JPH036373A - Production of thin super-smoothed film - Google Patents

Production of thin super-smoothed film

Info

Publication number
JPH036373A
JPH036373A JP14137289A JP14137289A JPH036373A JP H036373 A JPH036373 A JP H036373A JP 14137289 A JP14137289 A JP 14137289A JP 14137289 A JP14137289 A JP 14137289A JP H036373 A JPH036373 A JP H036373A
Authority
JP
Japan
Prior art keywords
thin film
substrate
ion gun
target
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14137289A
Other languages
Japanese (ja)
Inventor
Hitoshi Hirano
均 平野
Seiichi Kiyama
木山 精一
Masato Osumi
大隅 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14137289A priority Critical patent/JPH036373A/en
Publication of JPH036373A publication Critical patent/JPH036373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To smoothen the surface of a thin film at an atomic level by forming a thin film by irradiating a substrate with an assistant ion beam simultaneously with irradiating a target with a sputter ion beam and then irradiating the resulting thin film with the assistant ion beam. CONSTITUTION:A target 5 (carbon graphite) is set in a holder 4 in a vacuum vessel 1 and a substrate 3 is also set in a holder 2, and the pressure inside the vacuum vessel 1 is regulated to about 3X10<-6>Torr. Subsequently, the target 5 is irradiated with Ar ions by means of an ion gun 6 for sputtering, by which the substrate 3 is irradiated with carbon atoms. Simultaneously, the substrate 3 is irradiated with hydrogen ions by means of an assistant ion gun 7, by which a thin diamond film is formed on the substrate 3. Further, the resulting thin film is irradiated with helium ions from the assistant ion gun 7, and simultane ously, the substrate holder 2 is slowly turned at about 10-20rpm, by which irradi ation is carried out so that irradiation angle is regulated to about 60 deg.. By this method, the surface of the thin diamond film can be finished to the roughness of atomic level.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はイオンビーム法によって形成された薄膜の平滑
化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to smoothing of thin films formed by ion beam method.

(ロ)従来の技術 イオンビーム法は、基板に薄膜を形成する方法としてよ
く知られた技術であり、特に半導体の薄膜を形成する方
法としては、例えば特開昭63−136号公報や特開昭
63−217655号公報に記載されている。
(b) Conventional technology The ion beam method is a well-known technique for forming a thin film on a substrate, and in particular, as a method for forming a semiconductor thin film, for example, It is described in Publication No. 63-217655.

ところで、一般に基板にダイヤモンド薄膜(グラファイ
ト化したカーボン薄膜)を形成しようとする場合、この
ダイヤモンド薄膜は低温での形成が困難とされており、
CVD等の高温プロセスで行われるのが普通である。
By the way, when trying to form a diamond thin film (graphitized carbon thin film) on a substrate, it is generally difficult to form this diamond thin film at low temperatures.
It is usually performed using a high temperature process such as CVD.

又、こうして形成されたダイヤモンド薄膜は、表面の凹
凸が大きく、これを高品位化を目的として原子レベル(
1nm以下)の表面粗さに平滑することは、ポリ7シン
グ等の技術をもってしても不可能(高々10nm程度)
である。
In addition, the diamond thin film formed in this way has a large surface unevenness, which is treated at the atomic level (
Even with techniques such as poly7ing, it is impossible to smooth the surface to a roughness of 1 nm or less (approximately 10 nm at most).
It is.

さらに、このレベルで薄膜の表面仕上げを行う場合にお
いても、該薄膜を一旦はその形成装置から取り外さねば
ならず、非常に手間がかかるという問題があった。
Furthermore, even when surface finishing a thin film at this level, the thin film must be removed from the forming apparatus, which is very time consuming.

(ハ)発明が解決しようとする課題 本発明が解決しようとする課題はダイヤモンド薄膜のよ
うな低温で形成しにくい薄膜をイオンビーム法を用いて
低温で形成すると同時に該薄膜の表面を原子レベルで平
滑化することである。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are to form a thin film such as a diamond thin film, which is difficult to form at low temperatures, at a low temperature using an ion beam method, and at the same time to improve the surface of the thin film at an atomic level. It is to smooth.

(ニ)課題を解決するための手段 真空状態下に、基板及びターゲットと、前記基板に対向
して設けられたアシストイオンガンと、前記ターゲット
に対向して設けられたスパッタ用イオンガンと、を配置
し、前記スパッタ用イオンガンから照射されるイオンビ
ームによってターゲットの構成原子を前記基板に照射す
るのと同時に、前記アシストイオンガンから照射される
イオンビームによって前記基板に薄膜を形成し、さらに
形成された薄膜に前記アシストイオンガンよリイオンビ
ームを照射して、前記薄膜を平滑化する。
(d) Means for Solving the Problem A substrate and a target, an assist ion gun provided opposite to the substrate, and a sputtering ion gun provided opposite to the target are arranged in a vacuum state. , simultaneously irradiating constituent atoms of the target onto the substrate with an ion beam irradiated from the sputtering ion gun, forming a thin film on the substrate with the ion beam irradiating from the assist ion gun, and further applying a thin film to the formed thin film. A ion beam is irradiated from the assist ion gun to smooth the thin film.

(ホ)作用 真空容器等の内部に基板を入れたままで薄膜の形成から
、その表面の平滑化まで、一連のシーフェンスで行える
(e) Operation A series of sea fences can perform everything from forming a thin film to smoothing the surface while the substrate remains inside a vacuum container or the like.

(へ)実施例 以下本発明の超平滑化薄膜の製法を図面の一実施例に沿
って詳細に説明する。
(f) Example The method for producing an ultra-smoothed thin film of the present invention will be explained in detail below with reference to an example of the drawings.

第1図は薄膜の形成装置を示す側面図であり、(1)は
3 X 10−’Torr程度の高い真空状態に保持で
きる真空容器、(2)は該容器(1)の内部に配置され
て薄膜の形成される基板(3)を保持する基板ホルダー
、(4)は同じく前記容器の略中、央部に配置されて前
記薄膜の構成原子となるターゲット(5)(グラファイ
ト化したカーボン)を保持するターゲットホルダー、(
6)は前記容器(1)の−側に前記ターゲット(5)に
対抗して設けられ該ターゲット(5)にアルゴンイオン
(Ar”)を照射してそのターゲット(5)をスパッタ
するスパッタ用イオンガン、(7)は前記容器(1)の
他側に前記基板(3)に対向して設けられ該基板(3)
に薄膜を形成するためのヘリウムイオン(He+)を照
射するアシストイオンガンである。
FIG. 1 is a side view showing a thin film forming apparatus, in which (1) is a vacuum container that can maintain a high vacuum state of about 3 x 10-' Torr, and (2) is a vacuum container that is placed inside the container (1). A substrate holder (4) holds the substrate (3) on which the thin film is to be formed, and (4) is a target (5) (graphitized carbon) which is also placed approximately in the center of the container and becomes the constituent atoms of the thin film. Target holder, which holds (
6) is an ion gun for sputtering that is provided on the - side of the container (1) in opposition to the target (5) and irradiates the target (5) with argon ions (Ar") to sputter the target (5). , (7) are provided on the other side of the container (1) facing the substrate (3), and the substrate (3)
This is an assist ion gun that irradiates helium ions (He+) to form a thin film on.

ここで前記基板ホルダー(2)は加熱及び冷却が可能で
あり、前記アシストイオンガン(7)はここから照射さ
れるヘリウムイオン(He”)の前記基板(3)に対す
る照射角度を、0° (垂直入射)から90° まで任
意に設定でき(60’が好ましい)、且つ同じ角度範囲
で自転運動もできるように成されている。
Here, the substrate holder (2) can be heated and cooled, and the assist ion gun (7) adjusts the irradiation angle of the helium ions (He'') irradiated from here to the substrate (3) to 0° (vertical). The angle can be set arbitrarily from the angle of incidence to 90° (60' is preferred), and can also rotate within the same angular range.

次に薄膜の形成をダイヤモンド薄膜の形成を例にとって
説明する。
Next, the formation of a thin film will be explained using the formation of a diamond thin film as an example.

まず、ターゲット(5)としてカーボングラファイトを
用い、これをターゲットホルダー(4)にセットする。
First, carbon graphite is used as a target (5) and set in a target holder (4).

又、基板(3)を基板ホルダー(2)にセットし、真空
容器(1)内を3 X 10−’Torr程度の高真空
状態にする。
Further, the substrate (3) is set in the substrate holder (2), and the inside of the vacuum container (1) is brought into a high vacuum state of about 3×10-' Torr.

次に、スパッタ用イオンガン(6)のビーム電圧を数百
V〜数kVに設定し、一方のビーム電流を数十mA程度
に設定して始動し、前記ターゲ7)(5)にアルゴンイ
オンを照射することにより、炭素原子を基板(2)に照
射する。
Next, the beam voltage of the sputtering ion gun (6) is set to several hundreds of volts to several kV, and the beam current of one of the sputtering guns is set to about several tens of mA and started, and argon ions are applied to the target 7) (5). By irradiating, carbon atoms are irradiated onto the substrate (2).

この時、同時にアシストイオンガン(7)より、水素イ
オン(H+)を照射して、前記基板(3)にダイヤモン
ド薄膜を形成する。尚、アシストイオンガン(7)の水
素イオンエネルギーは50〜200eV程度が好ましい
At this time, hydrogen ions (H+) are simultaneously irradiated from the assist ion gun (7) to form a diamond thin film on the substrate (3). Note that the hydrogen ion energy of the assist ion gun (7) is preferably about 50 to 200 eV.

さて、こうして形成されたダイヤモンド薄膜は、未だイ
オンビーム電流密度分布等の変化により、超平滑表面に
なっているとは言いがたい。
Now, it is difficult to say that the diamond thin film thus formed has an ultra-smooth surface due to changes in the ion beam current density distribution, etc.

そこで次に、アシストイオンガン(7)を再度用いて、
先に形成したダイヤモンド薄膜を超平滑化する作業を行
う。尚、前記工程からこの工程に移るのに基板(3)の
取り出しは必要ない。
Therefore, next, using the assist ion gun (7) again,
The previously formed diamond thin film will be ultra-smoothed. Note that it is not necessary to take out the substrate (3) when moving from the above step to this step.

この工程ではアシストイオンとしてヘリウムイオン(H
e+)を用いる。そして前記基板ホルダー(2)を10
〜20 rpmでゆっくりと回転させながら、アシスト
イオンガン(7)より基板(5)に対する照射角度を6
0°程度にして前記ヘリウムイオンを照射する。
In this process, helium ions (H
e+) is used. Then, the substrate holder (2) is
While rotating slowly at ~20 rpm, the irradiation angle from the assist ion gun (7) to the substrate (5) was set to 6.
The helium ions are irradiated at about 0°.

ところで、前記平滑化の工程では、アシストイオンガン
(7)のビーム電圧を加工時間の増加に伴い、徐々に減
少させて行き、第2図に示す如く、照射されるヘリウム
イオンエネルギーを加工時間の経過に伴って、徐々に減
少方向に変化させて表面平滑化の処理を行う。
By the way, in the smoothing step, the beam voltage of the assist ion gun (7) is gradually decreased as the processing time increases, and as shown in Fig. 2, the irradiated helium ion energy is adjusted as the processing time progresses. Accordingly, the surface smoothing process is performed by gradually changing the direction of decrease.

そして、最終的にはアシストイオンガン(7)から、ヘ
リウムイオンが基板(3)に到達するのに必要な最小エ
ネルギー値にまで減少させて、約30分間はど平滑化処
理を行う。
Finally, the helium ions from the assist ion gun (7) are reduced to the minimum energy value necessary to reach the substrate (3), and a smoothing process is performed for about 30 minutes.

前記平滑化の過程で、最初−個のヘリウムイオンが持つ
エネルギーは、第2図に示されるように大きいため、基
板(3)上のダイヤモンド薄膜表層の数個の炭素原子は
弾き飛ばされる。そしてこのヘリウムイオンエネルギー
を加工時間と共に減少させていくと、該ヘリウムイオン
1個が弾き飛ばす炭素原子の数が徐々に減少する。
In the smoothing process, the energy of the first helium ion is large as shown in FIG. 2, and therefore several carbon atoms on the surface layer of the diamond thin film on the substrate (3) are repelled. When this helium ion energy is decreased with processing time, the number of carbon atoms that one helium ion repels gradually decreases.

やがて、基板(3)到達に必要な最小エネルギーになっ
た時点で、炭素原子1個が、ヘリウムイオンとの相互作
用力によって、ダイヤモンド薄膜表層から奪われ、その
結果該薄膜は原子レベルの表面粗さで仕上げられる。
Eventually, when the energy reaches the minimum required to reach the substrate (3), one carbon atom is taken away from the surface layer of the diamond thin film by the interaction force with the helium ions, resulting in the thin film becoming rough on the atomic level. It can be finished with

第3図に以上の説明の方法にて形成されたダイヤモンド
薄膜の加工時間(30〜40分程度で十分)と表面粗さ
の関係を示す。同図(A)は平滑加工をしていないため
、基準面(0)より+、−50人の範囲で凹凸がみられ
るのに対し、(B)ではアシストイオンガン(7)によ
るヘリウムイオン照射で1時間の加工を行った結果、略
均−な表面が得られている。
FIG. 3 shows the relationship between processing time (about 30 to 40 minutes is sufficient) and surface roughness of a diamond thin film formed by the method described above. In the same figure (A), unevenness is seen in the range of + and -50 people from the reference surface (0) because it is not smoothed, whereas in (B), the helium ion irradiation by the assist ion gun (7) As a result of processing for 1 hour, a substantially uniform surface was obtained.

(ト)発明の効果 本発明は以上の説明の如く、同一の装置により、薄膜の
形成と、超平滑化が可能なため、薄膜形成時の生産性の
向上が図れると共に、原子ツールとしてのイオンを用い
てそのビーム電圧、即ち平滑加工に用いるイオンエネル
ギーを変化させることにより、原子レベルでの薄膜の表
面の平滑化が行え、半導体の形成、光学部品のコーティ
ング、工具の形成、宇宙関連部材等への応用に多大に寄
与するものである。
(G) Effects of the Invention As described above, the present invention enables the formation of thin films and ultra-smoothing with the same device, which improves productivity during thin film formation, and also makes it possible to use ions as an atomic tool. By changing the beam voltage, that is, the ion energy used for smoothing, the surface of thin films can be smoothed at the atomic level, making it possible to smooth the surface of thin films at the atomic level. This will greatly contribute to the application of this technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜製造装置を示す側面図、第2図は
平滑加工時間に対するアシストイオンガンからのヘリウ
ムイオンエネルギーの変化を示す図、第3図(A)は平
滑加工を施さなかったときの薄膜の表面粗さを示す図、
(B)は1時間平滑加工を施したときの薄膜の表面粗さ
を示す図である。 (1) 真空容器、(3)・基板、(5) ターゲット
、(7)・・アシストイオンガン、(6) スパッタ用
イオンガン。
Figure 1 is a side view showing the thin film manufacturing apparatus of the present invention, Figure 2 is a diagram showing changes in helium ion energy from the assist ion gun with respect to smoothing time, and Figure 3 (A) is when smoothing is not performed. A diagram showing the surface roughness of a thin film of
(B) is a diagram showing the surface roughness of the thin film after smoothing for 1 hour. (1) Vacuum vessel, (3) Substrate, (5) Target, (7) Assist ion gun, (6) Sputtering ion gun.

Claims (1)

【特許請求の範囲】[Claims] (1)真空状態下に、基板及びターゲットと、前記基板
に対向して設けられたアシストイオンガンと、前記ター
ゲットに対向して設けられたスパッタ用イオンガンと、
を配置し、 前記スパッタ用イオンガンから照射されるイオンビーム
によってターゲットの構成原子を前記基板に照射するの
と同時に、 前記アシストイオンガンから照射されるイオンビームに
よって前記基板に薄膜を形成し、 さらに形成された薄膜に前記アシストイオンガンよりイ
オンビームを照射して、前記薄膜を平滑化することを特
徴とする超平滑化薄膜の製法。
(1) Under a vacuum condition, a substrate and a target, an assist ion gun provided opposite to the substrate, and a sputtering ion gun provided opposite to the target;
and irradiating constituent atoms of the target onto the substrate with an ion beam irradiated from the sputtering ion gun, and at the same time forming a thin film on the substrate with the ion beam irradiated from the assist ion gun, further forming a thin film. A method for producing an ultra-smoothed thin film, which comprises smoothing the thin film by irradiating the thin film with an ion beam from the assist ion gun.
JP14137289A 1989-06-02 1989-06-02 Production of thin super-smoothed film Pending JPH036373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14137289A JPH036373A (en) 1989-06-02 1989-06-02 Production of thin super-smoothed film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14137289A JPH036373A (en) 1989-06-02 1989-06-02 Production of thin super-smoothed film

Publications (1)

Publication Number Publication Date
JPH036373A true JPH036373A (en) 1991-01-11

Family

ID=15290460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14137289A Pending JPH036373A (en) 1989-06-02 1989-06-02 Production of thin super-smoothed film

Country Status (1)

Country Link
JP (1) JPH036373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516341A (en) * 2003-06-27 2007-06-21 サン−ゴバン グラス フランス Dielectric layer coated substrate and process and apparatus for manufacturing the same
US20090050469A1 (en) * 2007-08-22 2009-02-26 International Business Machines Corporation Alignment film forming apparatus and methos

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516341A (en) * 2003-06-27 2007-06-21 サン−ゴバン グラス フランス Dielectric layer coated substrate and process and apparatus for manufacturing the same
US20090050469A1 (en) * 2007-08-22 2009-02-26 International Business Machines Corporation Alignment film forming apparatus and methos
US9034151B2 (en) * 2007-08-22 2015-05-19 International Business Machines Corporation Alignment film forming apparatus and method
US9869014B2 (en) 2007-08-22 2018-01-16 International Business Machines Corporation Formation of an alignment film for a liquid crystal on a substrate

Similar Documents

Publication Publication Date Title
US5662965A (en) Method of depositing crystalline carbon-based thin films
DE3650612T2 (en) Process for the planarization of a thin Al layer
JP2003522830A (en) Diamond-like carbon film with improved adhesion
DE68920417T2 (en) Process for producing a carbon-containing film.
JP2001526323A (en) Equipment for modifying the surface of polymers, metals and ceramics using ion beams
JPH0920591A (en) Formation of diamond film
Louis et al. Enhancement of reflectivity of multilayer mirrors for soft x-ray projection lithography by temperature optimization and ion bombardment
US5708267A (en) Processing method using fast atom beam
JPH036373A (en) Production of thin super-smoothed film
US5252174A (en) Method for manufacturing substrates for depositing diamond thin films
JP2018048393A (en) Method for coating conductive component, and coating for conductive component
JPH08301692A (en) Method for ablation for synthetic diamond and diamond obtained
JP3078853B2 (en) Oxide film formation method
JP3227795B2 (en) Method for controlling crystal orientation of aluminum film
JPH075304A (en) Manufacture of structure coated with diamond
JP3378758B2 (en) Method of forming amorphous carbon-based coating
JPH0560904A (en) Optical parts and production thereof
JP3986243B2 (en) Hard thin film fabrication method using ion beam
EP0403986B1 (en) Method for manufacturing substrates for depositing diamond thin films
CN113025954B (en) Method for regulating and controlling interaction of ferromagnetic multilayer film DM
Zalar et al. AES depth profiling of a new type of multilayer structure composed of Cr/Ni layers of various thicknesses
JPH04132684A (en) Method for forming diamond thin film
JPH04337445A (en) Manufacture of microsection
JPH0663087B2 (en) Method for forming titanium nitride film
JPH0874032A (en) Hard carbon film coated member and its production