JPH0359436B2 - - Google Patents
Info
- Publication number
- JPH0359436B2 JPH0359436B2 JP59138018A JP13801884A JPH0359436B2 JP H0359436 B2 JPH0359436 B2 JP H0359436B2 JP 59138018 A JP59138018 A JP 59138018A JP 13801884 A JP13801884 A JP 13801884A JP H0359436 B2 JPH0359436 B2 JP H0359436B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- image forming
- toner
- developing sleeve
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 26
- 239000002245 particle Substances 0.000 description 32
- 238000004140 cleaning Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 4
- 238000001454 recorded image Methods 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000005411 Van der Waals force Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/065—Arrangements for controlling the potential of the developing electrode
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Or Security For Electrophotography (AREA)
- Fax Reproducing Arrangements (AREA)
- Developing For Electrophotography (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電子写真複写機等静電記録装置にお
ける画像形成方法に関し、特に、像形成体の表面
に背景部電位の帯電を行い、該帯電面に例えば光
照射や静電記録ヘツド等の手段により除電乃至は
逆極性の帯電を行つて、それにより形成した静電
潜像に対し、現像スリーブに交流電圧と前記背景
部電位と同極性の直流電圧を重畳したバイアス電
圧の印加を行つて、現像スリーブと像形成体の表
面が近接する現像域で現像スリーブ上の現像剤層
から前記背景部電位と同極性に帯電したトナーを
飛翔させて、現像を行う画像形成方法に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an image forming method in an electrostatic recording device such as an electrophotographic copying machine, and in particular, the present invention relates to an image forming method in an electrostatic recording device such as an electrophotographic copying machine, and in particular, the surface of an image forming member is charged with a background potential. The charged surface is neutralized or charged with the opposite polarity by means such as light irradiation or an electrostatic recording head, and the electrostatic latent image thus formed is applied to the developing sleeve with an alternating current voltage and the same polarity as the background potential. Applying a bias voltage with a DC voltage superimposed thereon, the toner charged to the same polarity as the background potential is ejected from the developer layer on the developing sleeve in a developing area where the developing sleeve and the surface of the image forming body are close to each other. The present invention relates to an image forming method in which development is performed.
上述のような画像形成方法の代表的なものとし
て、表面に光導電体層を有する像形成体を用い、
像形成体の一様帯電面にレーザビームスキヤナに
よりスポツト露光を行つて低電位ドツト構成の静
電潜像を形成し、その低電位ドツト部分に像形成
体の帯電と同極性に帯電したトナーを付着させる
方法が挙げられる。このような方法は、背景部電
位に対して像部分電位が高い静電潜像にそれとは
逆極性に帯電したトナーを現像スリーブの現像剤
層から飛翔させて付着させる画像形成方法に比較
すると、トナーを像形成体の帯電からの電気的反
撥力に抗して像形成体に付着させ、しかもかぶり
を生じさせないために、現像スリーブに印加する
バイアス電圧の直流成分は背景電位に近いものと
し、交流成分も振幅を大きくしたりすることが要
求される。そのため、この現像時のバイアス電圧
が像形成体の未だ帯電されていない非帯電面が現
像域を通過する間にも印加されると、徒らにトナ
ーを像形成体面に付着させ、余分にトナーを消費
したり、クリーニング装置の負担を大きくした
り、さらには、トナー等を飛散させ、汚れの発生
を増大したりする。
As a typical image forming method as described above, an image forming body having a photoconductor layer on the surface is used,
A laser beam scanner performs spot exposure on the uniformly charged surface of the image forming body to form an electrostatic latent image consisting of low potential dots, and toner charged to the same polarity as the image forming body is deposited on the low potential dots. One example is a method of attaching. This method is compared to an image forming method in which toner charged with the opposite polarity is caused to fly from the developer layer of the developing sleeve and adhere to an electrostatic latent image whose image portion potential is higher than the background potential. In order to cause the toner to adhere to the image forming body against the electrical repulsion from the charging of the image forming body and to prevent fogging, the DC component of the bias voltage applied to the developing sleeve is set close to the background potential; It is also required to increase the amplitude of the alternating current component. Therefore, if the bias voltage during development is applied while the uncharged surface of the image forming body passes through the development area, toner will be unnecessarily attached to the surface of the image forming body, and excess toner will be added to the surface of the image forming body. This may waste energy, increase the burden on the cleaning device, and furthermore, cause toner and the like to scatter, increasing the amount of dirt.
一方、像部分電位の方が高い静電潜像に逆極性
に帯電したトナーを付着させる画像形成方法にお
いては、電力の節約やトナーの飛散防止等のため
に、像形成体の静電潜像を形成されていない面が
現像域を通過する間は現像スリーブへのバイアス
電圧の印加を止めるようにしたものが
USP3893418号公報や特開昭56−14266号公報に
より知られている。 On the other hand, in an image forming method in which toner charged with opposite polarity is attached to an electrostatic latent image whose image partial potential is higher, the electrostatic latent image on the image forming body is The bias voltage is stopped from being applied to the developing sleeve while the surface on which it is not formed passes through the developing area.
It is known from USP3893418 and Japanese Patent Application Laid-Open No. 14266/1983.
しかし、この方法を像形成体の帯電と同極性に
帯電したトナーを静電潜像に付着させる画像形成
方法に採用した場合は、トナー飛散等を防止でき
ても、静電潜像が十分に現像されないことが起
る。それは、像形成体の静電潜像が現像域に達し
た時点でいきなり現像スリーブにバイアス電圧を
印加しても、バイアス電源の安定に時間がかかつ
たりして、直ちに現像スリーブ上の現像剤層から
トナーが像形成体に移行する状態とはならないた
めに起ると考えられる。さりとて、静電潜像が現
像域に達する前から現像スリーブに現像時におけ
ると同じバイアス電圧を印加すると、像形成体の
非帯電面が現像域を通過する間においてもトナー
を像形成体に付着させて余分にトナーを消費した
り、クリーニング装置の負担を大きくしたり、ト
ナー等を飛散させて汚れの発生を増大させたりす
る。 However, if this method is adopted as an image forming method in which toner charged to the same polarity as that of the image forming body is attached to the electrostatic latent image, even if toner scattering etc. can be prevented, the electrostatic latent image will not be fully formed. It happens that the image is not developed. Even if a bias voltage is suddenly applied to the developing sleeve when the electrostatic latent image on the image forming body reaches the developing area, it takes time for the bias power supply to stabilize, and the developer on the developing sleeve immediately This is thought to occur because the toner is not transferred from the layer to the image forming body. By applying the same bias voltage during development to the developing sleeve before the electrostatic latent image reaches the developing area, toner will adhere to the image forming element even while the uncharged surface of the image forming element passes through the developing area. This may cause unnecessary toner consumption, increase the load on the cleaning device, or cause toner etc. to scatter, increasing the occurrence of stains.
本発明は、像形成体の帯電と同極性に帯電した
トナーを静電潜像に付着させる画像形成方法にお
ける上述の問題を解消するためになされたもので
あり、像形成体の静電潜像に先立つ非画像帯電面
が現像域を通過する間に適当な振動電圧を現像ス
リーブに印加することによつて、トナー飛散等を
生ぜしめず、しかも静電潜像の現像が十分に行わ
れることを見出してなされたものである。
The present invention has been made in order to solve the above-mentioned problems in an image forming method in which toner charged to the same polarity as that of an image forming member is attached to an electrostatic latent image. By applying an appropriate oscillating voltage to the developing sleeve while the non-image-charged surface passes through the developing area, the electrostatic latent image is sufficiently developed without causing toner scattering, etc. This was done by discovering the following.
すなわち、本発明は、静電潜像の現像が支障な
く行われて、トナー飛散やクリーニング装置の負
担が増大することのない、像形成体の帯電と同極
性に帯電したトナーを現像スリーブ上の現像剤層
から飛翔させて静電潜像に付着させる画像形成方
法を提供するものである。 That is, the present invention provides a method for applying toner charged to the same polarity as that of the image forming member onto the developing sleeve so that the electrostatic latent image can be developed without any trouble and the toner will not be scattered or the burden on the cleaning device will be increased. The object of the present invention is to provide an image forming method in which a developer is caused to fly from a developer layer and adhere to an electrostatic latent image.
本発明は、現像スリーブに交流電圧と静電潜像
の背景部電位と同極性の直流電圧を重畳したバイ
アス電圧の印加を行つて、現像スリーブ上の現像
剤層から背景部電位と同極性に帯電したトナーを
飛翔させて静電潜像を現像する画像形成方法にお
いて、前記静電潜像に先立つて像形成体の非画像
帯電面が現像域を通過する間に現像スリーブに最
大電圧が前記バイアス電圧の最大電圧よりも低い
振動電圧を印加し、次いで該振動電圧を前記バイ
アス電圧に変化させるようにしたことを特徴とす
る画像形成方法、にあり、この構成によつて上記
目的を達成したものである。
The present invention applies a bias voltage in which an AC voltage and a DC voltage having the same polarity as the background potential of an electrostatic latent image are superimposed to the developing sleeve, so that the developer layer on the developing sleeve has the same polarity as the background potential. In an image forming method in which an electrostatic latent image is developed by flying charged toner, the maximum voltage applied to the developing sleeve is An image forming method characterized in that an oscillating voltage lower than the maximum voltage of the bias voltage is applied, and then the oscillating voltage is changed to the bias voltage, and with this configuration, the above object is achieved. It is something.
以下、本発明を図示例によつて説明する。 The present invention will be explained below using illustrated examples.
第1図は本発明の方法を実施する記録装置の例
を示す概要構成図、第2図は現像装置の例を示す
部分図、第3図乃至第6図はそれぞれ現像スリー
ブに印加する電圧の例を示すグラフ、第7図及び
第8図はそれぞれ第3図乃至第5図及び第6図に
示した電圧を印加するバイアス電源の構成例を示
す回路図である。 FIG. 1 is a schematic configuration diagram showing an example of a recording apparatus that implements the method of the present invention, FIG. 2 is a partial diagram showing an example of a developing device, and FIGS. 3 to 6 each show the voltage applied to the developing sleeve. Graphs illustrating examples, FIGS. 7 and 8 are circuit diagrams illustrating configuration examples of bias power supplies that apply the voltages shown in FIGS. 3 to 5 and 6, respectively.
第1図の記録装置は、原稿撮像素子や他の機器
から入力された信号、あるいはデータ記憶部のデ
ータ等から得られる画像データIを信号処理装置
1で処理することにより、2値(すなわち白黒)
化された画素データより構成される画像信号を
得、この2値画像の画素データによりレーザ、音
響光学変調装置、レンズ装置、回転多面鏡等から
成るレーザビームスキヤナ2を画素毎にON,
OFF制御して、矢印方向に回転し帯電器4によ
り一様に帯電されている像形成体3の光導電体層
表面にレーザスポツトによる像露光を行い、その
スポツト露光部分に詳細を第2図に示したような
現像装置5により電界下で像形成体3の帯電と同
極性に帯電しているトナーを付着させてトナー像
を形成するものである。そして、形成されたトナ
ー像は、像形成体3の回転と同期して像形成体3
の表面に接するように送り込まれて来る記録紙P
に転写器6によつて転写され、トナー像を転写さ
れた記録紙Pは、分離器7によつて像形成体3の
表面から分離され、次いでローラ定着装置8によ
つてトナー像を定着されて記録装置外に排出され
る。一方、トナー像を転写した像形成体3の表面
は、除電器9によつて除電された後クリーニング
装置10によつて残留トナーを除かれて一回の画
像形成プロセスを終了する。 The recording device shown in FIG. 1 uses a signal processing device 1 to process image data I obtained from a signal input from a document image sensor, other equipment, data in a data storage unit, etc. )
An image signal composed of converted pixel data is obtained, and a laser beam scanner 2 consisting of a laser, an acousto-optic modulator, a lens device, a rotating polygon mirror, etc. is turned on for each pixel using the pixel data of this binary image.
OFF control, the surface of the photoconductor layer of the image forming body 3, which rotates in the direction of the arrow and is uniformly charged by the charger 4, is image exposed by a laser spot, and the details of the spot exposed portion are shown in Figure 2. A toner image is formed by depositing toner charged to the same polarity as that of the image forming member 3 under an electric field using a developing device 5 as shown in FIG. Then, the formed toner image is transferred to the image forming body 3 in synchronization with the rotation of the image forming body 3.
Recording paper P is fed so as to be in contact with the surface of
The recording paper P on which the toner image has been transferred is separated from the surface of the image forming body 3 by the separator 7, and then the toner image is fixed by the roller fixing device 8. is ejected from the recording device. On the other hand, the surface of the image forming body 3 to which the toner image has been transferred is neutralized by a static eliminator 9, and then residual toner is removed by a cleaning device 10 to complete one image forming process.
第2図の現像装置5は、アルミニウムやステン
レス鋼のような非磁性材料から成る現像スリーブ
51にバイアス電源11によつてバイアス電圧を
印加されて、基体部を接地されている像形成体3
との間の現像域Aに電界を生ぜしめられる。この
現像スリーブ51の内部には表面に複数のN,S
磁極を有する磁石体52が設けられている。そし
て、現像スリーブ51が静止または左回転し、磁
石体52が右回転または静止することにより、磁
石体52の磁力によつて現像剤溜り53から現像
スリーブ51の表面に吸着された現像剤が上記一
方の回転または両方の回転によつて反時計方向に
移動するようになる。このように搬送される現像
剤は、層厚規制ブレード54によつて像形成体3
の表面に接触しない範囲の層厚に規制され、現像
域Aにおいて電界の作用によりトナーが現像剤層
から飛翔して像形成体3の静電潜像を現像する。
なお、現像に現像剤層の不同の影響が現われにく
い点で磁石体52が回転するものが好ましい。 In the developing device 5 shown in FIG. 2, a bias voltage is applied by a bias power supply 11 to a developing sleeve 51 made of a non-magnetic material such as aluminum or stainless steel, and an image forming member 3 whose base portion is grounded
An electric field is generated in the development area A between the two. Inside this developing sleeve 51, there are a plurality of N and S on the surface.
A magnet body 52 having magnetic poles is provided. Then, as the developing sleeve 51 stands still or rotates counterclockwise and the magnet body 52 rotates clockwise or stands still, the developer attracted from the developer reservoir 53 to the surface of the developing sleeve 51 by the magnetic force of the magnet body 52 is transferred to the surface of the developing sleeve 51. One or both rotations result in counterclockwise movement. The developer transported in this manner is directed to the image forming body 3 by the layer thickness regulating blade 54.
The toner is regulated to a layer thickness within a range that does not contact the surface of the image forming member 3, and in the development area A, toner flies from the developer layer due to the action of an electric field and develops the electrostatic latent image on the image forming member 3.
Note that it is preferable that the magnet body 52 rotates in that the influence of unevenness of the developer layer is less likely to appear in the development.
現像域Aを通過した残りの現像剤層はクリーニ
ングブレード55によつて現像スリーブ51の表
面から除かれて現像剤溜り53に還元される。現
像剤溜り53の現像剤は、トナーとキヤリヤが混
合した所謂二成分現像剤であり、撹拌翼56によ
つて撹拌されてトナーが像形成体1の帯電と同極
性に帯電するものである。トナーは、現像によつ
て消費されるから、トナーホツパー57からトナ
ー補給ローラ58によつて現像剤溜り53に補給
される。 The remaining developer layer that has passed through the developing area A is removed from the surface of the developing sleeve 51 by the cleaning blade 55 and returned to the developer reservoir 53. The developer in the developer reservoir 53 is a so-called two-component developer containing a mixture of toner and carrier, and is stirred by the stirring blade 56 so that the toner is charged to the same polarity as that of the image forming member 1. Since the toner is consumed during development, it is replenished from the toner hopper 57 to the developer reservoir 53 by the toner replenishment roller 58.
像形成体3の帯電と同極性に帯電したトナーを
現像域Aにおいて現像スリーブ51上の現像剤層
から飛翔させて静電潜像を現像するために、現像
スリーブ51には像形成体3の背景部電位と同極
性の直流電圧と交流電圧の重畳したバイアス電圧
を印加する。バイアス電源11は、このバイアス
電圧も含めて、現像スリーブ51に第3図乃至第
6図に示したように電圧の印加を行い、それによ
つて、トナーの飛散やクリーニング装置10の負
担を増大せしめることなく、静電潜像の現像が十
分に行われるようにする。 In order to develop an electrostatic latent image by causing toner charged to the same polarity as that of the image forming member 3 to fly from the developer layer on the developing sleeve 51 in the developing area A, the developing sleeve 51 is provided with the toner of the image forming member 3. A bias voltage in which a DC voltage and an AC voltage having the same polarity as the background potential are superimposed is applied. The bias power supply 11 applies voltages including this bias voltage to the developing sleeve 51 as shown in FIGS. 3 to 6, thereby causing toner scattering and increasing the burden on the cleaning device 10. To ensure that an electrostatic latent image is sufficiently developed without causing any problems.
第3図乃至第6図において、T0は帯電器4に
よる帯電が行われる前の像形成体3の非帯電面が
現像域Aを通過する時間帯、Tvは帯電器4によ
る帯電が行われたが像露光の入射が行れていない
像形成体3の非画像帯電面が現像液Aを通過する
時間帯、Tiは像露光の入射した像形成体3の静電
潜像形成面が現像域Aを通過する時間帯、Tv′は
静電潜像形成面に続く余分に帯電された像形成体
の非画像帯電面が現像域Aを通過する時間帯、
T0′は帯電器4による帯電が終了した像形成体の
非帯電面が現像域Aを通過する時間帯を示し、電
圧の印加を停止せずに継続して複数の画像記録を
行うような場合は、時間帯T0′は次の画像記録の
時間帯T0となる。 In FIGS. 3 to 6, T 0 is the time period during which the uncharged surface of the image forming body 3 passes through the development area A before being charged by the charger 4, and T v is the time period during which the charger 4 is not charged. T i is the electrostatic latent image forming surface of the image forming member 3 on which image exposure has occurred, during which the non-image charged surface of the image forming member 3 passes through the developer A. T v ′ is the time period during which the non-image-charged surface of the image forming body following the electrostatic latent image forming surface passes through the development region A,
T 0 ' indicates the time period during which the uncharged surface of the image forming body, which has been charged by the charger 4, passes through the development area A. In this case, the time period T 0 ' becomes the time period T 0 of the next image recording.
第3図の例は、像形成体3の回転開始と共に始
まる時間帯T0において現像スリーブ51にトナ
ーの帯電と逆極性の直流電圧を印加し、時間帯
Tvにおいて直流電圧を像形成体3の帯電電位よ
りも幾分低い現像時のバイアス電圧の直流電圧に
変化させ、それと共に直流電圧に振幅が0から現
像時のバイアス電圧の交流電圧の振幅までに次第
に変化する交流電圧を重畳して現像時のバイアス
電圧に到らしめ、そのバイアス電圧を時間帯Tiも
保ち、時間帯Tv′に入るとまず交流電圧の振幅を
0に減衰させ、次に直流電圧を最初の逆極性の直
流電圧にまで変化させ、その直流電圧を時間帯
T0′にまで維持するようにしたものである。この
ように、現像域Aを通過する像形成体3の表面が
帯電されていないときは現像スリーブ51にトナ
ーの帯電と逆極性の電圧を印加し、像形成体3の
表面がトナーの帯電と同極性に帯電した段階で現
像スリーブ51の電圧を現像時のバイアス電圧の
直流電圧にまで上げ、そして振幅が0から次第に
増加して静電潜像が現像域Aに達するまでには現
像時のバイアス電圧の交流電圧となる交流電圧を
重畳するようにしたことによつて、トナー等が徒
らに像形成体3に付着してクリーニング装置10
の負担を増大させたりトナー等の飛散が増大した
りすることが防止され、トナー等の消耗が減少す
ると共に、静電潜像が現像域Aに達するときには
現像スリーブ51上の現像剤層は完全に静電潜像
を現像する態勢に入つているから、現像が十分に
行われると言う優れた効果が得られる。 In the example shown in FIG. 3, a DC voltage having a polarity opposite to that of toner charging is applied to the developing sleeve 51 during a time period T0 that starts with the start of rotation of the image forming body 3.
At T v , the DC voltage is changed to a DC voltage with a bias voltage during development that is somewhat lower than the charging potential of the image forming member 3, and at the same time, the amplitude of the DC voltage changes from 0 to the amplitude of the AC voltage of the bias voltage during development. A gradually changing alternating current voltage is superimposed on the developing bias voltage to reach the developing bias voltage, and this bias voltage is maintained during time period T i , and when entering time period T v ′, the amplitude of the alternating current voltage is first attenuated to 0, Next, the DC voltage is changed to the DC voltage of the first reverse polarity, and the DC voltage is
It is designed to maintain up to T 0 ′. In this way, when the surface of the image forming body 3 passing through the development area A is not charged, a voltage with the opposite polarity to the toner charge is applied to the developing sleeve 51, so that the surface of the image forming body 3 is not charged with the toner charge. When the developing sleeve 51 is charged to the same polarity, the voltage of the developing sleeve 51 is increased to the DC voltage of the bias voltage during development, and the amplitude gradually increases from 0 until the electrostatic latent image reaches the development area A. By superimposing the alternating current voltage which becomes the alternating voltage of the bias voltage, toner and the like are unnecessarily attached to the image forming body 3 and the cleaning device 10
This prevents an increase in the burden on the developer and an increase in the scattering of toner, etc., reducing the consumption of toner, etc., and also ensures that the developer layer on the developing sleeve 51 is completely formed when the electrostatic latent image reaches the development area A. Since the electrostatic latent image is ready to be developed, an excellent effect of sufficient development can be obtained.
なお、現像スリーブ51や磁石体52の現像剤
層搬送回転は、時間帯T0とTvのいずれの時点で
開始されてもよいが、トナー等の飛散を防止し、
現像をむらなく行うためには、時間帯Tv中の現
像スリーブ51に印加する直流電圧にバイアス電
圧の交流電圧を重畳する以前に開始することが最
も好ましい。また、現像剤搬送回転の停止も時間
帯Tv′以後であればいつ行われてもよいが、時間
帯Tv′でのトナーを像形成体方向へ飛翔させるべ
き交流成分が減少後に行われることが好ましい。
このことは、以下の例についても同様である。 Note that the rotation of the developer layer conveyance of the developing sleeve 51 and the magnet body 52 may be started at any time of the time period T 0 or T v , but it is necessary to prevent the scattering of toner, etc.
In order to perform the development evenly, it is most preferable to start before the alternating current voltage of the bias voltage is superimposed on the direct current voltage applied to the developing sleeve 51 during the time period T v . Further, the rotation of the developer transport may be stopped at any time after the time period T v ′, but it is performed after the alternating current component that should cause the toner to fly toward the image forming body in the time period T v ′ has decreased. It is preferable.
This also applies to the following examples.
第4図の例は、時間帯T0においては第3図の
例におけると同様に現像スリーブ51に直流電圧
を印加し、時間帯Tvに入ると直流電圧は変えず
にまず振幅が0から現像時のバイアス電圧の交流
電圧振幅までに次第に増大する交流電圧を重畳
し、振幅が増大し終えた時点で直流電圧を現像時
のバイアス電圧の直流電圧に変化させ、その結果
得られたバイアス電圧を時間帯Tiの間維持し、時
間帯Tvに入つたら時間帯Tvとは逆にまず直流電
圧を最初の直流電圧にまで変化させ、次いで交流
電圧の振幅を0に減衰させて最初の状態に戻し、
その状態を時間帯T0′まで維持するようにしたも
のである。この例においても第3図の例と同様の
効果を得ることができる。 In the example of FIG. 4, in the time period T 0 , a DC voltage is applied to the developing sleeve 51 in the same way as in the example of FIG . An AC voltage that gradually increases up to the AC voltage amplitude of the bias voltage during development is superimposed, and when the amplitude has finished increasing, the DC voltage is changed to the DC voltage of the bias voltage during development, and the resulting bias voltage is is maintained during time period T i , and when time period T v is entered, the DC voltage is first changed to the initial DC voltage, contrary to time period T v , and then the amplitude of the AC voltage is attenuated to 0. return to the initial state,
This state is maintained until the time period T 0 '. In this example as well, the same effects as in the example of FIG. 3 can be obtained.
第5図の例は、振幅が0から次第に増大する交
流電圧の重畳を時間帯T0の間に行うようにし、
現像後の重畳している交流電圧の振幅の0への減
衰を時間帯T0′に入つてから行うようにしている
点が第4図の例と異なる。この第5図の例におい
ても第4図あるいは第3図の例におけると同様の
効果を得ることができる。 In the example shown in FIG. 5, an AC voltage whose amplitude gradually increases from 0 is superimposed during a time period T 0 ,
This example differs from the example shown in FIG. 4 in that the amplitude of the superimposed AC voltage after development is attenuated to zero after entering the time period T 0 '. In the example shown in FIG. 5, the same effect as in the example shown in FIG. 4 or 3 can be obtained.
これまでに述べた第3図乃至第5図の例ではい
ずれも、時間帯T0,T0′において現像スリーブ5
1にトナーの帯電と逆極性の直流電圧を印加する
ようにしているが、この電圧を0としてもそれ程
トナー等の飛散やクリーニング装置10の負担が
増大することはない。 In all the examples shown in FIGS. 3 to 5 described above, the developing sleeve 5 is
1, a DC voltage with a polarity opposite to that of the toner charging is applied, but even if this voltage is set to 0, the toner etc. will not scatter and the load on the cleaning device 10 will not increase significantly.
第6図の例は、時間帯T0においては現像スリ
ーブ51に電圧を印加せず、時間帯Tvに入ると
現像スリーブ51にまず現像時のバイアス電圧を
整流して得られるトナーの帯電と逆極性のパルス
状電圧を印加し、次いでその電圧を現像時のバイ
アス電圧に変化させ、時間帯Tiにおいてはそのバ
イアス電圧を維持し、時間帯Tv′において再びバ
イアス電圧からパルス状電圧に戻し、そしてパル
ス状電圧の印加も停止して時間帯T0′に入るよう
にしたものである。この例においても、第3図乃
至第5図の例におけると同様の効果が得られる。 In the example shown in FIG. 6, no voltage is applied to the developing sleeve 51 during the time period T0 , and when the time period Tv begins, the toner charge obtained by rectifying the bias voltage during development is applied to the developing sleeve 51. A pulsed voltage of opposite polarity is applied, then the voltage is changed to the bias voltage during development, the bias voltage is maintained during the time period T i , and the bias voltage is changed to the pulsed voltage again during the time period T v ′. Then, the application of the pulsed voltage is also stopped to enter the time period T 0 '. In this example as well, the same effects as in the examples shown in FIGS. 3 to 5 can be obtained.
第3図乃至第5図のような電圧の印加は第7図
に示したようなバイアス電源11によつて行わ
れ、第6図のような電圧の印加は第8図に示した
ようなバイアス電源11によつて行われる。 The application of voltages as shown in FIGS. 3 to 5 is performed by a bias power supply 11 as shown in FIG. 7, and the application of voltages as shown in FIG. This is done by the power supply 11.
すなわち、第7図のバイアス電源11におい
て、図示の状態からスイツチ12を開放すると現
像スリーブ51にトナーと逆極性の直流電圧が印
加されるようになり、分圧器の分圧接点13を上
から下に移動させることによつて直流電圧が現像
時のバイアス電圧の直流電圧にまで変化するよう
になり、発振回路を駆動している状態で二次コイ
ルの短絡接点14を下から上に移動させることに
よつて振幅が0から現像時のバイアス電圧の交流
電圧振幅にまで変化する交流電圧が重畳されるよ
うになり、以上と逆の順序に短絡接点14と分圧
接点13を元の位置に戻すことにより第3図の電
圧印加が行われる。 That is, in the bias power supply 11 of FIG. 7, when the switch 12 is released from the state shown, a DC voltage of the opposite polarity to that of the toner is applied to the developing sleeve 51, and the voltage dividing contact 13 of the voltage divider is connected from top to bottom. By moving the DC voltage to the DC voltage of the bias voltage during development, move the short-circuit contact 14 of the secondary coil from the bottom to the top while the oscillation circuit is being driven. As a result, an AC voltage whose amplitude changes from 0 to the AC voltage amplitude of the bias voltage during development is superimposed, and the shorting contact 14 and the voltage dividing contact 13 are returned to their original positions in the reverse order of the above. As a result, the voltage application shown in FIG. 3 is performed.
また、スイツチ12を開放してから、発振回路
を駆動している状態で先に短絡接点14を下から
上に移動させ、その後に分圧接点13を上から下
に移動させて、現像終了後は逆の順序に分圧接点
13と短絡接点14を元の位置に戻すことにより
第4図と第5図の電圧印加が行われる。 Also, after opening the switch 12, while driving the oscillation circuit, first move the shorting contact 14 from bottom to top, then move the dividing contact 13 from top to bottom, and then after the development is completed, The voltage application in FIGS. 4 and 5 is performed by returning the voltage dividing contact 13 and the shorting contact 14 to their original positions in the reverse order.
以上において、発振回路の駆動は、短絡接点1
4を移動させる以前であれば、いつ開始してもよ
い。また、発振回路側で交流電圧の振幅を変化さ
せるようにして、短絡接点14を省略してもよ
い。また、時間帯T0,T0′で印加電圧を0にする
場合は、直流電圧回路の上半分が不要となること
は勿論であり、スイツチ12も省略できる。さら
に、直流電圧を漸増、漸減させずにステツプ変化
させる場合は、二次コイルと直流電源の接続及び
接地接続を第8図のようにすればよい。 In the above, the oscillation circuit is driven by the short-circuit contact 1
You can start at any time before moving 4. Further, the shorting contact 14 may be omitted by changing the amplitude of the AC voltage on the oscillation circuit side. Further, when the applied voltage is set to 0 during the time periods T 0 and T 0 ', the upper half of the DC voltage circuit becomes unnecessary, and the switch 12 can also be omitted. Furthermore, if the DC voltage is to be changed in steps without being gradually increased or decreased, the connection between the secondary coil and the DC power source and the ground connection may be made as shown in FIG.
第8図のバイアス電源11において、図示の状
態で発振回路を駆動し、切換スイツチ15をa接
点からb接点に切換えると現像スリーブ51に整
流されたパルス状電圧が出力されるようになり、
次いで整流回路のスイツチ16をオフすると現像
時のバイアス電圧が出力されるようになつて、現
像終了後はスイツチ16をオンして、切換スイツ
チ15をa接点に切換えることにより第6図の電
圧が印加される。 In the bias power supply 11 of FIG. 8, when the oscillation circuit is driven in the state shown and the changeover switch 15 is switched from the a contact to the b contact, a rectified pulse voltage is output to the developing sleeve 51.
Next, when the switch 16 of the rectifier circuit is turned off, the bias voltage during development is outputted, and after the development is completed, the voltage shown in Figure 6 is changed by turning on the switch 16 and switching the changeover switch 15 to the a contact applied.
以上のようなバイアス電源11による第3図乃
至第6図に示したような電圧の印加は、毎日の画
像形成毎に繰返されるものであることが好ましい
のは勿論であるが、連続して複数の画像形成が行
われるような場合は、中間の画像形成が行われる
間を時間帯Tiに含めたものとしてもよい。それに
よつても、少くとも最初の画像形成について前述
と同様の効果が得られる。 It is of course preferable that the application of the voltages shown in FIGS. 3 to 6 by the bias power supply 11 be repeated every day for image formation, but it is preferable that the application of the voltages as shown in FIGS. In the case where image formation is performed, the period during which intermediate image formation is performed may be included in the time period T i . Even in this case, the same effect as described above can be obtained at least for the initial image formation.
現像時のバイアス電圧の交流電圧成分と直流電
圧成分は、鮮明でかぶりのないトナー像が得られ
るように決定される。このようなバイアス電圧の
決定が容易に行われるためには、第2図について
述べた現像剤溜り53の二成分現像剤がキヤリヤ
に抵抗率が108Ωcm以上、特に1013Ωcm以上の絶
縁性磁性キヤリヤ粒子を用いたものであることが
好ましい。このようなキヤリヤ粒子としては、磁
性体粒子の表面に樹脂被膜を形成したキヤリヤ粒
子や磁性体粒子を分散含有した樹脂粒子から成る
キヤリヤ粒子が用いられる。なお、絶縁性粒子の
抵抗率は、粒子を0.5cm2の断面積を有する容器に
入れて1mm程度の厚さにタツピングした後、詰め
られた粒子上に1Kg/cm2の荷重を掛け、荷重と底
面電極との間に1000V/cmの電界が生ずる電圧を
印加したときの電流値を読み取つて求められる値
である。また、現像が解像力よく鮮明に行われる
ためには、二成分現像剤のトナー粒子の平均粒径
が20μm以下、特に1〜10μmであることが好まし
く、キヤリヤ粒子の平均粒径も5〜50μmである
ことが好ましい。これら粒子の平均粒径は重量平
均粒径で、コールタカウンタ(コールタ社製)や
オムニコンアルフア(ボシユロム社製)で測定さ
れる。このトナー粒子の平均粒径が小さくなり過
ぎると、トナー粒子1個の摩擦による帯電量が小
さくなるのと相対的にフアンデルワールス力が大
きくなつて、凝集し易くなつたり、分離飛翔しに
くくなつたりするし、反対に平均粒径が大きくな
り過ぎると、重量に対する帯電量が減少して飛翔
制御がしにくくなつたり、解像力が低下するよう
になる。また、キヤリヤ粒子の平均粒径が小さく
なり過ぎると、磁石体52の磁力によつて吸着さ
れる力が弱くなるのに対して電気的なクーロン力
やフアンデルワールス力が強くなり、そのために
キヤリヤ粒子がトナー粒子と共に像形成体3の表
面に移行し易くなるし、反対に平均粒径が大きく
なり過ぎると現像スリーブ51上に形成される現
像剤層が粗雑になつて、現像剤層を薄く均一に形
成することが難しくなると共に、現像剤層におけ
るトナー粒子の付着状態も一様でなくなり、現像
スリーブ51に印加する電圧のブレークダウンや
放電も起り易くなる結果、トナー粒子の移行飛翔
制御が難しくなる。 The alternating current voltage component and direct current voltage component of the bias voltage during development are determined so that a clear and fog-free toner image can be obtained. In order to easily determine such a bias voltage, it is necessary that the two-component developer in the developer reservoir 53 described with reference to FIG. Preferably, magnetic carrier particles are used. As such carrier particles, carrier particles having a resin coating formed on the surface of magnetic particles or carrier particles made of resin particles containing magnetic particles dispersed therein are used. The resistivity of the insulating particles is determined by placing the particles in a container with a cross-sectional area of 0.5 cm 2 and tapping them to a thickness of about 1 mm, then applying a load of 1 kg/cm 2 on the packed particles. This value is obtained by reading the current value when applying a voltage that generates an electric field of 1000 V/cm between the electrode and the bottom electrode. In addition, in order for development to be carried out clearly and with good resolution, it is preferable that the average particle size of the toner particles in the two-component developer is 20 μm or less, particularly 1 to 10 μm, and the average particle size of the carrier particles is also 5 to 50 μm. It is preferable that there be. The average particle size of these particles is a weight average particle size, and is measured with a Coulter Counter (manufactured by Coulter) or Omnicon Alpha (manufactured by Boshilom). If the average particle size of the toner particles becomes too small, the amount of charge due to friction of a single toner particle becomes small, and the van der Waals force becomes relatively large, making it easier to aggregate and making it difficult to separate and fly. On the other hand, if the average particle size becomes too large, the amount of charge relative to the weight decreases, making it difficult to control flight and reducing resolution. Furthermore, if the average particle size of the carrier particles becomes too small, the force of attraction by the magnetic force of the magnet body 52 becomes weak, but the electrical Coulomb force and Van der Waals force become strong, which causes the carrier particles to become too small. The particles tend to migrate to the surface of the image forming body 3 together with the toner particles, and on the other hand, if the average particle size becomes too large, the developer layer formed on the developing sleeve 51 becomes coarse, making it difficult to make the developer layer thinner. It becomes difficult to form the toner particles uniformly, and the state of adhesion of the toner particles in the developer layer is also uneven, making breakdown and discharge of the voltage applied to the developing sleeve 51 more likely to occur.As a result, toner particle migration and flight control becomes difficult. It becomes difficult.
さらに、現像スリーブ51にバイアス電圧を印
加してトナーの飛翔制御が効果的に行われるため
には、像形成体3と現像スリーブ51の間隙を数
10〜2000μmの範囲とし、従つて層厚規制ブレー
ド54によつて規制する現像剤層の層厚をそれよ
り薄くするのが好ましい。この現像域の間隙を狭
くし過ぎると、現像剤層の厚さを極めて薄くしな
ければならず、それでは均一な層厚が得られなく
なり、したがつて現像域に安定してトナー粒子を
供給することができなくなるばかりでなく、現像
スリーブ51と現像成体3の間で放電し易くなつ
て現像剤を損傷したり、トナー粒子を飛散させた
りし易くなる。これに対して、現像域の間隙を広
くし過ぎると振動電界によるトナーの飛翔制御が
困難になる。 Furthermore, in order to effectively control toner flight by applying a bias voltage to the developing sleeve 51, it is necessary to increase the gap between the image forming body 3 and the developing sleeve 51 by several times.
It is preferable that the thickness of the developer layer is in the range of 10 to 2000 μm, and therefore the thickness of the developer layer regulated by the layer thickness regulating blade 54 is smaller than that. If the gap in this development zone is made too narrow, the thickness of the developer layer must be made very thin, which makes it impossible to obtain a uniform layer thickness and therefore provides a stable supply of toner particles to the development zone. Not only is this impossible, but also electric discharge is likely to occur between the developing sleeve 51 and the developing body 3, damaging the developer and causing toner particles to scatter. On the other hand, if the gap between the developing areas is made too wide, it becomes difficult to control the flying of toner using the oscillating electric field.
第1図,第2図に示した記録装置に以上のよう
な好ましい条件を用いて、現像スリーブ51に第
3図乃至第6図に示したような電圧を印加して画
像形成を行うと、現像剤の飛散やクリーニング装
置10の負担を少くして、しかもかぶりのない鮮
明な記録画像を得ることができる。 When image formation is performed using the recording apparatus shown in FIGS. 1 and 2 under the above preferable conditions and applying voltages as shown in FIGS. 3 to 6 to the developing sleeve 51, It is possible to reduce the scattering of developer and the burden on the cleaning device 10, and to obtain clear recorded images without fogging.
次に本発明のより具体的な実施例について述べ
る。 Next, more specific embodiments of the present invention will be described.
実施例 1 第1図及び第2図の装置を用いた。Example 1 The apparatus shown in FIGS. 1 and 2 was used.
像形成体3は表面にセレン感光体層を有し、矢
印方向に120mm/secの表面速度で回転して、帯電
器4により500Vに帯電される。レーザビームス
キヤナ2は50Vのドツト構成の静電潜像を形成す
る。現像域Aの像形成体3と現像スリーブ51の
間隙700μm、現像スリーブ51の外径30mm、左方
向回転数65rpm、、磁石体52は磁束密度900ガウ
スN,S磁極8極を周方向に等間隙に有し、矢印
方向に700rpmで回転する。現像剤溜り53の現
像剤は、重量平均粒径が30μm程度の樹脂中に磁
性体粉末を分散含有した比抵抗が1016Ωmmの絶縁
性キヤリヤと、重量平均粒径が14μmで正に
20μC/g程度に帯電する絶縁性非磁性トナーの
混合した二成分現像剤とし、現像スリーブ51上
に形成される現像剤層の層厚を層厚規制ブレード
54によつて約500μmに規制する。 The image forming body 3 has a selenium photoreceptor layer on its surface, rotates in the direction of the arrow at a surface speed of 120 mm/sec, and is charged to 500 V by a charger 4. The laser beam scanner 2 forms an electrostatic latent image in the form of 50V dots. The gap between the image forming body 3 and the developing sleeve 51 in the developing area A is 700 μm, the outer diameter of the developing sleeve 51 is 30 mm, and the rotation speed in the left direction is 65 rpm. It is placed in the gap and rotates at 700 rpm in the direction of the arrow. The developer in the developer reservoir 53 is made of an insulating carrier with a resistivity of 10 16 Ωmm, which is made by dispersing magnetic powder in a resin with a weight average particle size of about 30 μm, and a positive carrier with a weight average particle size of 14 μm.
A two-component developer mixed with an insulating non-magnetic toner charged to about 20 μC/g is used, and the layer thickness of the developer layer formed on the developing sleeve 51 is regulated to about 500 μm by a layer thickness regulating blade 54.
バイアス電源11は、現像スリーブ51に第5
図のように電圧を印加するものとした。すなわ
ち、バイアス電源11は、像形成体3の回転と同
時に現像スリーブ51に−150Vの直流電圧を印
加し、時間帯T0内で交流電圧を重畳して最終的
に2kHz,1kVの交流電圧と−150Vの直流電圧の
重畳電圧に変化させ、時間帯Tvに入つて現像ス
リーブ51と磁石体52が前記回転を始めると同
時に直流電圧成分を40Vに変化させ、それによつ
て時間帯Tiにおいては完全に2kHz,1kVの交流
電圧と400Vの直流電圧の重畳した電圧を維持し
て印加し、時間帯Tv′に入つて1秒後に直流電圧
成分を−150Vに戻し、それと同時に現像スリー
ブ51と磁石体52の回転は停止され、そして、
時間帯T0において交流電圧成分の振幅を0に減
衰させた。 The bias power supply 11 is connected to the fifth developing sleeve 51.
The voltage was applied as shown in the figure. That is, the bias power supply 11 applies a DC voltage of -150V to the developing sleeve 51 at the same time as the image forming body 3 rotates, and superimposes an AC voltage within the time period T0 to finally generate an AC voltage of 2kHz, 1kV. The DC voltage component is changed to -150V superimposed voltage, and at the same time as the developing sleeve 51 and the magnet body 52 start rotating as the time period T v begins, the DC voltage component is changed to 40V. maintains and applies a completely superimposed voltage of 2kHz, 1kV AC voltage and 400V DC voltage, returns the DC voltage component to -150V one second after entering the time period T v ', and at the same time, the developing sleeve 51 and the rotation of the magnet body 52 is stopped, and
The amplitude of the AC voltage component was attenuated to 0 in time period T 0 .
以上の条件で画像形成を行い、現像したトナー
像を普通紙から成る記録紙Pに転写して、表面温
度140℃のローラ定着装置8によつて定着した。 Image formation was performed under the above conditions, and the developed toner image was transferred to recording paper P made of plain paper and fixed by roller fixing device 8 with a surface temperature of 140°C.
これによつて得られた記録画像は、濃度が高く
てかぶりのないきわめて鮮明なものであつた。そ
して、5万枚の記録紙に画像記録を行つたが、最
初から最後まで安定しして変らない記録画像を得
ることができ、現像装置5と像形成体3の間隙か
らトナーが飛散することもなく、クリーニング装
置10に回収されるトナーの量も少なかつた。 The recorded image thus obtained was extremely clear with high density and no fog. After recording images on 50,000 sheets of recording paper, we were able to obtain a stable and unchanging recorded image from beginning to end, and no toner was scattered from the gap between the developing device 5 and the image forming body 3. Therefore, the amount of toner collected by the cleaning device 10 was also small.
これに対して、像形成体3の静電潜像形成面が
現像域Aに達する直前において初めて現像スリー
ブ51にバイアス電圧を印加するようにした場合
は、記録画像先端が淡くなり、また、像形成体3
の非画像帯電面が現像域Aに達する以前から現像
スリーブ51に完全なバイアス電圧を印加するよ
うにした場合は、クリーニング装置10に回収さ
れるトナーの量が著しく多くなつたばかりでな
く、現像装置5からのトナーの飛散が多くなつ
て、1万枚の記録紙を得るのが限度であつた。 On the other hand, if the bias voltage is applied to the developing sleeve 51 for the first time immediately before the electrostatic latent image forming surface of the image forming member 3 reaches the developing area A, the leading edge of the recorded image becomes pale, and the image Formation 3
If a complete bias voltage is applied to the developing sleeve 51 before the non-image-charged surface of the developing sleeve 51 reaches the developing area A, not only will the amount of toner collected by the cleaning device 10 significantly increase, but the developing device 5, the amount of toner scattering increased, and the maximum number of sheets of recording paper that could be obtained was 10,000.
なお、現像時現像スリーブ51に印加するバイ
アス電圧の交流成分としては、周波数100〜10000
Hz、好ましくは1000〜5000Hz、実効値振幅200〜
5000Vで、像形成体3との間に実効値で300〜
5000V/mmの電界強さを生ぜしめるようなものが
好ましく用いられ、波形は、正弦波に限らず、矩
形波や三角波であつてもよい。又、現像剤は、二
成分現像剤を用いるのが好ましいが
USP3893418、特開昭55−18656号公報により知
られている一成分現像剤を用いてもよい。 Note that the AC component of the bias voltage applied to the developing sleeve 51 during development has a frequency of 100 to 10,000.
Hz, preferably 1000~5000Hz, effective amplitude 200~
At 5000V, there is an effective value of 300~ between the image forming body 3 and
A type that produces an electric field strength of 5000 V/mm is preferably used, and the waveform is not limited to a sine wave, but may be a rectangular wave or a triangular wave. In addition, it is preferable to use a two-component developer as the developer.
A one-component developer known from USP 3893418 and Japanese Patent Application Laid-Open No. 18656/1984 may be used.
本発明の画像形成方法によれば、トナーを飛散
させたり徒費したりすることなく、像形成体の帯
電と同極性に帯電したトナーでかぶりのない鮮明
なトナー像を形成することができる。
According to the image forming method of the present invention, a clear toner image without fogging can be formed using toner charged to the same polarity as that of the image forming member, without scattering the toner or wasting the toner.
本発明は、レーザビームスキヤナを用いる記録
装置に限らず、多針電極等を用いる記録装置等に
も適用し得る。また、本発明は、感光層上に絶縁
層を有する像形成体を用いた画像形成方法にも適
用しうる。さらに、本発明は、複数個の現像装置
を有するカラー画像記録装置及び像形成体上でト
ナー像を重ね合わせるカラー画像記録装置(特願
昭58−184381、同58−183152、同58−187000号)
にも適用しうる。 The present invention is applicable not only to recording devices that use laser beam scanners but also to recording devices that use multi-needle electrodes and the like. Further, the present invention can also be applied to an image forming method using an image forming body having an insulating layer on a photosensitive layer. Further, the present invention provides a color image recording device having a plurality of developing devices and a color image recording device that superimposes toner images on an image forming body (Japanese Patent Application Nos. 58-184381, 58-183152, and 58-187000). )
It can also be applied to
第1図は本発明の方法を実施する記録装置の例
を示す概要構成図、第2図は現像装置の例を示す
部分図、第3図乃至第6図はそれぞれ現像スリー
ブに印加する電圧の例を示すグラフ、第7図及び
第8図はそれぞれ第3図乃至第5図及び第6図に
示した電圧を印加するバイアス電源の構成例を示
す回路図である。
2……レーザビームスキヤナ、3……像形成
体、4……帯電器、5……現像装置、51……現
像スリーブ、52……磁石体、53……現像剤溜
り、54……層厚規制ブレード、A……現像域、
11……バイアス電源、T0,T0′……像形成体非
帯電面の現像域通過時間帯、Tv,Tv′……像形成
体非画像帯電面の現像域通過時間帯、Ti……像形
成体静電潜像形成面の現像域通過時間帯。
FIG. 1 is a schematic configuration diagram showing an example of a recording apparatus that implements the method of the present invention, FIG. 2 is a partial diagram showing an example of a developing device, and FIGS. 3 to 6 each show the voltage applied to the developing sleeve. Graphs illustrating examples, FIGS. 7 and 8 are circuit diagrams illustrating configuration examples of bias power supplies that apply the voltages shown in FIGS. 3 to 5 and 6, respectively. 2... Laser beam scanner, 3... Image forming body, 4... Charger, 5... Developing device, 51... Developing sleeve, 52... Magnet, 53... Developer reservoir, 54... Layer Thickness regulation blade, A...Development area,
11... Bias power supply, T 0 , T 0 '... Time period for the non-charged surface of the image forming member to pass through the developing zone, T v , T v '... Time period for the non-image charged surface of the image forming member to pass through the developing zone, T i ... Time period during which the electrostatic latent image forming surface of the image forming member passes through the development zone.
Claims (1)
電位と同極性の直流電圧を重畳したバイアス電圧
の印加を行つて、現像スリーブ上の現像剤層から
背景部電位と同極性に帯電したトナーを飛翔させ
て静電潜像を現像する画像形成方法において、前
記静電潜像に先立つ像形成体の非画像帯電面が現
像域を通過する間に現像スリーブに最大電圧が前
記バイアス電圧の最大電圧よりも低い振動電圧を
印加し、次いで該振動電圧を前記バイアス電圧に
変化させるようにしたことを特徴とする画像形成
方法。 2 前記振動電圧が前記交流電圧よりも振幅の小
さい交流成分を有する電圧である特許請求の範囲
第1項記載の画像形成方法。 3 前記振動電圧が前記交流電圧と前記背景部電
位と逆極性の直流電圧を重畳した電圧である特許
請求の範囲第1項記載の画像形成方法。 4 前記振動電圧が前記バイアス電圧を整流した
前記背景部電位と逆極性のパルス状電圧である特
許請求の範囲第1項記載の画像形成方法。 5 前記像形成体の非画像帯電面が現像域を通過
する間に前記現像スリーブ上の現像剤層の搬送駆
動が開始される特許請求の範囲第1項乃至第4項
記載の画像形成方法。[Claims] 1. A bias voltage in which an AC voltage and a DC voltage of the same polarity as the background potential of the electrostatic latent image are superimposed is applied to the developing sleeve to remove the background potential from the developer layer on the developing sleeve. In an image forming method in which an electrostatic latent image is developed by flying toner charged with the same polarity, a maximum voltage is applied to the developing sleeve while the non-image charged surface of the image forming body preceding the electrostatic latent image passes through a development area. An oscillating voltage lower than the maximum voltage of the bias voltage is applied, and then the oscillating voltage is changed to the bias voltage. 2. The image forming method according to claim 1, wherein the oscillating voltage is a voltage having an alternating current component with a smaller amplitude than the alternating current voltage. 3. The image forming method according to claim 1, wherein the oscillating voltage is a voltage obtained by superimposing the alternating current voltage and a direct current voltage of opposite polarity to the background potential. 4. The image forming method according to claim 1, wherein the oscillating voltage is a pulsed voltage having a polarity opposite to that of the background potential obtained by rectifying the bias voltage. 5. The image forming method according to claim 1, wherein the transport drive of the developer layer on the developing sleeve is started while the non-image charged surface of the image forming body passes through a developing area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59138018A JPS6118980A (en) | 1984-07-05 | 1984-07-05 | Image forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59138018A JPS6118980A (en) | 1984-07-05 | 1984-07-05 | Image forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6118980A JPS6118980A (en) | 1986-01-27 |
JPH0359436B2 true JPH0359436B2 (en) | 1991-09-10 |
Family
ID=15212130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59138018A Granted JPS6118980A (en) | 1984-07-05 | 1984-07-05 | Image forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6118980A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11167251A (en) * | 1997-10-03 | 1999-06-22 | Ricoh Co Ltd | Image forming device and method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0225864A (en) * | 1988-07-15 | 1990-01-29 | Canon Inc | Development method |
-
1984
- 1984-07-05 JP JP59138018A patent/JPS6118980A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11167251A (en) * | 1997-10-03 | 1999-06-22 | Ricoh Co Ltd | Image forming device and method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPS6118980A (en) | 1986-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4797335A (en) | Developing method for electrostatic images using composite component developer under non-contacting conditions | |
US4624559A (en) | Developing method for electrostatic latent image | |
JP2853104B2 (en) | Image forming device | |
JPH06100848B2 (en) | Development method | |
JPH0435074B2 (en) | ||
JPH0359436B2 (en) | ||
JP3084465B2 (en) | Developing device | |
JPH0364073B2 (en) | ||
JPS60125863A (en) | Developing device | |
JPH0444752B2 (en) | ||
JPH0376752B2 (en) | ||
JPH0822185A (en) | Developing device | |
JPH0619284A (en) | Developing method, developing device and electrophotographic device | |
JPH0464064B2 (en) | ||
JPH0364074B2 (en) | ||
JPS6113269A (en) | Developing device | |
JP3112539B2 (en) | Developing device | |
JPH0695242B2 (en) | Image forming method | |
JP3099143B2 (en) | Color image forming equipment | |
JPH0844177A (en) | Developing device | |
JPH0731440B2 (en) | Image forming method | |
JPH0862971A (en) | Image forming device | |
JPS6117156A (en) | Recording method using photoconductive toner | |
JPH08220853A (en) | Developing device | |
JPS60159771A (en) | Image forming method |