記第1の検出点に対応した上記物標が静止物標であ
ると仮定して、上記ハンドルの舵角に対応した上記角度
変化と上記自車両の速度と上記測距時間間隔とに基づい
て次回の測距時点における上記2次元座標上の予測点を
算出する予測位置算出手段と、上記第2の検出点を基準
とした予測範囲を上記物標について設定する予測範囲設
定手段と、上記予測点と上記予測範囲とを比較し、上記
予測範囲内に存在する上記予測点に対応した上記物標を
静止物標と判定する静止物標判定手段とを備えた車両周
辺検知装置。
6. A detection area based on the host vehicle is divided at a predetermined angle to set a division detection area, and a target existing outside the host vehicle is detected in each of the division detection areas to detect the target. And distance measuring means for measuring the distance to the target at the next distance measurement time point at a predetermined distance measurement time interval, and the measured position of the target object at the current distance measurement time point as the first detection point. Coordinate conversion means for arranging the position of the target at the time of distance measurement as the second detection point on the two-dimensional coordinates, speed measurement means for measuring the speed of the own vehicle, and steering of the steering wheel of the own vehicle. Rudder angle measuring means for measuring the angle,
An angle change storage unit that stores an angle change that accompanies the turning of the host vehicle per unit time corresponding to the speed of the host vehicle and the steering angle of the steering wheel, and the first change sensor arranged on the two-dimensional coordinates. Assuming that the target corresponding to the detection point is a stationary target, the next distance measurement is performed based on the angle change corresponding to the steering angle of the steering wheel, the speed of the own vehicle, and the distance measurement time interval. Prediction position calculation means for calculating the prediction point on the two-dimensional coordinates at the time point, prediction range setting means for setting the prediction range with respect to the second detection point for the target, the prediction point and the prediction A vehicle periphery detection device comprising: a stationary target determination unit that compares a range and determines that the target corresponding to the prediction point existing in the prediction range is a stationary target.
【請求項7】 自車両を基点とした検知領域を所定の角
度で分割して分割検知領域を設定し、上記各分割検知領
域内で上記自車両の外部に存在する物標を検知して現在
及び次回の測距時点における上記物標までの距離を所定
の測距時間間隔で測定する距離測定手段と、測定した現
在の測距時点における上記物標の位置を第1の検出点と
し、次回の測距時点における上記物標の位置を第2の検
出点としてそれぞれ2次元座標上に配置する座標変換手
段と、上記自車両の速度を測定する速度測定手段と、上
記自車両のハンドルの舵角を測定する舵角測定手段と、
上記自車両の速度とハンドルの舵角に対応して単位時間
当たりに上記自車両の旋回に伴って生じる静止物標の上
記2次元座標上の位置変化量を記憶した位置変化量記憶
手段と、上記2次元座標上に配置した上記第1の検出点
に対応した上記物標が静止物標であると仮定して、上記
ハンドルの舵角に対応した上記位置変化量と上記自車両
の速度と上記測距時間間隔とに基づいて次回の測距時点
における上記2次元座標上の予測点を算出する予測位置
算出手段と、上記予測点を基準とした予測範囲を上記物
標について設定する予測範囲設定手段と、上記第2の検
出点と上記予測範囲とを比較し、上記予測範囲内に存在
する上記第2の検出点に対応した上記物標を静止物標と
判定する静止物標判定手段とを備えた車両周辺検知装
置。
7. A detection area based on the own vehicle is divided at a predetermined angle to set a division detection area, and a target existing outside the own vehicle is detected in each of the division detection areas to detect the target. And distance measuring means for measuring the distance to the target at the next distance measurement time point at a predetermined distance measurement time interval, and the measured position of the target object at the current distance measurement time point as the first detection point. Coordinate conversion means for arranging the position of the target at the time of distance measurement as the second detection point on the two-dimensional coordinates, speed measurement means for measuring the speed of the own vehicle, and steering of the steering wheel of the own vehicle. Rudder angle measuring means for measuring the angle,
Position change amount storage means for storing the position change amount on the two-dimensional coordinates of the stationary target generated by the turning of the host vehicle per unit time corresponding to the speed of the host vehicle and the steering angle of the steering wheel, Assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, the position change amount corresponding to the steering angle of the steering wheel and the speed of the host vehicle Prediction position calculating means for calculating a prediction point on the two-dimensional coordinate at the next distance measurement time based on the distance measurement time interval, and a prediction range for setting a prediction range based on the prediction point for the target. Stationary target determination means that compares setting means with the second detection point and the prediction range, and determines the target corresponding to the second detection point existing in the prediction range as a stationary target. A vehicle surroundings detection device comprising:
【請求項8】 自車両を基点とした検知領域を所定の角
度で分割して分割検知領域を設定し、上記各分割検知領
域内で上記自車両の外部に存在する物標を検知して現在
及び次回の測距時点における上記物標までの距離を所定
の測距時間間隔で測定する距離測定手段と、測定した現
在の測距時点における上記物標の位置を第1の検出点と
し、次回の測距時点における上記物標の位置を第2の検
出点としてそれぞれ2次元座標上に配置する座標変換手
段と、上記自車両の速度を測定する速度測定手段と、上
記自車両のハンドルの舵角を測定する舵角測定手段と、
上記自車両の速度とハンドルの舵角に対応して単位時間
当たりに上記自車両の旋回に伴って生じる静止物標の上
記2次元座標上の位置変化量を記憶した位置変化量記憶
手段と、上記2次元座標上に配置した上記第1の検出点
に対応した上記物標が静止物標であると仮定して、上記
ハンドルの舵角に対応した上記位置変化量と上記自車両
の速度と上記測距時間間隔とに基づいて次回の測距時点
における上記2次元座標上の予測点を算出する予測位置
算出手段と、上記第2の検出点を基準とした予測範囲を
上記物標について設定する予測範囲設定手段と、上記予
測点と上記予測範囲とを比較し、上記予測範囲内に存在
する上記予測点に対応した上記物標を静止物標と判定す
る静止物標判定手段とを備えた車両周辺検知装置。
8. A detection area based on the own vehicle is divided at a predetermined angle to set a division detection area, and a target existing outside the own vehicle is detected in each of the division detection areas to detect the target. And distance measuring means for measuring the distance to the target at the next distance measurement time point at a predetermined distance measurement time interval, and the measured position of the target object at the current distance measurement time point as the first detection point. Coordinate conversion means for arranging the position of the target at the time of distance measurement as the second detection point on the two-dimensional coordinates, speed measurement means for measuring the speed of the own vehicle, and steering of the steering wheel of the own vehicle. Rudder angle measuring means for measuring the angle,
Position change amount storage means for storing the position change amount on the two-dimensional coordinates of the stationary target generated by the turning of the host vehicle per unit time corresponding to the speed of the host vehicle and the steering angle of the steering wheel, Assuming that the target corresponding to the first detection point arranged on the two-dimensional coordinates is a stationary target, the position change amount corresponding to the steering angle of the steering wheel and the speed of the host vehicle Prediction position calculating means for calculating a prediction point on the two-dimensional coordinate at the next distance measurement time based on the distance measurement time interval, and a prediction range based on the second detection point are set for the target. Prediction range setting means for comparing the prediction point and the prediction range, the stationary target determination means for determining the target corresponding to the prediction point existing in the prediction range as a stationary target Vehicle surroundings detection device.
【請求項9】 請求項1〜請求項8のいずれかに記載の
車両周辺検知装置において、静止物標判定手段は予測範
囲内に存在する現在の測距時点における物標を静止物標
の候補とし、所定の測定時間間隔後の次回の測距時点に
おいても静止物標の候補と判定されたときに上記物標を
静止物標とすることを特徴とする車両周辺検知装置。
9. The vehicle periphery detection device according to any one of claims 1 to 8, wherein the stationary target object determination means sets the target object at the current distance measurement existing within the prediction range as a stationary target object. A vehicle surroundings detection device, wherein the target is a stationary target when the target is determined to be a candidate for the stationary target even at the next distance measurement time after a predetermined measurement time interval.
JP18410295A 1995-07-20 1995-07-20 Vehicle periphery detection device Expired - Fee Related JP3209392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18410295A JP3209392B2 (en) 1995-07-20 1995-07-20 Vehicle periphery detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18410295A JP3209392B2 (en) 1995-07-20 1995-07-20 Vehicle periphery detection device

Publications (2)

Publication Number Publication Date
JPH0933642A true JPH0933642A (en) 1997-02-07
JP3209392B2 JP3209392B2 (en) 2001-09-17

Family

ID=16147437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18410295A Expired - Fee Related JP3209392B2 (en) 1995-07-20 1995-07-20 Vehicle periphery detection device

Country Status (1)

Country Link
JP (1) JP3209392B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131432A (en) * 2000-10-24 2002-05-09 Honda Motor Co Ltd Advancing locus estimating device for vehicle
JP2007240446A (en) * 2006-03-10 2007-09-20 Omron Corp Range finder for vehicle
JP2008158690A (en) * 2006-12-21 2008-07-10 Sogo Keibi Hosho Co Ltd Mobile body detection apparatus, security robot, mobile body detection method, and mobile body detection program
JP2009047550A (en) * 2007-08-20 2009-03-05 Tokyo Keiki Inc Unnecessary tracking target removal device
US7733266B2 (en) 2007-09-06 2010-06-08 Honda Motor Co., Ltd. Control target recognition system and vehicle object detection system
JP2013108880A (en) * 2011-11-22 2013-06-06 Toshiba Corp Rader equipment and vehicle
WO2014118968A1 (en) * 2013-02-01 2014-08-07 三菱電機株式会社 Radar device
JP2015087352A (en) * 2013-11-01 2015-05-07 株式会社東芝 Traveling speed estimation device, still object classification device and traveling speed estimation method
WO2017037753A1 (en) * 2015-08-28 2017-03-09 日産自動車株式会社 Vehicle position estimation device, vehicle position estimation method
JP2019537715A (en) * 2016-10-25 2019-12-26 ツァイニャオ スマート ロジスティクス ホールディング リミティド Obstacle detection system and method
WO2020105451A1 (en) * 2018-11-22 2020-05-28 株式会社村田製作所 Radar device, vehicle, and object position detection method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131432A (en) * 2000-10-24 2002-05-09 Honda Motor Co Ltd Advancing locus estimating device for vehicle
JP2007240446A (en) * 2006-03-10 2007-09-20 Omron Corp Range finder for vehicle
JP2008158690A (en) * 2006-12-21 2008-07-10 Sogo Keibi Hosho Co Ltd Mobile body detection apparatus, security robot, mobile body detection method, and mobile body detection program
JP2009047550A (en) * 2007-08-20 2009-03-05 Tokyo Keiki Inc Unnecessary tracking target removal device
US7733266B2 (en) 2007-09-06 2010-06-08 Honda Motor Co., Ltd. Control target recognition system and vehicle object detection system
JP2013108880A (en) * 2011-11-22 2013-06-06 Toshiba Corp Rader equipment and vehicle
JP5972402B2 (en) * 2013-02-01 2016-08-17 三菱電機株式会社 Radar equipment
WO2014118968A1 (en) * 2013-02-01 2014-08-07 三菱電機株式会社 Radar device
US9983294B2 (en) 2013-02-01 2018-05-29 Mitsubishi Electric Corporation Radar system
JP2015087352A (en) * 2013-11-01 2015-05-07 株式会社東芝 Traveling speed estimation device, still object classification device and traveling speed estimation method
WO2017037753A1 (en) * 2015-08-28 2017-03-09 日産自動車株式会社 Vehicle position estimation device, vehicle position estimation method
JPWO2017037753A1 (en) * 2015-08-28 2018-02-22 日産自動車株式会社 Vehicle position estimation device and vehicle position estimation method
US10508923B2 (en) 2015-08-28 2019-12-17 Nissan Motor Co., Ltd. Vehicle position estimation device, vehicle position estimation method
JP2019537715A (en) * 2016-10-25 2019-12-26 ツァイニャオ スマート ロジスティクス ホールディング リミティド Obstacle detection system and method
WO2020105451A1 (en) * 2018-11-22 2020-05-28 株式会社村田製作所 Radar device, vehicle, and object position detection method
JPWO2020105451A1 (en) * 2018-11-22 2021-09-02 株式会社村田製作所 Radar device, vehicle and object position detection method
US11899093B2 (en) 2018-11-22 2024-02-13 Murata Manufacturing Co., Ltd. Radar device, vehicle, and object position detection method

Also Published As

Publication number Publication date
JP3209392B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP3487054B2 (en) Obstacle warning device for vehicles
JPH0875848A (en) Method and device for tracking body
JPH0933642A (en) Vehicle circumference detecting device
JPH11326499A (en) Distance measuring device and vehicle controller using the device
JP2002243857A (en) Surrounding body recognizer
JP2002071808A (en) Ranging device and preceding vehicle detecting system and preceding vehicle tracking system using this
JP2003014844A (en) Object type-discriminating apparatus and method
JP3653862B2 (en) Vehicle curve diameter estimation device and target preceding vehicle detection device
JP3954053B2 (en) Vehicle periphery monitoring device
JP2973544B2 (en) Scanning radar
JPH07100426B2 (en) Rear-end collision warning system for vehicles
JPH08210867A (en) Car navigation system and method for giving automobile driving instruction
JP2001318148A (en) Omnidirectional light-wave distance measuring instrument and travel control system
JPH11183174A (en) Position measuring apparatus for mobile
JP2015004543A (en) Vehicle position recognition device
JP2006275748A (en) Detecting device for value of axis misalignment of radar
JP4535585B2 (en) Perimeter monitoring device
JP3465435B2 (en) Target preceding vehicle detection device
JPH06148329A (en) Vehicular gap detection apparatus
JP3364982B2 (en) Obstacle detector and radius of curvature detector
JP3528267B2 (en) Obstacle detection device
JPH07105497A (en) Inter-vehicle distance sensor
JP3401979B2 (en) Triangulation type distance measuring device and obstacle detection device
JPH10227860A (en) Preceding vehicle judging device
JP3487016B2 (en) Obstacle detection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees