JPH0364029A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0364029A
JPH0364029A JP1199391A JP19939189A JPH0364029A JP H0364029 A JPH0364029 A JP H0364029A JP 1199391 A JP1199391 A JP 1199391A JP 19939189 A JP19939189 A JP 19939189A JP H0364029 A JPH0364029 A JP H0364029A
Authority
JP
Japan
Prior art keywords
layer
impurity
junction
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1199391A
Other languages
Japanese (ja)
Inventor
Shizunori Oyu
大湯 静憲
Tadashi Suzuki
匡 鈴木
Hidekazu Goshima
五嶋 秀和
Nobuyoshi Kashu
夏秋 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1199391A priority Critical patent/JPH0364029A/en
Publication of JPH0364029A publication Critical patent/JPH0364029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To manufacture a semiconductor device, in which leakage current is reduced even under a temperature lower than the room temperature, by forming an impurity introducing layer having the same conductivity type as a semiconductor substrate and higher concentration around a P-N junction shaped on the surface of the substrate, and a halogen-element introducing layer in a region deeper than the impurity introducing layer. CONSTITUTION:An impurity introducing layer 3 having conductivity type different from a semiconductor substrate 1 is formed around a P-N junction 2 shaped on the surface of said substrate and a halogen-element introducing layer 4 is formed in a region deeper than said impurity introducing layer 3. When the P-N junction 2 is biassed in reverse direction, said impurity introducing layer 3 inhibits extension of depletion layer under the P-N junction 2 and prevents diffusion of minority carriers under said depletion layer. The halogen- element introducing layer 4 prevents thermal expansion of the layer 3 at the time of heat treatment for forming the impurity introducing layer 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、漏れ電流の少ないpn接合を有する半導体装
置およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a pn junction with low leakage current and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来の半導体装置は、特開昭63−244665号公報
に記載のように、MOSトランジスタのソース・ドレイ
ン領域のpn接合の周囲にウェル層および埋込み層が形
成されていた。上記ウェル層は、基板表面への不純物打
込みとその後の熱拡散により形成され、また上記埋込み
層は、不純物拡散ののちエピタキシャル成長法により形
成されていた。
In a conventional semiconductor device, a well layer and a buried layer are formed around a pn junction in a source/drain region of a MOS transistor, as described in Japanese Unexamined Patent Publication No. 63-244665. The well layer is formed by implanting impurities into the substrate surface and subsequent thermal diffusion, and the buried layer is formed by epitaxial growth after impurity diffusion.

また、特願昭63−270652号公報に記載のように
、上記pn接合の周囲のウェル層および埋込み層は、高
エネルギ打込みにより形成していた。この時の不純物打
込み量は、熱処理後の残留欠陥の悪影響を防ぐために、
 I X 10”/cd程度以下であった。
Further, as described in Japanese Patent Application No. 63-270652, the well layer and buried layer around the pn junction were formed by high energy implantation. The amount of impurity implanted at this time is determined to prevent the negative effects of residual defects after heat treatment.
It was about I x 10"/cd or less.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記前者の従来技術では、構成回路の高性能化。 In the former conventional technology mentioned above, the performance of the constituent circuits has been improved.

高信頼化が図れたが、pn接合の漏れ電流を低減する点
について配慮がされておらず、半導体装置を100℃程
度と高温で使用する場合に漏れ電流が増大するという問
題があった。また、上記後者の従来技術では、上記高温
での漏れ電流を3分の1程度まで低減できたが、不純物
打込み量に制限があったため、さらなる漏れ電流の低減
が不可能であるという問題があった。
Although high reliability was achieved, no consideration was given to reducing the leakage current of the pn junction, and there was a problem that the leakage current increased when the semiconductor device was used at a high temperature of about 100°C. In addition, although the latter conventional technology was able to reduce the leakage current at high temperatures to about one-third, there was a problem in that it was impossible to further reduce the leakage current because there was a limit to the amount of impurity implanted. Ta.

本発明は、上記高温での漏れ電流を大幅に低減するだけ
でなく、室温程度以下の低温でも漏れ電流を低減する半
導体装置およびその製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device and a method for manufacturing the same that not only significantly reduces the leakage current at high temperatures, but also reduces the leakage current at low temperatures, about room temperature or lower.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、第1図(a)に
示すように、半導体基板1の表面側に形成されるpn接
合2の周囲に、上記基板1と導電型が同じであり、かつ
上記基板1の表面側の濃度より高い濃度を持つ不純物導
入層3と、上記不純物導入層3より深い領域にハロゲン
元素導入層4を設けたものである。
In order to achieve the above object, the present invention provides, as shown in FIG. , an impurity-introduced layer 3 having a higher concentration than the surface side of the substrate 1, and a halogen element-introduced layer 4 in a region deeper than the impurity-introduced layer 3.

また、第1図(b)にボすように、上記pn接合2の周
囲に、上記基板と導電型を異とする不純物導入層5と、
上記不純物導入M5より深い領域にハロゲン元素導入層
4とを設けたものである。
Further, as shown in FIG. 1(b), an impurity-introduced layer 5 having a conductivity type different from that of the substrate is provided around the pn junction 2;
A halogen element introduced layer 4 is provided in a region deeper than the impurity introduced M5.

ここで、上記ハロゲン元素は、フッ素、塩素。Here, the above halogen elements are fluorine and chlorine.

臭素およびヨウ素のいずれかとする。Either bromine or iodine.

さらに、上記不純物導入層3および5と、上記ハロゲン
元素導入層4の形成のためにイオン打込みとその後の熱
処理を用いたものである。このイオン打込みとその後の
熱処理は、上記pn接合形形成前後いずれでもかまわな
い。また、上記不純物導入層3および5と、上記ハロゲ
ン元素導入層5の形成では、同時に上記不純物と上記ハ
ロゲン元素とをイオン打込みし、その後熱処理すること
がuJ能であり、また、上記不純物と上記ハロゲン元素
を別々にイオン打込みし、個々のイオン打込み後に熱処
理することも可能である。
Furthermore, ion implantation and subsequent heat treatment are used to form the impurity introduced layers 3 and 5 and the halogen element introduced layer 4. This ion implantation and subsequent heat treatment may be performed either before or after forming the pn junction. Further, in forming the impurity-introduced layers 3 and 5 and the halogen element-introduced layer 5, it is possible to ion-implant the impurities and the halogen element at the same time, and then heat-treat the impurities and the halogen element. It is also possible to ion-implant the halogen elements separately and perform heat treatment after each ion implantation.

〔作用〕[Effect]

上記半導体基板1の表面に形成されたpn接合2が逆方
向にバイアスされた時、上記不純物導入層3は、pn接
合2の下の空乏層の拡がりを抑えると共に、上記空乏層
ドでの少数キャリヤの拡散を妨げるように作用する。ま
た、上記不純物導入層3の下のハロゲン元素導入層4は
、上記不純物導入層3が不純物導入層3形戒のための熱
処理やその後の熱処理において広がることを防止すると
共に、上記空乏層中および、pn接合2周辺の絶縁膜6
と基板1との界面における少数キャリヤの発生・再結合
中心の準位を低減するように作用する。
When the pn junction 2 formed on the surface of the semiconductor substrate 1 is biased in the opposite direction, the impurity-introduced layer 3 suppresses the expansion of the depletion layer under the pn junction 2, and also suppresses the expansion of the depletion layer under the pn junction 2. It acts to prevent carrier diffusion. Further, the halogen element introduced layer 4 under the impurity introduced layer 3 prevents the impurity introduced layer 3 from spreading during the heat treatment for forming the impurity introduced layer 3 and the subsequent heat treatment, and also prevents the spread of the impurity introduced layer 3 in the depletion layer. , an insulating film 6 around the pn junction 2
It acts to reduce the level at the center of generation and recombination of minority carriers at the interface between the substrate 1 and the substrate 1 .

また、上記と同様に、上記不純物導入層5は。Further, similarly to the above, the impurity introduced layer 5 is.

上記空乏層ドでの少数キャリヤの拡散長を短かくするよ
うに作用し、上記不純物導入層5ドのハロゲン元素導入
層4は、上記と同様に作用する。
It acts to shorten the diffusion length of minority carriers in the depletion layer, and the halogen element introduced layer 4 of the impurity introduced layer 5 acts in the same manner as described above.

以上のようなことから、逆方向にバイアスされたpn接
合2の漏れ電流の成分である0発生・再結合によるもの
と拡散によるものとを同時に低減できる。上記発生・再
結合による漏れ電流は、半導体装置の動作温度が室温程
度以下の時にpn接合の漏れ電流を支配し、また、上記
拡散による漏れ電流は、上記動作温度が100℃程度と
高温のときにpn接合の漏れ電流を支配することから、
本発明の半導体装置は、いかなる動作温度においても漏
れ電流を低減できるようになる。
From the above, it is possible to simultaneously reduce the leakage current components of the pn junction 2 biased in the reverse direction, which are due to zero generation/recombination and due to diffusion. The leakage current due to the above generation and recombination dominates the leakage current of the pn junction when the operating temperature of the semiconductor device is about room temperature or lower, and the leakage current due to the above diffusion dominates when the operating temperature is as high as about 100°C. Since this governs the leakage current of the pn junction,
The semiconductor device of the present invention can reduce leakage current at any operating temperature.

さらに、上記不純物導入層3および5を、イオン打込み
により形成する際に、イオン打込み後に熱処理を施して
も残留欠陥が存在し、上記pn接合まで上記欠陥が達し
て漏れ電流を増大させる場合があるが、上記不純物打込
み後の熱処理時に、ハロゲン元素導入層4を存在させる
ことで、上記欠陥がpn接合まで達することを妨げる。
Furthermore, when forming the impurity-introduced layers 3 and 5 by ion implantation, residual defects may exist even if heat treatment is performed after ion implantation, and the defects may reach the pn junction and increase leakage current. However, the presence of the halogen element introduction layer 4 during the heat treatment after the impurity implantation prevents the defects from reaching the pn junction.

従って、イオン打込みを用いた上記小純物導入屑3およ
び5の形成でも、ハロゲン元素の効果により半導体基板
の活性領域に上記欠陥を作ることはない。
Therefore, even when the impurity-introduced debris 3 and 5 are formed using ion implantation, the defects are not created in the active region of the semiconductor substrate due to the effect of the halogen element.

〔実施例〕〔Example〕

以ド1本発明の実施例を第2図乃至第5図を用いて説明
する。
Embodiments of the present invention will now be described with reference to FIGS. 2 to 5.

[実施例1] 本発明をダイナミックランダムアクセスメモリ(1)R
AM)素子およびその製造方法に実施した例を第2図乃
至第3図を用いて説明する。
[Embodiment 1] The present invention is applied to a dynamic random access memory (1) R
An example in which the present invention is applied to an AM) element and its manufacturing method will be described with reference to FIGS. 2 and 3.

cz、(100)面方位、抵抗率10Ω・個。cz, (100) plane orientation, resistivity 10Ω.

p型のシリコン(Si)基板7の主装置に、表面濃度が
2 X 101B/dの熱拡散により形成したp型ウェ
ル層8、選択酸化法により形成した膜厚が50nmのシ
リコン酸化膜(S i Ox膜)9と上記5iOz[9
下の濃度が2X1017/a#のp型層10とから成る
素子分離、および、熱酸化法により形成した膜厚が30
nmの5ins膜11を設けたのち、ホウ素(B)を0
.8MeVで1×10”4/cI#だけイ′オン打込み
して口打込み層12を形威した。
A p-type well layer 8 formed by thermal diffusion with a surface concentration of 2×101 B/d and a silicon oxide film (S iOx film) 9 and the above 5iOz[9
Element isolation consists of a p-type layer 10 with a concentration of 2X1017/a# at the bottom, and a film thickness of 30 mm formed by thermal oxidation method.
After forming a 5ins film 11 of 5 nm, boron (B) was added to 0.
.. The ion implantation layer 12 was formed by implanting ions of 1×10"4/cI# at 8 MeV.

その後、フッ素(ド)を3 M e VでlXl0’番
/dだけイオン打込みしてド打込み層13を形成した(
第2図(a))。
Thereafter, fluorine (do) was ion-implanted at 3 M e V by lXl0'/d to form a do implantation layer 13 (
Figure 2(a)).

この後に、乾燥窒素雰囲気(N2)中でtooo℃、1
0分の熱処理を行ない、上記B打込み層12を電気的に
活性化させ高濃度のp壁埋込み層14にした0次に、膜
厚が18nmのゲート5iOz膜15を形威したのちリ
ンCP> ドープされた膜厚が300nmの多結晶Si
電極16を形威し、ヒm(As)を100ksVでlX
l0”/aiだけイオン打込みしたのちにN2中で10
00℃。
This was followed by heating at 10°C in a dry nitrogen atmosphere (N2).
A heat treatment was performed for 0 minutes to electrically activate the B implantation layer 12 to form a high concentration p-wall buried layer 14. After forming a gate 5iOz film 15 with a film thickness of 18 nm, a phosphorus CP> Doped polycrystalline Si with a thickness of 300 nm
Form the electrode 16 and apply Him(As) to lX at 100ksV.
After ion implantation by 10"/ai, 10"/ai was implanted in N2.
00℃.

60分の熱処理を行ないn型層17を形成した。A heat treatment was performed for 60 minutes to form an n-type layer 17.

さらにリン<p> ドープされた多結晶5iW4により
第2のゲート電極18を形威し、Asを40keVで5
×10五B/dだけイオン打込みし、Nz中で950℃
、10分の熱処理を施してn◆型層19を形成した(第
2図(b))。
Furthermore, the second gate electrode 18 is formed by polycrystalline 5iW4 doped with phosphorus, and As is
Ion implantation was performed by ×105 B/d at 950°C in Nz.
A heat treatment was performed for 10 minutes to form an n◆ type layer 19 (FIG. 2(b)).

次いで膜厚が500nmのリンガラス[20を堆積し、
電極用コンタクト穴を開けたのち、アルミニウム(AQ
)電極21を形成してl)RAM素子を作製した(第2
図(Q’) ) 。
Next, phosphorus glass [20] with a film thickness of 500 nm was deposited,
After drilling contact holes for electrodes, aluminum (AQ
) The electrode 21 was formed and l) a RAM element was manufactured (second
Figure (Q') ).

本実施例によれば、上記B打込み層12および上記F打
込み層13の形成を行なわない場合に比べて、ド記の(
1)〜(4)のような効果があった。
According to this embodiment, compared to the case where the B implantation layer 12 and the F implantation layer 13 are not formed,
There were effects like 1) to (4).

(1)上記n型層17およびn十型層19のバルク成分
での漏れ電流を、室温(約27℃)から150℃の9M
囲で1桁程度以上低減できた。
(1) The leakage current in the bulk components of the n-type layer 17 and the n-type layer 19 is 9M from room temperature (approximately 27°C) to 150°C.
We were able to reduce this by more than an order of magnitude.

(2)上記n型層17およびn十型層19の選択酸化膜
9の端部での漏れ電流を、室温から150℃の範囲で2
0〜40%程度低減できた。
(2) The leakage current at the end of the selective oxide film 9 of the n-type layer 17 and the n-type layer 19 is 2.
It was possible to reduce it by about 0 to 40%.

(3) MO3F14Tのホットキャリヤ耐性を約2倍
に向上できた。
(3) The hot carrier resistance of MO3F14T was improved by about twice.

(4) MO3?″ヒTのドレイン耐圧を1v程度向上
できた。
(4) MO3? ``We were able to improve the drain breakdown voltage of the HiT by about 1V.

以上のような効果は、メモリ素子の情報保持時間を長く
することができ、素子の信頼性向上に寄与する。特に、
高集積化された素子の動作温度が高い時に上記情報保持
時間を長くできる。
The above effects can lengthen the information retention time of the memory device, contributing to improving the reliability of the device. especially,
The information retention time can be increased when the operating temperature of highly integrated elements is high.

また、本実施例によれば、上記F打込み層13の形成を
行なわない場合に比べて、下記の(5〉〜(8〉のよう
な効果があった。
Further, according to this example, the following effects (5> to (8)) were obtained compared to the case where the F implantation layer 13 was not formed.

(5)上記B打込み層12形成のための上記打込み量の
場合では、熱処理後の残留欠陥が多いため上記n型[1
7およびn十型層19の接合耐圧が著るしく低−卜する
のに対して、上記接合耐圧の劣化がない。
(5) In the case of the above implantation amount for forming the B implantation layer 12, there are many residual defects after heat treatment, so the n-type [1
7 and the n-type layer 19, whereas the junction breakdown voltage is significantly lower, there is no deterioration in the junction breakdown voltage.

(6)上記n型J1117およびn十型胎19のバルク
成分での漏れ電流を、室温において1桁以上低減できる
。尚、尚温側ではそれぞれの差は見られなくなる。
(6) The leakage current in the bulk components of the n-type J1117 and the n-type 19 can be reduced by one order of magnitude or more at room temperature. Incidentally, on the still-temperature side, the respective differences are no longer observed.

(7)上記p型糧込み屑14の分布の広がりを抑えるこ
とができ、第3図に示すような急峻な理込みM分布を得
ることができる。
(7) The spread of the distribution of the p-type grains 14 can be suppressed, and a steep grain M distribution as shown in FIG. 3 can be obtained.

(8) −1ll子が残留欠陥の影響を受けないために
は上記p壁埋込みに414の形成のためのB打込み量は
、上記打込みエネルギにおいて3 X 10”8/a&
以ドに抑えられていたが、I X I Qi4/d以上
でも残留欠陥の影響のない素子作製が可能である。
(8) In order to avoid the influence of residual defects on the -1111-112-111-112-11-11-11-11-11-11-11-11-11-11-11-11-11-11-11-11-11-11-11-11-11-11-20-11-12-11-12-12
Although it has been suppressed to below I.sub.X I Qi4/d or more, it is possible to manufacture devices without the influence of residual defects.

以上のような効果は、上記p壁埋込みN14の形成条件
を容易に選べるようにし、がっ、上記接合特性の劣化の
ない素子作製が実現できる。
The above-mentioned effects make it possible to easily select the conditions for forming the p-wall buried N14, and to realize device fabrication without deterioration of the junction characteristics.

〔実施例2〕 本発明をスタティック・ランダム・アクセス・メモリ(
SRAM)素子およびその製造方法に実施した例を第4
図乃主第5図を用いて説明する。
[Embodiment 2] The present invention is applied to a static random access memory (
The fourth example shows the implementation of the SRAM) element and its manufacturing method.
This will be explained using FIG. 5.

上記実施例1と同じ仕様のSi基板22を用いて1表面
濃度が2X10”/dで深さが3μmのp型ウェル層2
3、および、表面濃度が5X1016/dで深さが3μ
mのn型ウェル層24を熱拡散法により形成したのち、
上記実施例1と同じ仕様の素子分離形成を行なった0次
に、膜厚が20nmの5iOz膜25を形成したのち、
Pを3M e Vで工XIO”/fflだけイオン打込
みし、また、Fを4 M e Vで5X10工番/dだ
けイオン打込みして、F打込み# 26− I F打込
み層26−2を形成した(第4図(a))。
Using a Si substrate 22 with the same specifications as in Example 1 above, a p-type well layer 2 with a surface concentration of 2×10”/d and a depth of 3 μm is used.
3, and the surface concentration is 5X1016/d and the depth is 3μ
After forming an n-type well layer 24 of m by thermal diffusion method,
After forming element isolation with the same specifications as in Example 1 above, a 5iOz film 25 with a thickness of 20 nm was formed.
P is ion-implanted at 3 M e V with a thickness of 5×10”/ffl, and F is ion-implanted with 5×10 steps/d at 4 M e V to form an F implantation layer 26-2. (Figure 4(a)).

次いで、Nz中で1000℃、30分の熱処理を施し、
n型埋込み層27を形成したのち1M厚が10nmのゲ
ート5ift膜28およびリンドープした膜厚が200
nmのゲート多結晶Si電極29を形成した(第4図(
b))。
Next, heat treatment was performed at 1000°C for 30 minutes in Nz,
After forming the n-type buried layer 27, a gate 5ift film 28 with a 1M thickness of 10 nm and a phosphorus-doped film 28 with a thickness of 200 nm are formed.
A gate polycrystalline Si electrode 29 with a thickness of 100 nm was formed (see FIG.
b)).

その後、As、および、フッ化ホウ素()(F)を25
 k s Vテ2 X I O”/aJだけイオン打込
みしたのち、Nz中で900℃、30分の熱処理を施し
てn中型[30およびp十型層3tを形成した0次いで
、膜厚が500nmのリンガラス膜32を堆積したのち
、コンタクト穴を開け、Aff電極33を形成して、S
RAM素子を作製したく第4図(C))。
After that, As and boron fluoride () (F) were added to 25
After ion implantation by k s Vte2 After depositing the phosphor glass film 32, a contact hole is opened, an Aff electrode 33 is formed, and the S
I want to fabricate a RAM element (Fig. 4(C)).

本実施例によれば、上記n型埋込み層26を熱拡散によ
り形成した場合と比べて、下記の(1)〜(2)のよう
な効果があった。
According to this embodiment, the following effects (1) and (2) were obtained compared to the case where the n-type buried layer 26 was formed by thermal diffusion.

(1)上記n型埋込みM26形威にイオン打込みを用い
たことで上記p型ウェル層23の表(2)濃度を低下さ
せることなく、50%程度低抵抗のp型ウェル層を形成
できた。このため、p型ウェル層23下にn型埋込み層
27が有る時と無い時でのMO8l’l+Tのしきい値
電圧の差がない、また、P型ウェル層23の形成条件が
n型埋込みN27の形成条件と独立に選べることができ
るため、プロセス設計が容易となる。さらに、上記p型
ウェル層23をベースとした寄生バイポーラ動作を抑え
ることができるため、0MO8のラッチアップが生ずる
に必要なノイズ電流レベルを約2倍にすることができた
(1) By using ion implantation in the n-type buried M26 type layer, a p-type well layer with about 50% lower resistance could be formed without lowering the concentration of the p-type well layer 23 (Table 2). . Therefore, there is no difference in the threshold voltage of MO8l'l+T when there is an n-type buried layer 27 under the p-type well layer 23 and when there is no n-type buried layer 27, and the formation conditions for the P-type well layer 23 are Since it can be selected independently of the formation conditions of N27, process design becomes easy. Furthermore, since the parasitic bipolar operation based on the p-type well layer 23 can be suppressed, the noise current level required for 0MO8 latch-up to occur can be approximately doubled.

(2)1/10程度の低抵抗のn型埋込み層27を形成
できた。このため、p十型層31をソース・ドレインと
したMO8?”E丁のドレイン耐圧を約0.5■向上で
きると共に、n型埋込み層27をベースとした寄生バイ
ポーラ動作を抑えることができる。
(2) An n-type buried layer 27 with a low resistance of about 1/10 was formed. Therefore, MO8? with the p-type layer 31 as the source/drain? ``The drain breakdown voltage of the E-type can be improved by about 0.5 mm, and the parasitic bipolar operation based on the n-type buried layer 27 can be suppressed.

これにより、0MO8のラッチアップが生ずる保持電圧
を^めることかできるため、基板ノイズに対して着しく
耐性を有するようになる。
As a result, it is possible to reduce the holding voltage at which latch-up of 0MO8 occurs, thereby providing greater resistance to substrate noise.

また、ド打込みのない場合に比較すると、ド記の(3)
〜(6)のような効果があった。
Also, compared to the case where there is no C entry, (3) of the C entry
There were effects as shown in ~(6).

(3〉n型埋込み層27の分布広がりを第5図に示すよ
うに低減できた。これにより、M OS ?’ ?4 
Tのしきい値変動や上記p型ウェル層23の抵抗上昇を
抑えることができた。
(3> The distribution spread of the n-type buried layer 27 could be reduced as shown in FIG. 5. As a result, the MOS ?' ?4
It was possible to suppress the fluctuation in the threshold value of T and the increase in resistance of the p-type well layer 23.

(4)通常上記F打込み条件では、熱処理後に残留欠陥
が生ずるために接合特性等が著しく劣化するが、ド打込
みにより残憎欠陥の影響をなくすことができた。
(4) Normally, under the above F implantation conditions, residual defects are generated after heat treatment, resulting in significant deterioration of bonding properties, but by F implantation, the influence of residual defects could be eliminated.

(5)上記n十型層30およびp中型m31におけるバ
ルク成分の漏れ電流を115程度にでき、また、選択酸
化1IA9周辺での漏れ電流を1/2程度に低減できた
(5) The leakage current of the bulk component in the n-type layer 30 and the p-middle layer m31 could be reduced to about 115, and the leakage current around the selective oxidation 1IA9 could be reduced to about 1/2.

(6)各MOSドMTのホットキャリヤ寿命を約2倍に
することができた。
(6) The hot carrier life of each MOS-type MT could be approximately doubled.

以上のように、本実施例では、SRAM素子の腐性能化
・島信頼化が実現できると共に、素子作製プロセスの簡
素化、島制御化が実現できた。
As described above, in this example, it was possible to improve the corrosion performance and reliability of the SRAM element, and also to simplify the element manufacturing process and achieve island control.

尚、本実施例では、F打込みについてのみ述べたが、F
と同じハロゲン元素である塩素、臭素およびヨウ素でも
同様の効果がある。しがし、打込み時の損傷を考慮する
と軽元素であるドが望ましい元素である。
Note that in this embodiment, only F implantation was described, but F
The same halogen elements chlorine, bromine, and iodine have similar effects. However, in consideration of damage during implantation, the light element Do is a desirable element.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、pn接合の漏れ電流の低減、MO8素
子のドレイン耐圧の向上、MO8素子のホットキャリヤ
耐性の向上、および、0MO8素子のラッチアップ耐性
の向上が可能となるので、高性能かっ晶信頼の素子を提
供するのに効果がある。
According to the present invention, it is possible to reduce the leakage current of the pn junction, improve the drain breakdown voltage of the MO8 element, improve the hot carrier resistance of the MO8 element, and improve the latch-up resistance of the 0MO8 element, thereby achieving high performance. It is effective in providing crystal reliable elements.

また、品濃度の埋込み層を、打込みの残習欠陥の影響な
しに形成でき、がっ、分布広がりを抑えることができる
ので、埋込み層形成プロセスの簡素化および制御性向上
に対して効果もある。
In addition, it is possible to form a buried layer with a high quality concentration without the influence of residual defects from implantation, and it is possible to suppress the spread of the distribution, which is effective in simplifying the buried layer formation process and improving controllability. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理的構成を示す断面図、第2図は本
発明の実施例のL)RAM素子作成工程を示す断面図、
第3図はp型埋込層における硼素(B)濃度の分布図、
第4図はSRAM素子作成工程を示す断面図、第5図は
n型埋込層におけるリン(P)濃度の分布図である。 1・・・半導体基板、2・・・pn接合、3・・・半導
体基板と導電型が同じ不純物導入層、4・・・ハロゲン
元素導入層、5・・・半導体基板と導電型が異なる不純
物導入層、6・・・絶w膜、7,22・・・p型シリコ
ン基板、8.23・・・p型つェル対、9,11,15
゜25.28・・・シリコン酸化膜、10・・・p型チ
ャネルストッパ層、12・・・ホウ素打込み層、13゜
26−2・・・フッ素打込み層、14・・・p型埋込み
層、16.18,29・・・ゲート多結晶シリコン膜。 17− n型層、19.30−n+型層、20゜32・
・・リンガラス膜、21.:3:3・・・アルミニウム
電極、24・・・n型ウェル層、26−1・・・リン打
込み層、 27・・・n型埋込み層、 31・・・p◆ 型層。 囁 ! 口 第 2 凹 (a) 第 (2) (す 鴇 4 砂 (0,) (1)) (0)
FIG. 1 is a sectional view showing the basic configuration of the present invention, FIG. 2 is a sectional view showing the L) RAM element manufacturing process of the embodiment of the present invention,
Figure 3 is a distribution diagram of boron (B) concentration in the p-type buried layer,
FIG. 4 is a cross-sectional view showing the SRAM element manufacturing process, and FIG. 5 is a distribution diagram of phosphorus (P) concentration in the n-type buried layer. 1... Semiconductor substrate, 2... PN junction, 3... Impurity introduced layer having the same conductivity type as the semiconductor substrate, 4... Halogen element introduced layer, 5... Impurity having a different conductivity type from the semiconductor substrate. Introduction layer, 6... Absolute film, 7, 22... P-type silicon substrate, 8.23... P-type well pair, 9, 11, 15
゜25.28...Silicon oxide film, 10...P type channel stopper layer, 12...Boron implantation layer, 13゜26-2...Fluorine implantation layer, 14...P type buried layer, 16.18,29...Gate polycrystalline silicon film. 17-n type layer, 19.30-n+ type layer, 20°32.
...phosphorus glass film, 21. :3:3... Aluminum electrode, 24... N-type well layer, 26-1... Phosphorus implantation layer, 27... N-type buried layer, 31... P◆ type layer. Whisper! Mouth 2nd concave (a) 2nd (2) (Suto 4 Sand (0,) (1)) (0)

Claims (1)

【特許請求の範囲】 1、半導体基板の主表面側に形成されるpn接合の周囲
に、上記半導体基板と導電型が同じであり、かつ、上記
半導体基板の表面側の濃度より高い濃度を持つ不純物導
入層と、上記不純物導入層より深い領域にハロゲン元素
導入層とを設けたことを特徴とする半導体装置。 2、基板上のpn接合の周囲に、基板と導電型を異とす
る不純物導入層と、上記不純物導入層より深い領域にハ
ロゲン元素導入層とを設けたことを特徴とする半導体装
置。 3、上記ハロゲン元素は、フッ素、塩素、臭素、および
ヨウ素のいずれかから選ばれることを特徴とする請求項
1もしくは2に記載した半導体装置。 4、上記不純物導入層およびハロゲン元素導入層は、イ
オン打込みとその後の熱処理により形成されることを特
徴とする請求項1ないし3のいずれかに記載した半導体
装置の製造方法。
[Claims] 1. A material having the same conductivity type as the semiconductor substrate and having a higher concentration than the concentration on the surface side of the semiconductor substrate is formed around the pn junction formed on the main surface side of the semiconductor substrate. 1. A semiconductor device comprising: an impurity-introduced layer; and a halogen element-introduced layer in a region deeper than the impurity-introduced layer. 2. A semiconductor device characterized in that an impurity-introduced layer having a conductivity type different from that of the substrate is provided around a pn junction on a substrate, and a halogen element-introduced layer is provided in a region deeper than the impurity-introduced layer. 3. The semiconductor device according to claim 1 or 2, wherein the halogen element is selected from fluorine, chlorine, bromine, and iodine. 4. The method of manufacturing a semiconductor device according to claim 1, wherein the impurity-introduced layer and the halogen element-introduced layer are formed by ion implantation and subsequent heat treatment.
JP1199391A 1989-08-02 1989-08-02 Semiconductor device and manufacture thereof Pending JPH0364029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199391A JPH0364029A (en) 1989-08-02 1989-08-02 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199391A JPH0364029A (en) 1989-08-02 1989-08-02 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0364029A true JPH0364029A (en) 1991-03-19

Family

ID=16406999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199391A Pending JPH0364029A (en) 1989-08-02 1989-08-02 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0364029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130256A (en) * 1994-10-31 1996-05-21 Nec Corp Semiconductor memory
JP2015225877A (en) * 2014-05-26 2015-12-14 ルネサスエレクトロニクス株式会社 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130256A (en) * 1994-10-31 1996-05-21 Nec Corp Semiconductor memory
JP2015225877A (en) * 2014-05-26 2015-12-14 ルネサスエレクトロニクス株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US4371403A (en) Method of providing gettering sites through electrode windows
JPH03119732A (en) Neutral impurity for increasing opera- tional life of semiconductor device
US5015593A (en) Method of manufacturing semiconductor device
KR100250355B1 (en) Semiconductor device
KR100727010B1 (en) Method for manufacturing a semiconductor device
US6258640B1 (en) Semiconductor device manufacturing method
US6730583B2 (en) Method for fabricating semiconductor device
US20050282335A1 (en) Method for manufacturing a semiconductor device having polysilicon plugs
KR100716640B1 (en) Gate dielectric layer of semiconductor device and method for forming the same
US5731637A (en) Semiconductor device
WO2013145412A1 (en) Semiconductor device and method for manufacturing same
JP2997791B2 (en) Method for manufacturing semiconductor device
JPH0364029A (en) Semiconductor device and manufacture thereof
JP4615755B2 (en) Manufacturing method of semiconductor device
KR100429556B1 (en) Method for fabricating semiconductor device improved channel property
JPH02155273A (en) Mos field-effect transistor
KR100850138B1 (en) Gate dielectric layer of semiconductor device and method for forming the same
KR100280105B1 (en) Manufacturing Method of Semiconductor Device
US5646057A (en) Method for a MOS device manufacturing
JPH0239534A (en) Manufacture of semiconductor device
JPH0575041A (en) Cmos semiconductor device
JPH031573A (en) Semiconductor device
JPH11204783A (en) Semiconductor device and manufacture therefor
JPS63313847A (en) Semiconductor device
JP3260485B2 (en) Method for manufacturing semiconductor device