JPH0364073B2 - - Google Patents

Info

Publication number
JPH0364073B2
JPH0364073B2 JP11088884A JP11088884A JPH0364073B2 JP H0364073 B2 JPH0364073 B2 JP H0364073B2 JP 11088884 A JP11088884 A JP 11088884A JP 11088884 A JP11088884 A JP 11088884A JP H0364073 B2 JPH0364073 B2 JP H0364073B2
Authority
JP
Japan
Prior art keywords
image
carrier
voltage
toner
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11088884A
Other languages
Japanese (ja)
Other versions
JPS60256160A (en
Inventor
Satoru Haneda
Hisafumi Shoji
Seiichiro Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP11088884A priority Critical patent/JPS60256160A/en
Publication of JPS60256160A publication Critical patent/JPS60256160A/en
Publication of JPH0364073B2 publication Critical patent/JPH0364073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0907Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush with bias voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、写子真真法、静電記録法、静電印刷
法または磁気記録法によつて像担持体に形成した
潜像をトナー像に現像する画像形成方法に関し、
特に、回動する像担持体と現像剤搬送担体とが対
向する現像域に振動電界を生ぜしめて像担持体上
の潜像をトナー像に現像する画像形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides a method for converting a latent image formed on an image carrier by a photophotographic method, an electrostatic recording method, an electrostatic printing method, or a magnetic recording method into a toner. Regarding the image forming method of developing into an image,
In particular, the present invention relates to an image forming method in which a latent image on an image carrier is developed into a toner image by generating an oscillating electric field in a developing area where a rotating image carrier and a developer transport carrier face each other.

〔従来技術〕[Prior art]

上述のような画像形成方法は、特開昭49−
94335号、同50−30537号、同55−18656号、同56
−144452号、同57−139761号、同57−147652号、
同58−48065号各公報やUSP4076857号公報等に
より知られている。このような画像形成方法は、
現像剤搬送担体面の現像剤層を像担持体面に接触
させる条件でも用いられるが、振動電界の作用に
よつて現像剤層からトナーが飛翔して像担持体に
移行するようになるから、トナー像に掃き目の生
ずることがない。そして背景部にトナーが付着す
るかぶりの発生を容易に防止することができる。
現像剤層を像担持体面に接触させない条件で用い
ることが好ましく、それによつて掃き目やかぶり
のない鮮明なトナー像を形成することができる。
しかし、反面、振動電界の作用によつてトナーが
飛翔して像担持体との間隙から現像装置外にトナ
ーが飛散し易いし、複数の現像装置によつて像担
持体上でトナー像の重ね合わせを行うカラー画像
形成の場合は、トナーの逆転移による現像装置へ
の色違いトナーの混入も起り易いし、また振動電
界を生ぜしめるために電力の消費も大きいと言つ
た問題がある。
The above-mentioned image forming method is disclosed in Japanese Patent Application Laid-open No. 1973-
No. 94335, No. 50-30537, No. 55-18656, No. 56
−144452, No. 57-139761, No. 57-147652,
It is known from publications such as No. 58-48065 and USP No. 4076857. Such an image forming method is
It is also used under the condition that the developer layer on the surface of the developer transporting carrier is in contact with the surface of the image carrier, but the action of the oscillating electric field causes the toner to fly from the developer layer and transfer to the image carrier. There are no sweeping marks on the image. In addition, it is possible to easily prevent the occurrence of fogging in which toner adheres to the background area.
It is preferable to use the developer layer under conditions such that it does not come into contact with the surface of the image carrier, thereby making it possible to form a clear toner image without any scratches or fogging.
However, on the other hand, the toner tends to fly due to the action of the oscillating electric field and scatter out of the developing device from the gap with the image carrier, and the toner images are overlapped on the image carrier by multiple developing devices. In the case of color image formation in which alignment is performed, there are problems in that toners of different colors are likely to be mixed into the developing device due to toner reverse transfer, and power consumption is also large due to the generation of an oscillating electric field.

そこで、像担持体上の潜像が現像域を通過する
ときにのみ現像剤搬送担体に振動電圧を印加し、
それ以外のときは、現像剤搬送担体を接地あるい
はフローテイング状態とし、または現像剤搬送担
体に直流電圧を印加するようにした画像形成方法
がUSP3893418号公報や特開昭56−14266号公報
により知られている。この方法によれば、上述の
問題を相当程度解消することができる。しかし、
この方法は、現像剤搬送担体に所定の振動電圧を
印加する時期を単に像担持体の潜像が現像域を通
過する時期に合わせるようにしたものであるた
め、潜像が現像域に達したときに未だ十分な振動
電界が生じていなかつたり、それを防ぐために振
動電圧印加の時期を早めると、前述の方法におけ
ると同様に、トナー飛散や、現像が背景部電位に
対して低電位乃至は逆極性電位の静電潜像に背景
部電位と同極性に帯電したトナーを付着させる反
転現像にあつては、背景部電位の非画像帯電領域
にトナーが付着するトナーの徒費が生じたりする
と言う問題がある。
Therefore, an oscillating voltage is applied to the developer transport carrier only when the latent image on the image carrier passes through the development area.
In other cases, an image forming method in which the developer transporting carrier is grounded or floating, or a DC voltage is applied to the developer transporting carrier, is known from US Pat. It is being According to this method, the above-mentioned problems can be solved to a considerable extent. but,
In this method, the timing at which a predetermined oscillating voltage is applied to the developer transport carrier is simply timed to coincide with the timing at which the latent image on the image carrier passes through the development area. Sometimes, if a sufficient oscillating electric field is not yet generated, or if the timing of applying the oscillating voltage is advanced to prevent this, toner scattering or development may occur at a lower potential than the background potential, as in the method described above. In reversal development, in which toner charged to the same polarity as the background potential is attached to an electrostatic latent image with an opposite polarity potential, toner may be wasted as the toner adheres to a non-image charged area with a background potential. I have a problem to say.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の問題を解消するためになされ
たものであり、像担持体の潜像が現像域に達する
ときには十分な振動電界が生ぜしめられていて、
安定して鮮明なトナー像を形成することができ、
トナーの飛散や徒費が防止され、電力の消費も少
ない画像形成方法を提供するものである。
The present invention has been made to solve the above-mentioned problem, and a sufficient oscillating electric field is generated when the latent image on the image carrier reaches the development area.
Able to form stable and clear toner images,
To provide an image forming method that prevents toner scattering and waste, and consumes less power.

〔発明の構成〕[Structure of the invention]

本発明は、回動する像担持体と現像剤搬送担体
とが対向する現像域に振動電界を生ぜしめて像担
持体上の潜像をトナー像に現像する画像形成方法
において、像担持体上の潜像が現像域に達する前
に予め現像域に一方向性電界を生ぜしめてから該
電界を連続的または段階的に前記振動電界に変化
させ、しかる後に像担持体上の潜像を現像域に通
過させるようにしたことを特徴とする画像形成方
法にあり、この構成によつて上記目的を達成した
ものである。
The present invention relates to an image forming method in which a latent image on an image carrier is developed into a toner image by generating an oscillating electric field in a developing area where a rotating image carrier and a developer transport carrier face each other. Before the latent image reaches the development area, a unidirectional electric field is generated in the development area in advance, and the electric field is changed continuously or stepwise to the oscillating electric field, and then the latent image on the image carrier is transferred to the development area. The image forming method is characterized by allowing the light to pass through the image, and with this configuration, the above object is achieved.

〔実施例〕〔Example〕

以下、本発明を図示例によつて説明する。 The present invention will be explained below using illustrated examples.

第1図は本発明の方法を実施する記録装置の一
例を示す概要構成図、第2図は現像装置の一例を
示す部分図、第3図乃至第5図はそれぞれ現像剤
搬送担体に印加するバイアス電圧の例を示すタイ
ムチヤート、第6図乃至第8図はそれぞれ第3図
乃至第5図に示したバイアス電圧を印加するバイ
アス電源の構成例を示す回路図である。
FIG. 1 is a schematic configuration diagram showing an example of a recording device that implements the method of the present invention, FIG. 2 is a partial diagram showing an example of a developing device, and FIGS. Time charts showing examples of bias voltages, and FIGS. 6 to 8 are circuit diagrams showing examples of configurations of bias power supplies that apply the bias voltages shown in FIGS. 3 to 5, respectively.

第1図の記録装置は、原稿撮像素子や他の機器
から入力された信号、あるいはデータ記憶部のデ
ータ等から得られる画像データIを信号処理装置
1で処理することにより、2値(すなわち白黒)
化された画素データより構成される画像信号(以
下、2値画像と云う)を得、この2値画像の画素
データによりレーサ、音響光学変調装置、レンズ
装置、回転多面鏡等から成るレーザビームスキヤ
ナ2を画素毎にON,OFF制御して、矢印方向に
回転し帯電器4により一様に帯電されている像担
持体3の光導電体層表面にレーザスポツトによる
像露光を行い、そのスポツト露光部分に詳細を第
2図に示したような現像装置5により振動電界下
で像担持体3の帯電と同極性に帯電しているトナ
ーを付着させてトナー像を形成するものである。
そして、形成されたトナー像は、像担持体3の回
転と同期して像担持体3の表面に接するように送
り込まれて来る記録紙Pに転写器6によつて転写
され、トナー像を転写された記録紙Pは、分離器
7によつて像担持体3の表面から分離され、次い
でローラ定着装置8によつてトナー像と定着され
て記録装置外に排出される。一方、トナー像を転
写した像担持体3の表面は、除電器9によつて除
電された後クリーニング装置10によつて残留ト
ナーを除かれて一回の画像形成プロセスを終了す
る。
The recording device shown in FIG. 1 uses a signal processing device 1 to process image data I obtained from a signal input from a document image sensor, other equipment, data in a data storage unit, etc. )
An image signal composed of converted pixel data (hereinafter referred to as a binary image) is obtained, and the pixel data of this binary image is used to control a laser beam scanner consisting of a laser, an acousto-optic modulator, a lens device, a rotating polygon mirror, etc. The Yana 2 is controlled ON and OFF for each pixel, rotates in the direction of the arrow, and performs image exposure with a laser spot on the surface of the photoconductor layer of the image carrier 3, which is uniformly charged by the charger 4. A toner image is formed by depositing toner charged to the same polarity as that of the image carrier 3 under an oscillating electric field using a developing device 5 as shown in detail in FIG. 2 on the exposed portion.
Then, the formed toner image is transferred by a transfer device 6 to a recording paper P that is fed so as to be in contact with the surface of the image carrier 3 in synchronization with the rotation of the image carrier 3, and the toner image is transferred. The separated recording paper P is separated from the surface of the image carrier 3 by a separator 7, then fixed with the toner image by a roller fixing device 8, and discharged from the recording apparatus. On the other hand, the surface of the image carrier 3 to which the toner image has been transferred is neutralized by a static eliminator 9, and then residual toner is removed by a cleaning device 10 to complete one image forming process.

第2図の現像装置5は、アルミニウムやステン
レス鋼のような非磁性材料から成る現像剤搬送担
体51にバイアス電源11によつてバイアス電圧
を印加されて、基体部を接地されている像担持体
3との間の現像域内に電界を生ぜしめられる。こ
の現像剤搬送担体51の内部には表面に複数の
N,S磁極を有する磁石体52が設けられてい
る。そして、現像剤搬送担体51が静止または左
回転し、磁石体52が右回転または静止すること
により、磁石体52の磁力によつて現像剤溜り5
3から現像剤搬送担体51の表面に吸着された現
像剤が上記一方の回転または両方の回転によつて
反時計方向に移動するようになる。このように搬
送される現像剤は、層厚規制ブレード54によつ
て像担持体3の表面に接触しない範囲の層厚に規
制され、現像域Aにおいて振動電界の作用により
トナーが現像剤層から飛翔して像担持体3の静電
潜像を現像する。なお、現像に現像剤層の不同の
影響が現われにくい点からすると、磁石体52が
回転して現像剤層を搬送するものであることが好
ましい。
The developing device 5 shown in FIG. 2 is an image carrier in which a bias voltage is applied by a bias power supply 11 to a developer transport carrier 51 made of a non-magnetic material such as aluminum or stainless steel, and whose base portion is grounded. An electric field is created in the development zone between 3 and 3. A magnet body 52 having a plurality of N and S magnetic poles on its surface is provided inside the developer transport carrier 51 . When the developer transport carrier 51 stands still or rotates counterclockwise and the magnet body 52 rotates clockwise or stands still, the magnetic force of the magnet body 52 causes the developer reservoir 5
3, the developer adsorbed on the surface of the developer transport carrier 51 is moved counterclockwise by one or both of the rotations. The developer transported in this manner is regulated to a layer thickness within a range that does not contact the surface of the image carrier 3 by the layer thickness regulating blade 54, and the toner is removed from the developer layer by the action of the oscillating electric field in the development area A. The electrostatic latent image on the image carrier 3 is developed by flying. Note that, from the viewpoint that the influence of unevenness of the developer layer is less likely to appear in the development, it is preferable that the magnet body 52 rotates to convey the developer layer.

現像域Aを通過した残りの現像剤層はクリーニ
ングブレード55によつて現像剤搬送担体51の
表面から除かれて現像剤溜り53に還元される。
現像剤溜り53の現像剤は、トナーとキヤリヤが
混合した所謂二成分現像剤であり、撹拌翼56に
よつて撹拌されてトナーが像担持体1の帯電と同
極性に帯電するものである。トナーは、現像によ
つて消費されるから、トナーホツパー57からト
ナー補給ローラ58によつて現像剤溜り53に補
給される。
The remaining developer layer that has passed through the development area A is removed from the surface of the developer transport carrier 51 by the cleaning blade 55 and returned to the developer reservoir 53.
The developer in the developer reservoir 53 is a so-called two-component developer containing a mixture of toner and carrier, and is stirred by the stirring blade 56 so that the toner is charged to the same polarity as the image carrier 1 . Since the toner is consumed during development, it is replenished from the toner hopper 57 to the developer reservoir 53 by the toner replenishment roller 58.

像担持体3の帯電と同極性に帯電したトナーを
現像域Aにおいて現像剤搬送担体51上の現像剤
層から飛翔させて静電潜像の像露光部に付着させ
るために、現像剤搬送担体51には像担持体3の
背景部電位に近い同極性の直流電圧と交流電圧の
重畳したバイアス電圧を印加する。バイアス電源
11は、このバイアス電圧の印加を第3図〜第5
図に示したように行い、それによつて、トナーの
飛散や徒費を防止するようにしている。なお、1
2は保護抵抗である。
In order to make the toner charged to the same polarity as that of the image carrier 3 fly from the developer layer on the developer transport carrier 51 in the development area A and adhere to the image exposure area of the electrostatic latent image, the developer transport carrier is used. A bias voltage that is a superimposition of a DC voltage and an AC voltage of the same polarity close to the background potential of the image carrier 3 is applied to 51 . The bias power supply 11 applies this bias voltage in accordance with FIGS. 3 to 5.
This is done as shown in the figure to prevent toner scattering and wasted costs. In addition, 1
2 is a protective resistance.

第3図乃至第5図において、T0は帯電器4に
よる帯電の行われていない像担持体3の非帯電領
域が現像域Aを通過する時間帯、Tvは帯電器4
によつて帯電が行われたが像露光の入射が行われ
ていない像担持体3の非画像帯電領域が現像域A
を通過する時間帯、Tiは像露光の入射した像担持
体3の画像形成領域が現像域Aを通過する時間
帯、Tv′は画像形成領域に続く非画像形成領域が
現像域Aを通過する時間帯、T0′は帯電器4によ
る帯電の終了した非帯電領域が現像領域Aを通過
する時間を示す。そして、第3図は、時間帯Tv
においてまず直流電圧を印加し、次いで一定周期
の交流電圧を振幅を次第に増大させて重畳し、交
流電圧の振幅が所定の値に達した段階で像担持体
3の画像形成領域が現像域Aを通過するようにな
り、時間帯Tiの間はこの直流電圧と交流電圧の重
畳したバイアス電圧を維持し、時間帯Tv′に入つ
た段階で交流電圧の振幅を減衰させて直流電圧の
印加のみに戻し、その直流電圧も非帯電領域が現
像域Aを通過するようになる前には印加を停止す
るようにした例を示している。このように画像形
成領域が現像域Aに達する前に一方向性電界を生
じさせ、次いで振動電界を次第に強くして所定の
現像条件にもたらすようにすると、現像剤にいき
なり強い振動電界が作用することがないから、ト
ナーを飛散させることなく、非画像帯電領域にト
ナーが付着するトナーの徒費も少なく、そして、
画像形成領域が現像域を通過するときには所定の
振動電界が保たれて、かぶりのない鮮明なトナー
像を現像することができ、また、電力の消費も必
要最少限で済む。第4図は、第3図の例における
交流電圧の振幅を漸増および減衰させていること
の代りに、その間は半波整流した交流電圧を直流
電圧と重畳するようにした例を示している。この
例においても第3図の例におけると同様の効果が
得られる。第5図は、第3図や第4図の例におい
て先に直流電圧のみを印加して一方向性電界を生
じさせていることの代りに、現像時に印加する重
畳電圧を半波整流して得られる同一極性のみを示
すパルス状の電圧を印加することによつて一方向
性電界を生じさせ、それにより第3図の交流電圧
振幅の漸増および減衰や第4図の半波整流した交
流電圧の重畳と同じ役割も兼ねさせた例を示して
いる。すなわち、この例においても第3図や第4
図の例におけると同様の効果を得ることができ
る。
In FIGS. 3 to 5, T 0 is the time period during which the uncharged area of the image carrier 3 that is not charged by the charger 4 passes through the development area A, and T v is the time period when the charger 4 passes through the developing area A.
The non-image-charged area of the image carrier 3 which has been charged by , but is not subjected to image exposure, is the development area A.
, T i is the time period during which the image forming area of the image bearing member 3 subjected to image exposure passes through the developing area A, and T v ′ is the time period during which the non-image forming area following the image forming area passes through the developing area A. The passing time period T 0 ' indicates the time during which the uncharged area, which has been charged by the charger 4, passes through the development area A. Figure 3 shows the time period T v
First, a DC voltage is applied, and then an AC voltage of a constant period is superimposed with the amplitude gradually increasing. When the amplitude of the AC voltage reaches a predetermined value, the image forming area of the image carrier 3 reaches the development area A. During time period T i , this bias voltage, which is a superimposition of DC voltage and AC voltage, is maintained, and when time period T v ' begins, the amplitude of AC voltage is attenuated and DC voltage is applied. In this example, the application of the DC voltage is stopped before the uncharged area passes through the development area A. In this way, a unidirectional electric field is generated before the image forming area reaches the development area A, and then the oscillating electric field is gradually strengthened to bring about the predetermined development conditions, so that a strong oscillating electric field suddenly acts on the developer. Therefore, there is no toner scattering, and there is less toner waste due to toner adhering to non-image charged areas.
When the image forming area passes through the developing area, a predetermined oscillating electric field is maintained, and a clear toner image without fogging can be developed, and power consumption can be kept to a minimum. FIG. 4 shows an example in which, instead of gradually increasing and attenuating the amplitude of the AC voltage in the example of FIG. 3, a half-wave rectified AC voltage is superimposed on the DC voltage. In this example as well, the same effect as in the example of FIG. 3 can be obtained. Figure 5 shows that instead of first applying only a DC voltage to generate a unidirectional electric field in the examples of Figures 3 and 4, the superimposed voltage applied during development is half-wave rectified. A unidirectional electric field is generated by applying a pulsed voltage that exhibits only the same polarity, thereby increasing and attenuating the AC voltage amplitude as shown in Figure 3 or the half-wave rectified AC voltage as shown in Figure 4. An example is shown in which it also serves the same role as the superimposition of . In other words, in this example as well, Figures 3 and 4
The same effect as in the example shown in the figure can be obtained.

第3図の例はバイアス電源11に第6図に示し
たような回路を用いることによつて実施できる。
すなわち、発振回路を作動させずにスイツチ13
をa接点にオンすれば、現像剤搬送担体51に直
流電圧が印加され、二次コイルの可動短絡接点1
4が図示の完全短絡位置に接続されている状態で
発振回路を作動させて可動短絡接点14を上方に
移動させれば、交流電圧が振幅を次第に増大させ
て重畳されるようになり、交流電圧の振幅が所定
の値に達した位置から可動短絡接点14を元に戻
すようにすれば交流電圧の振幅は0にまで減衰
し、そしてスイツチ13をb接点にオンすれば現
像剤搬送担体51へのバイアス電圧の印加は停止
する。なお、二次コイルに可動短絡接点14を用
いる代りに、発振回路側で交流電圧の振幅を漸
増、減衰させるようにしてもよい。
The example of FIG. 3 can be implemented by using a circuit as shown in FIG. 6 for the bias power supply 11.
In other words, the switch 13 is activated without operating the oscillation circuit.
When the A contact is turned on, a DC voltage is applied to the developer transport carrier 51, and the movable short-circuit contact 1 of the secondary coil is turned on.
4 is connected to the complete short-circuit position shown in the figure, if the oscillation circuit is activated and the movable short-circuit contact 14 is moved upward, the alternating current voltage will gradually increase in amplitude and be superimposed, causing the alternating voltage If the movable short-circuiting contact 14 is returned to the original position from the position where the amplitude of The application of the bias voltage is stopped. Note that instead of using the movable short-circuit contact 14 in the secondary coil, the amplitude of the alternating current voltage may be gradually increased or attenuated on the oscillation circuit side.

第4図の例はバイアス電源11に第7図に示し
たような回路を用いることによつて実施できる。
すなわち、発振回路を作動させずにスイツチ13
をa接点にオンすれば、現像剤搬送担体51に直
流電圧が印加され、整流回路のスイツチ15をオ
ンした状態で発振回路を作動させれば、直流電圧
に半波整流した交流電圧が重畳され、スイツチ1
5をオフすれば、直流電圧と交流電圧の重畳電圧
が印加され、再びスイツチ15をオンすれば、直
流電圧に半波整流した交流電圧の重畳した電圧が
印加される状態に戻り、次に発振回路の作動を停
止し、更にスイツチ13をb接点にオンすること
により、第4図のバイアス電圧印加が行われる。
The example of FIG. 4 can be implemented by using a circuit as shown in FIG. 7 for the bias power supply 11.
In other words, the switch 13 is activated without operating the oscillation circuit.
When the A contact is turned on, a DC voltage is applied to the developer transport carrier 51, and when the oscillation circuit is operated with the switch 15 of the rectifier circuit turned on, a half-wave rectified AC voltage is superimposed on the DC voltage. , switch 1
When switch 5 is turned off, a superimposed voltage of DC voltage and AC voltage is applied, and when switch 15 is turned on again, the state returns to the state where a voltage where half-wave rectified AC voltage is superimposed on DC voltage is applied, and then oscillation starts. By stopping the operation of the circuit and further turning on the switch 13 to the b contact, the bias voltage application shown in FIG. 4 is performed.

第5図の例はバイアス電源11に第8図に示し
たような回路を用いることによつて実施できる。
すなわち、整流回路のスイツチ15をオンし、ス
イツチ13をb接点にオンした状態で発振回路を
作動させ、そしてスイツチ13をa接点にオンす
ると、現像剤搬送担体51に直流電圧と交流電圧
の重畳電圧を整流したパルス状の一方向性極性バ
イアス電圧が印加されるようになり、次にスイツ
チ15をオフすると、バイアス電圧は直流電圧と
交流電圧の重畳電圧となり、再びスイツチ15を
オンすると、パルス状のバイアス電圧に戻り、ス
イツチ13をb接点にオンすることによつてバイ
アス電圧の印加が停止する。
The example of FIG. 5 can be implemented by using a circuit as shown in FIG. 8 for the bias power supply 11.
That is, when the switch 15 of the rectifier circuit is turned on, the oscillation circuit is operated with the switch 13 turned on to the B contact, and the switch 13 is turned on to the A contact, a superimposition of DC voltage and AC voltage is applied to the developer transport carrier 51. A pulsed unidirectional polarity bias voltage obtained by rectifying the voltage is applied. Next, when the switch 15 is turned off, the bias voltage becomes a superimposed voltage of DC voltage and AC voltage. When the switch 15 is turned on again, the pulsed unidirectional polarity bias voltage is applied. The application of the bias voltage is stopped by returning the bias voltage to the state shown in FIG.

第3図乃至第5図の例において、現像剤搬送担
体51や磁石体52が回転して現像剤層を搬送す
る時期は、時間帯Tiを含む時時期であれば非帯電
領域が現像域Aを通過する含んでいてもよいが、
トナーの飛散や徒費を少なくし、画像形成領域が
現像域Aを通過するときには確実に十分なトナー
を伴う現像剤層が現像域Aに搬送される状態とな
つているために、時間帯Tvに入つて現像剤搬送
担体51に振動電圧成分を印加する前の時点で搬
送を開始するのが好ましく、そして搬送の停止も
時間帯Tv′において行うのが好ましい。また、第
3図乃至第5図の例は、連続して複数の画像形成
を行うような場合に、毎回の画像形成毎に行うも
のとすることが好ましいことは勿論であるが、中
間の画像形成の間を時間帯Tiに含めたものとして
もよく、それでもある程度の効果は得られる。
In the examples shown in FIGS. 3 to 5, when the developer transport carrier 51 and the magnet 52 rotate to transport the developer layer, if the period includes the time period T i , the uncharged area is the development area. may include passing through A,
This reduces toner scattering and waste costs, and ensures that a developer layer with sufficient toner is transported to the development area A when the image forming area passes through the development area A. It is preferable to start the conveyance at a time point before the application of the oscillating voltage component to the developer conveying carrier 51 in the developer transport carrier 51, and it is also preferable to stop the conveyance in the time period Tv ' . In addition, in the examples shown in FIGS. 3 to 5, it is of course preferable to perform the process for each image formation when a plurality of images are formed continuously, but the intermediate image The period during the formation may be included in the time period T i , and even then, a certain degree of effect can be obtained.

以上、本発明を反転現像の例について述べた
が、記録装置が静電潜像に逆極性(像担持体3の
帯電極性と逆極性)に帯電したトナーを付着させ
るようにしたものであつても本発明は適用し得る
し、静電記録記録法や磁気記録法によるものにも
適用し得る。そして、現像域に予め生じさせる一
方向性電界は、現像剤層からのトナーの移行を助
長する方向のものでも、かぶりを防止するために
移行を抑制する方向のものであつてもよい。ま
た、本発明は非接触現像条件や現像剤に二成分現
像剤を用いる条件によることが好ましいが、それ
に限定されるものでもない。
The present invention has been described above with reference to an example of reversal development, but the recording device is one in which toner charged to the opposite polarity (opposite to the charged polarity of the image carrier 3) is attached to the electrostatic latent image. The present invention can also be applied to those using electrostatic recording method or magnetic recording method. The unidirectional electric field previously generated in the development area may be one that promotes the transfer of toner from the developer layer, or may be one that suppresses the transfer to prevent fogging. Further, although the present invention is preferably based on non-contact development conditions or conditions using a two-component developer as the developer, it is not limited thereto.

本発明において、像担持体3上の画像形成領域
が現像域Aを通過する現像時に現像域Aに生ぜし
められる振動電界は、鮮明でかぶりのないトナー
像が得られる条件に設定されることは勿論であ
る。すなわち、現像剤搬送担体51に印加される
直流電圧と交流電圧は、そのような振動電界を与
える条件に決定される。そこで、このようなバイ
アス電圧の決定が容易に行われるためには、現像
剤に抵抗率が108Ωcm以上、特に1013Ωcm以上の
絶縁性磁性キヤリヤ粒子とトナー粒子の混合した
二成分現像剤を用いることが好ましい。このよう
なキヤリヤ粒子としては、磁性体粒子を分数含有
した樹脂粒子から成るキヤリヤ粒子が好ましく用
いられる。なお、絶縁性粒子の抵抗率は、粒子を
0.5cm2の断面積を有する容器に入れてタツピング
した後、詰められた粒子上に1Kg/cm2の荷重を掛
け、荷重と底面電極との間に1000V/cmの電界が
生ずる電圧を印加したときの電流値を読み取つて
求められる値である。このときキヤリヤの厚みは
0.2mm程度となるようなキヤリヤ量とした。
In the present invention, the oscillating electric field generated in the development area A during development when the image forming area on the image carrier 3 passes through the development area A is set to a condition that allows a clear and fog-free toner image to be obtained. Of course. That is, the DC voltage and AC voltage applied to the developer transport carrier 51 are determined to provide such an oscillating electric field. Therefore, in order to easily determine the bias voltage, a two-component developer containing toner particles and insulating magnetic carrier particles with a resistivity of 10 8 Ωcm or more, particularly 10 13 Ωcm or more, must be used. It is preferable to use As such carrier particles, carrier particles made of resin particles containing a fraction of magnetic particles are preferably used. Note that the resistivity of insulating particles is
After placing the particles in a container with a cross-sectional area of 0.5 cm 2 and tapping them, a load of 1 Kg/cm 2 was applied on the packed particles, and a voltage was applied to generate an electric field of 1000 V/cm between the load and the bottom electrode. This is the value found by reading the current value at that time. At this time, the thickness of the carrier is
The carrier amount was set to be about 0.2 mm.

現像が解像力よく鮮明に行われるためには、二
成分現像剤のトナー粒子の平均粒径が20μm以下、
特に1〜10μmであることが好ましく、キヤリヤ
粒子の平均粒径も5〜50μmであることが好まし
い。これら粒子の平均粒径は重量平均粒径で、コ
ールタカウンタ(コールタ社製)やオムニコンア
ルフア(ボシユロム社製)で測定される。このト
ナー粒子の平均粒径が小さくなり過ぎると、トナ
ー粒子1個の摩擦による帯電量が小さくなるのと
相対的にフアンデルワールス力が大きくなつて、
凝集し易くなつたり、分離飛翔しにくくなつたり
するし、反対に平均粒径が大きくなり過ぎると、
重畳に対する帯電量が減少して飛翔制御がしにく
くなつたり、解像力が低下するようになる。ま
た、キヤリヤ粒子の平均粒径が小さくなり過ぎる
と、磁石体52の磁力によつて吸着される力が弱
くなるのに対して電気的なクーロン力やフアンデ
ルワールス力が強くなり、そのためにキヤリヤ粒
子がトナー粒子と共に像担持体3の表面に移行し
易くなるし、反対に平均粒径が大きくなり過ぎる
と現像剤搬送担体51上に形成される現像剤層が
粗雑になつて、現像剤層を薄く均一に形成するこ
とが難しくなると共に、現像剤層におけるトナー
粒子の付着状態も一様でなくなり、現像剤搬送担
体51に印加する電圧のブレークダウンや放電も
起り易くなる結果、トナー粒子の移行飛翔制御が
難しくなる。
In order for development to be carried out clearly and with good resolution, the average particle diameter of the toner particles in the two-component developer must be 20 μm or less.
In particular, it is preferably 1 to 10 μm, and the average particle size of the carrier particles is also preferably 5 to 50 μm. The average particle size of these particles is a weight average particle size, and is measured with a Coulter Counter (manufactured by Coulter) or Omnicon Alpha (manufactured by Boshilom). If the average particle size of the toner particles becomes too small, the amount of charge due to friction of a single toner particle becomes small, and the van der Waals force becomes large.
It becomes easier to aggregate, it becomes difficult to separate and fly, and on the other hand, if the average particle size becomes too large,
The amount of charge for superimposition decreases, making it difficult to control flight and reducing resolution. Furthermore, if the average particle size of the carrier particles becomes too small, the force of attraction by the magnetic force of the magnet body 52 becomes weak, but the electrical Coulomb force and Van der Waals force become strong, which causes the carrier particles to become too small. The particles tend to migrate to the surface of the image carrier 3 together with the toner particles, and on the other hand, if the average particle size becomes too large, the developer layer formed on the developer transport carrier 51 becomes rough, and the developer layer becomes rough. It becomes difficult to form the toner particles thinly and uniformly, and the state of adhesion of the toner particles in the developer layer also becomes uneven, and breakdown and discharge of the voltage applied to the developer transport carrier 51 are more likely to occur. Transition flight control becomes difficult.

さらに、現像剤搬送担体51にバイアス電圧を
印加してトナーの飛翔制御が効果的に行われるた
めには、像担持体3と現像剤搬送担体51の間隙
を数10〜200μmの範囲とし、従つて層厚規制ブレ
ード54によつて規制する現像剤層の層厚をそれ
より薄くするのが好ましい。この現像域の間隙を
狭くし過ぎると、現像剤層の厚さを極めて薄くし
なければならず、それでは均一な層厚が得られな
くなり、したがつて現像域に安定してトナー粒子
を供給することができなくなるばかりでなく、現
像剤搬送担体51と像担持体3の間で放電し易く
なつて現像剤を損傷したり、トナー粒子を飛散さ
せたりし易くなる。これに対して、現像域の間隔
を広くし過ぎると振動電界によるトナーの飛翔制
御が困難になる。
Furthermore, in order to effectively control toner flight by applying a bias voltage to the developer transport carrier 51, the gap between the image carrier 3 and the developer transport carrier 51 must be in the range of several tens to 200 μm. Therefore, it is preferable that the thickness of the developer layer regulated by the layer thickness regulating blade 54 be made thinner than that. If the gap in this development zone is made too narrow, the thickness of the developer layer must be made very thin, which makes it impossible to obtain a uniform layer thickness and therefore provides a stable supply of toner particles to the development zone. Not only is this impossible, but also discharge is likely to occur between the developer transport carrier 51 and the image carrier 3, damaging the developer and causing toner particles to scatter. On the other hand, if the interval between the development areas is made too wide, it becomes difficult to control the flying of toner using the oscillating electric field.

以上述べたような好ましい条件で現像を行い、
そして現像時に現像剤搬送担体51に印加してい
たバイアス電圧を第3図乃至第5図に示したよう
に変化させて画像形成を行うようにすると、再現
性に優れたかぶりのない鮮明な記録画像が得られ
て、トナーの徒費や飛散も少なく、電力の消費も
節減される。
Developing is carried out under the preferable conditions described above,
If image formation is performed by changing the bias voltage applied to the developer transport carrier 51 during development as shown in FIGS. 3 to 5, a clear recorded image with excellent reproducibility and no fog can be obtained. This results in less toner waste and toner scattering, and reduced power consumption.

以下、さらに本発明のより具体的な実施例を示
す。
More specific examples of the present invention will be shown below.

実施例 1 像露光がスリツト露光装置によつて行われる以
外は第1図と同様な構成の電子写真複写機を用い
た。
Example 1 An electrophotographic copying machine having the same configuration as that shown in FIG. 1 was used except that image exposure was performed by a slit exposure device.

像担持体3は、表面に有機光導電体OPCから
成る像形成層を有し、120mm/secの表面速度で矢
印方向に回転して、帯電器4により−500Vに一
様帯電され、像露光を入射されて、表面に−50V
の背景部電位に対して−500Vの静電潜像を形成
される。現像域Aの像担持体3と現像剤搬送担体
51の間隙700μm、現像剤搬送担体51の外径30
mm、左方向回転数65rpm、磁石体52は磁束密度
900ガウスのN,S磁極8極を周方向に等間隔に
有し、矢印方向に700rpmで回転する。現像剤溜
り53の現像剤は、重畳平均粒径が30μm程度の
樹脂中に磁性体粉末を分散含有した比抵抗が1016
Ωcmの絶縁性キヤリヤと、重畳平均粒径が14μm
で正に20μC/g程度に帯電する絶縁性非磁性ト
ナーの混合した二成分現像剤とし、現像剤搬送担
体51上に形成する現像剤層の層厚を層厚規制ブ
レード54によつて約500μmに規制する。現像剤
搬送担体51にはバイアス電源11によつて、帯
電器4による像担持体3の帯電と同時に−150V
の直流電圧を印加し、像露光と同時に0.1秒で交
流成分を連続的に昇圧して、静電潜像が現像域A
に到達する前に−150Vの直流電圧と2kHz,1kV
の交流電圧の重畳したバイアス電圧が印加され、
この条件で現像が行われて、静電潜像が現像域A
を通過し終えたら交流成分を0.1秒で0に減衰さ
せ、それから1秒後に直流成分も0とした。な
お、現像剤搬送担体51と磁石体52の回転は、
直流電圧を印加してから交流成分を印加する前ま
での間に開始し、直流成分を0とすると同時に停
止した。現像されたトナー像は、転写器6によつ
て普通紙に転写し、表面温度140℃のローラ定着
装置8によつて定着する。
The image carrier 3 has an image forming layer made of an organic photoconductor OPC on its surface, rotates in the direction of the arrow at a surface speed of 120 mm/sec, is uniformly charged to -500V by a charger 4, and is exposed to an image. is incident on the surface and −50V is applied to the surface.
An electrostatic latent image of -500V is formed against the background potential of . The gap between the image carrier 3 and the developer transport carrier 51 in the development area A is 700 μm, and the outer diameter of the developer transport carrier 51 is 30
mm, counterclockwise rotation speed 65 rpm, magnet body 52 has magnetic flux density
It has 8 N and S magnetic poles of 900 Gauss at equal intervals in the circumferential direction, and rotates at 700 rpm in the direction of the arrow. The developer in the developer reservoir 53 is a resin with a specific resistance of 10 16 containing magnetic powder dispersed in a resin with a superimposed average particle diameter of about 30 μm.
Insulating carrier of Ωcm and superimposed average particle size of 14μm
A two-component developer mixed with an insulating non-magnetic toner that is charged to about 20 μC/g is used, and the layer thickness of the developer layer formed on the developer transport carrier 51 is controlled by the layer thickness regulating blade 54 to approximately 500 μm. to be regulated. The bias power supply 11 is applied to the developer transporting carrier 51 at a voltage of -150V at the same time as the image carrier 3 is charged by the charger 4.
DC voltage is applied, and the AC component is continuously increased for 0.1 seconds at the same time as image exposure, so that the electrostatic latent image is developed in the development area A.
-150V DC voltage and 2kHz, 1kV before reaching
A bias voltage with a superimposed AC voltage of is applied,
Development is performed under these conditions, and the electrostatic latent image is formed in the development area A.
After passing through, the AC component was attenuated to 0 in 0.1 seconds, and the DC component was also reduced to 0 after 1 second. Note that the rotation of the developer transport carrier 51 and the magnet body 52 is as follows.
It started after applying the DC voltage and before applying the AC component, and stopped when the DC component was set to 0. The developed toner image is transferred onto plain paper by a transfer device 6 and fixed by a roller fixing device 8 whose surface temperature is 140°C.

以上によつて得られた記録画像は、再現性に優
れてかぶりなく、濃度の高いきわめて鮮明なもの
であつた。そして、5万枚の普通紙に記録を行つ
たが最初から最後まで安定して変らない記録画像
を得ることができ、現像装置5と像担持体3の間
隙からトナーが飛散することもなく、クリーニン
グ装置10に回収されるトナーの量も少なく、電
力消費も少なかつた。
The recorded images obtained in the above manner had excellent reproducibility, no fog, high density, and extremely clear images. Even when recording was performed on 50,000 sheets of plain paper, it was possible to obtain recorded images that remained stable from beginning to end, and there was no toner scattering from the gap between the developing device 5 and the image carrier 3. The amount of toner collected by the cleaning device 10 was also small, and power consumption was also low.

これに対して、同じ直流電圧と交流電圧の重畳
したバイアス電圧を現像剤搬送担体51にいきな
り帯電器4による像担持体3の帯電と同時に印加
するようにした場合は、トナーの飛散が著しくて
1万枚の記録を行うのが限度であり、また、クリ
ーニング装置に回収されるトナーの量も多くなつ
た。
On the other hand, if a bias voltage in which the same DC voltage and AC voltage are superimposed is suddenly applied to the developer transport carrier 51 at the same time as the image carrier 3 is charged by the charger 4, the toner scatters significantly. The maximum number of recordings is 10,000 sheets, and the amount of toner collected by the cleaning device also increases.

なお、現像時現像剤搬送担体51に印加するバ
イアス電圧の交流電圧成分としては周波数100〜
10000Hz、好ましくは1000〜50000Hz、実効値振幅
200〜5000Vで像形成体3との間に実効値で300〜
5000V/mmの電界強さを生ぜしめるようなものが
好ましく用いられ、波形は、正弦波に限らず、矩
形波や三角波であつてもよい。
Note that the AC voltage component of the bias voltage applied to the developer transport carrier 51 during development has a frequency of 100~
10000Hz, preferably 1000-50000Hz, RMS amplitude
At 200 to 5000V, the effective value between the image forming member 3 and the
A type that produces an electric field strength of 5000 V/mm is preferably used, and the waveform is not limited to a sine wave, but may be a rectangular wave or a triangular wave.

〔発明の効果〕〔Effect of the invention〕

本発明の画像形成方法によれば、トナーが飛散
したり徒費したりすることなく、かぶりのない鮮
明な記録画像を得ることができ、電力消費も節約
される。
According to the image forming method of the present invention, a clear recorded image without fogging can be obtained without scattering toner or wasted toner, and power consumption is also saved.

なお、本発明において、現像域に振動電界を生
ぜしめるのは、現像剤搬送担体にバイアス電圧を
印加する例に限らず、現像剤搬送担体と像担持体
との間に電極ワイヤや電極ネツト等を張設して、
それにバイアス電圧を印加することによつてもよ
い。また、本発明を磁気潜像の現像に適用するの
は、現像剤に磁性トナーを用いるようにすればよ
い。本発明は感光体表面に絶縁層を有する画像形
成法にも適用し得ることは勿論である。また複数
個の現像装置を有するカラー画像記録装置及びト
ナー像を像担持体上で重ね合わせる画像記録装置
(特願58−184381、同58−183152、同58−187000)
にも適用できる。
In the present invention, the oscillating electric field is generated in the developing area not only by applying a bias voltage to the developer transport carrier, but also by using electrode wires, electrode nets, etc. between the developer transport carrier and the image carrier. Stretch the
It may also be done by applying a bias voltage thereto. Further, the present invention can be applied to the development of a magnetic latent image by using a magnetic toner as the developer. Of course, the present invention can also be applied to an image forming method in which an insulating layer is provided on the surface of a photoreceptor. Also, a color image recording device having a plurality of developing devices and an image recording device that superimposes toner images on an image carrier (Patent Application No. 58-184381, No. 58-183152, No. 58-187000)
It can also be applied to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する記録装置の例
を示す概要構成図、第2図は現像装置の例を示す
部分図、第3図乃至第5図はそれぞれ現像スリー
ブに印加するバイアス電圧の例を示すタイムチヤ
ート、第6図乃至第8図は第3図乃至第5図に示
したバイアス電圧を印加するバイアス電源の構成
例を示す回路図である。 3……像担持体、4……帯電器、5……現像装
置、51……現像剤搬送担体、52……磁石体、
53……現像剤溜り、54……層厚規制ブレー
ド、A……現像域、11……バイアス電源、T0
T0′……非帯電領域通過時間帯、Tv,Tv′……非
画像帯電領域通過時間帯、Ti……画像形成領域通
過時間帯。
FIG. 1 is a schematic configuration diagram showing an example of a recording device that implements the method of the present invention, FIG. 2 is a partial diagram showing an example of a developing device, and FIGS. 3 to 5 are bias voltages applied to the developing sleeve, respectively. FIGS. 6 to 8 are circuit diagrams showing examples of configurations of bias power supplies that apply the bias voltages shown in FIGS. 3 to 5. 3... Image carrier, 4... Charger, 5... Developing device, 51... Developer transport carrier, 52... Magnet,
53... Developer reservoir, 54... Layer thickness regulation blade, A... Development area, 11... Bias power supply, T 0 ,
T 0 ′... Time period for passing through the non-charged area, T v , T v ′... Time period for passing through the non-image charged area, T i ... Time period for passing through the image forming area.

Claims (1)

【特許請求の範囲】 1 回動する像担持体と現像剤搬送担体とが対向
する現像域に振動電界を生ぜしめて像担持体上の
潜像をトナー像に現像する画像形成方法におい
て、像担持体上の潜像が現像域に達する前に予め
現像域に一方向性電界を生ぜしめてから該電界を
連続的または段階的に前記振動電界に変化させ、
しかる後に像担持体上の潜像を現像域に通過させ
るようにしたことを特徴とする画像形成方法。 2 前記一方向性電界を生ぜしめた後振動電界に
変化させる前の時点で現像剤搬送担体の現像剤を
搬送する駆動を開始させるようにした特許請求の
範囲第1項記載の画像形成方法。
[Scope of Claims] 1. In an image forming method in which a latent image on an image carrier is developed into a toner image by generating an oscillating electric field in a developing area where a rotating image carrier and a developer transport carrier face each other, Before the latent image on the body reaches the development area, a unidirectional electric field is generated in the development area in advance, and the electric field is continuously or stepwise changed to the oscillating electric field,
An image forming method characterized in that the latent image on the image carrier is then passed through a development area. 2. The image forming method according to claim 1, wherein after the unidirectional electric field is generated and before the unidirectional electric field is changed to an oscillating electric field, driving of the developer conveying carrier to convey the developer is started.
JP11088884A 1984-06-01 1984-06-01 Image forming method Granted JPS60256160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11088884A JPS60256160A (en) 1984-06-01 1984-06-01 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11088884A JPS60256160A (en) 1984-06-01 1984-06-01 Image forming method

Publications (2)

Publication Number Publication Date
JPS60256160A JPS60256160A (en) 1985-12-17
JPH0364073B2 true JPH0364073B2 (en) 1991-10-03

Family

ID=14547230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11088884A Granted JPS60256160A (en) 1984-06-01 1984-06-01 Image forming method

Country Status (1)

Country Link
JP (1) JPS60256160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167251A (en) * 1997-10-03 1999-06-22 Ricoh Co Ltd Image forming device and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167251A (en) * 1997-10-03 1999-06-22 Ricoh Co Ltd Image forming device and method therefor

Also Published As

Publication number Publication date
JPS60256160A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
US4797335A (en) Developing method for electrostatic images using composite component developer under non-contacting conditions
JP2853104B2 (en) Image forming device
JP3466956B2 (en) Image forming device
JPH0364073B2 (en)
JPS60249171A (en) Image forming method
JP3084465B2 (en) Developing device
JPH0359436B2 (en)
JP2000284570A (en) Image forming device
JPH0822185A (en) Developing device
JPH1048921A (en) Method for controlling electrification device and method for controlling image-forming device
JPS6118972A (en) Recording method using photoconductive toner
JPS6113269A (en) Developing device
JP3236042B2 (en) Image forming device
JPH0364074B2 (en)
CA1057590A (en) Application of pulse bias across gap between donor and imaged member
JP3099143B2 (en) Color image forming equipment
JPH0376752B2 (en)
JPH0862971A (en) Image forming device
JPH0731440B2 (en) Image forming method
JPH0799440B2 (en) Color-Electrophotographic method
JPH047509B2 (en)
JPS60159771A (en) Image forming method
JP2003107912A (en) Developing device and image forming device using the same
JPH0695242B2 (en) Image forming method
JPH08220853A (en) Developing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees