JPH0363577B2 - - Google Patents

Info

Publication number
JPH0363577B2
JPH0363577B2 JP57121318A JP12131882A JPH0363577B2 JP H0363577 B2 JPH0363577 B2 JP H0363577B2 JP 57121318 A JP57121318 A JP 57121318A JP 12131882 A JP12131882 A JP 12131882A JP H0363577 B2 JPH0363577 B2 JP H0363577B2
Authority
JP
Japan
Prior art keywords
resin powder
polyolefin resin
hydrophilized
particle size
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57121318A
Other languages
Japanese (ja)
Other versions
JPS5912949A (en
Inventor
Joji Ibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12131882A priority Critical patent/JPS5912949A/en
Publication of JPS5912949A publication Critical patent/JPS5912949A/en
Publication of JPH0363577B2 publication Critical patent/JPH0363577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、親水性のポリオレフイン系樹脂より
なる改良された焼結体用成形材料に関する。 本発明の目的は、散気管、散気板等に適する起
泡材、固形物の分離または油水の分離に用いる
過材、およびインクローラー等に用いる改良され
た焼結体用成形材料を提供するにある。 ポリオレフイン系樹脂粉末の表面をスルホン化
した焼結体用成形材料は、優れた親水性、耐久
性、寸法安定性等を有する焼結体を提供できる
が、この際、ポリオレフイン系樹脂粉末の粒径が
50〜300μ、スルホン化の程度が交換当量にして
0.0003〜0.005ミリ当量/グラムであるとき、そ
の焼結体は油水分離に適した過材であり、さら
に固形物の分離においても優れた性能を発揮する
ことを、先に本発明者は見出し特許出願した。 しかしながら、上記の焼結体は、親水化してい
ない焼結体に較べてやゝ脆く、特に親水性を高め
るためにスルホン化度を高めたポリオレフイン樹
脂粉末を使用した場合、得られた焼結体の曲げ強
度が小さくなり、脆くなるため、適用範囲が限定
される傾向があつた。さらに、前記スルホン化し
た焼結体用成形材料は、焼結可能な温度範囲が比
較的狭く、特に焼結成形時間を短くするため成形
温度を高めた場合には、成形品の親水性が著しく
低下することがある。 本発明者は、上記の欠点を改良するため鋭意研
究を進めた結果、本発明を完成するに到つた。す
なわち、本発明は、ポリオレフイン系樹脂のスル
ホン化反応により親水化された樹脂粉末で、スル
ホン化の程度が交換当量にして0.0005〜0.1ミリ
当量/グラムであり、該樹脂粉末の平均粒径が50
〜500μである親水化された樹脂粉末を20〜90%
含有したポリオレフイン系樹脂粉末よりなり、か
つ親水化された樹脂粉末と親水化されていない樹
脂粉末との粒径の比が1/5〜5/1である改良
された焼結体用成形材料である。 スルホン化反応により親水化されたポリオレフ
イン系樹脂粉末を20〜90%含有した組成のもの
と、該組成と同一交換当量を有するスルホン化反
応により親水化されたポリオレフイン系樹脂粉末
のみからなる組成のものとを、それぞれ焼結成形
した場合、前者の焼結多孔体は、後者のそれと比
較して、親水性および曲げ特性の点で優れてお
り、さらに、成形可能な温度範囲が広い。親水化
されたポリオレフイン系樹脂粉末の含有量が20〜
90%の範囲外では、前記の効果を得ることができ
ない。 スルホン化反応により親水化されたポリオレフ
イン系樹脂粉末のスルホン化の程度は、交換当量
にして0.0005〜0.1ミリ当量/グラムであること
が望ましい。0.0005ミリ当量/グラム未満では親
水性が低いため、過に長時間を要し実用的でな
い。また0.1ミリ当量/グラムを超えると、焼結
成形が困難であり、成形品の物性が悪い。 さらに、スルホン化反応により親水化されたポ
リオレフイン系樹脂粉末の平均粒径は50〜500μ
であることが望ましい。50μ未満では成形時に融
着が起き、一方、500μを超えると、焼結多孔体
としたとき親水性の効果があまり顕著でないので
好ましくない。 本発明においては、前記のように親水化された
ポリオレフイン系樹脂粉末20〜90%と親水化され
ていないポリオレフイン系樹脂粉末80〜10%との
配合よりなるが、この際、親水化されたポリオレ
フイン系樹脂粉末と親水化されていないポリオレ
フイン系樹脂粉末との粒径の比が通常1に近いこ
とが、一般に均一な焼結体を得るには適・した条
件である。しかし、スルホン化の程度の高い樹脂
粉末は、軟化温度が高く成形が困難である。ま
た、成形品の機械的物性が低く、時には親水性が
大巾に低下することがある。 親水化されたポリオレフイン系樹脂粉末の粒径
と親水化されてていないポリオレフイン系樹脂粉
末の粒径との比が1以下のものを用いることによ
り、成形品の物性低下、親水性低下を防ぐことが
できる。また、成形温度がより広い範囲に亘つて
優れた物性の大きいものを得ることができる。時
に親水化の程度の大きいもの、および焼結成形品
の厚み差の大きな形状のものゝ場合には、粒径の
比を1より小さくすることが極めて有効である。
これらの値は、目的とする性能、形状等により任
意に選択することができるが、粒径の比が1/5
〜1の範囲が好ましい。1/5より小さい場合に
は、粉末の均一混合性が低下してくるため適当で
ない。 一方、親水化の程度が低い場合、または厚みの
大きいものを成形する場合、親水化されたポリオ
レフイン樹脂粉末と親水化されていないポリオ
レ・フイン樹脂粉末との粒径の比が1より大であ
るとき、成形品の物性が大巾に向上するものであ
る。さらに、油水分離の用途に使用した場合、親
水性樹脂のみの場合と比較して分離時間が短縮さ
れる。具体的には、粒径の比が1〜5/1の範囲
が好ましい。1/5より大きい場合には、粉末の
均一混合性が低下してくるため好ましくない。 本発明に適用されるポリオレフイン系樹脂粉末
は、ポリエチレン、ポリプロピレンおよびポリブ
テン、またはエチレン、プロピレン、ブテン、ヘ
キセン、スチレン等の2種以上の共重合体、また
はこれらの2種以上の混合物から選ばれる。これ
らのうち実用上には、ポリエチレン、ポリプロピ
レン、ポリブテンが好ましく適用される。 ポリエチレンをスルホン化した焼結体用成形材
料は、比較的大型の成形品が容易に成形でき、成
形温度の設定範囲を広くとつても失敗することが
なく、極めて標準的な成形材料である。 ポリプロピレンをスルホン化したものは、焼結
体としたとき、機械的特性に優れ、比較的耐熱性
が高いため、高温時の使用が可能である。 ポリブテンをスルホン化したものは、焼結体と
したとき、低温時の機械物性、耐衝撃性に優れて
いる。 上記のポリオレフイン樹脂粉末は、スルホン化
剤にて常法により容易にスルホン化することがで
きる。スルホン化剤としては、例えば発煙硫酸、
無水硫酸、熱濃硫酸、クロルスルホン酸、および
無水硫酸を溶媒で希釈したもの等を、一般に工業
的に使用されている方法で使用することができ
る。 交換当量はつぎの方法により測定する。 交換当量:スルホン化された、スルホン酸(+
SO3H)型の樹脂粉末(Wg)を採り、1N−塩
化カルシウム水溶液中に浸漬して平衡状態と
し、その水溶液中に発生した塩化水素を0.1N
−苛性ソーダ水溶液(力価f)にて滴定する。
指示薬フエノールフタレインによる中和値
(xcc)を求め次式により算出する。 交換当量=1/10・f・x/W(ミリ当量/グラム) なお、このスルホン化された樹脂粉末をイオン
交換機能を必要としない用途に用いる場合には、
通常、スルホン酸塩(−SO3M,MはNa,K,
Oa,Mg.NH4,Li等)型とすることが望ましい。 以下、実施例を挙げて説明する。 実施例1〜11、比較例1〜11 樹脂粉末の混合 下表に示す所定のポリオレフイン系樹脂粉末を
小型強力撹拌混合器(高崎科学器械株式会社製、
TSK−M10)にチヤージし、0〜60rpmで約5
分間撹拌して混合した。 焼結成形 上記の樹脂粉末23.5gを直径100mmの成形体が
得られるアルミ製金型内に均一に充填し、所定条
件でオーブン中で加熱し、厚み約5mmの焼結体を
得た。 スルホン化ポリオレフイン(ナトリウム塩)の
製法ポリエチレン(旭化成製サンテツクB−
180)、ポリプロピレン(住友化学製ノーブレンD
−501)、ポリブテン−1(アデカ・アーガス製
WITRON−6400)の各種粒形のものをその
まゝ、または粉砕した後、篩分けしたものをSO3
として10%含有する発煙硫酸中で所定時間反応さ
せる。 スルホン化された上記粉末を過し、苛性ソー
ダで中和、水洗した後、乾燥して製品とする。ス
ルホン化重は前述した測定方法により測定する。
また、粒径は顕微鏡観察により平均粒径として算
出した。 過時間 直径約100mmの円筒の下部に、前記の焼結体を
取付け、円筒の内容物が過できるようにする。
次いで、水またはガソリン800mlを円筒内に加え、
過を開始する。円筒内の水またはガソリン全量
が過されるに要する時間を測定して過時間と
する。
The present invention relates to an improved molding material for sintered bodies made of a hydrophilic polyolefin resin. The object of the present invention is to provide a foaming material suitable for aeration tubes, aeration plates, etc., a filter material used for separating solids or oil and water, and an improved molding material for sintered bodies used for ink rollers, etc. It is in. A molding material for a sintered body in which the surface of polyolefin resin powder is sulfonated can provide a sintered body with excellent hydrophilicity, durability, and dimensional stability. but
50-300μ, the degree of sulfonation is equivalent to exchange
The present inventor previously discovered that when the amount is 0.0003 to 0.005 milliequivalent/gram, the sintered body is a suitable filter material for oil/water separation, and also exhibits excellent performance in separating solids. I applied. However, the above-mentioned sintered body is somewhat brittle compared to a sintered body that has not been made hydrophilic, and especially when polyolefin resin powder with a high degree of sulfonation is used to increase hydrophilicity, the resulting sintered body As the bending strength of the material decreases and it becomes brittle, the range of application tends to be limited. Furthermore, the sulfonated molding material for sintered bodies has a relatively narrow temperature range in which it can be sintered, and especially when the molding temperature is raised to shorten the sintering time, the hydrophilicity of the molded product is significantly reduced. It may decrease. The present inventor has completed the present invention as a result of intensive research to improve the above-mentioned drawbacks. That is, the present invention provides a resin powder made hydrophilic by a sulfonation reaction of a polyolefin resin, in which the degree of sulfonation is 0.0005 to 0.1 milliequivalent/g in terms of exchange equivalent, and the average particle size of the resin powder is 50.
20~90% hydrophilized resin powder that is ~500μ
An improved molding material for a sintered body, which is made of polyolefin resin powder and has a particle size ratio of hydrophilized resin powder to non-hydrophilized resin powder of 1/5 to 5/1. be. A composition containing 20 to 90% polyolefin resin powder made hydrophilic by a sulfonation reaction, and a composition consisting only of a polyolefin resin powder made hydrophilized by a sulfonation reaction having the same exchange equivalent as the composition. When sintered and formed, respectively, the former sintered porous body is superior to the latter in terms of hydrophilicity and bending properties, and can be formed over a wider temperature range. The content of hydrophilized polyolefin resin powder is 20~
Outside the 90% range, the above effect cannot be obtained. The degree of sulfonation of the polyolefin resin powder made hydrophilic by the sulfonation reaction is preferably 0.0005 to 0.1 milliequivalent/gram in terms of exchange equivalent. If it is less than 0.0005 milliequivalents/gram, the hydrophilicity is low, so that it takes too long to be carried out and is not practical. If it exceeds 0.1 milliequivalent/gram, sintering and forming will be difficult and the physical properties of the molded product will be poor. Furthermore, the average particle size of polyolefin resin powder made hydrophilic by sulfonation reaction is 50 to 500μ.
It is desirable that If it is less than 50μ, fusion will occur during molding, while if it exceeds 500μ, the hydrophilic effect will not be so pronounced when it is made into a sintered porous body, which is not preferable. In the present invention, as described above, 20 to 90% of the hydrophilized polyolefin resin powder is blended with 80 to 10% of the non-hydrophilized polyolefin resin powder. Generally, it is a suitable condition for obtaining a uniform sintered body that the ratio of the particle diameters of the polyolefin resin powder and the non-hydrophilized polyolefin resin powder is close to 1. However, resin powder with a high degree of sulfonation has a high softening temperature and is difficult to mold. In addition, the mechanical properties of the molded product are low, and sometimes the hydrophilicity may be significantly reduced. By using a product in which the ratio of the particle size of the hydrophilized polyolefin resin powder to the particle size of the non-hydrophilized polyolefin resin powder is 1 or less, deterioration of the physical properties and hydrophilicity of the molded product can be prevented. I can do it. Furthermore, it is possible to obtain products with excellent physical properties over a wider range of molding temperatures. In some cases, it is extremely effective to make the particle size ratio smaller than 1 when the degree of hydrophilization is large or when the sintered molded product has a shape with a large difference in thickness.
These values can be arbitrarily selected depending on the desired performance, shape, etc., but if the particle size ratio is 1/5
A range of 1 to 1 is preferable. If it is smaller than 1/5, it is not suitable because the uniform mixing properties of the powder will deteriorate. On the other hand, when the degree of hydrophilization is low or when molding a product with a large thickness, the particle size ratio of the hydrophilized polyolefin resin powder and the non-hydrophilized polyolefin resin powder is larger than 1. When this happens, the physical properties of the molded product are greatly improved. Furthermore, when used for oil/water separation, the separation time is shortened compared to when using only a hydrophilic resin. Specifically, the particle size ratio is preferably in the range of 1 to 5/1. If it is larger than 1/5, it is not preferable because the uniform mixing property of the powder decreases. The polyolefin resin powder applied to the present invention is selected from polyethylene, polypropylene and polybutene, copolymers of two or more of ethylene, propylene, butene, hexene, styrene, etc., or a mixture of two or more of these. Among these, polyethylene, polypropylene, and polybutene are preferably used in practice. A molding material for a sintered body made of sulfonated polyethylene is an extremely standard molding material that can be easily molded into relatively large molded products and does not fail even if the molding temperature is set over a wide range. Sulfonated polypropylene has excellent mechanical properties and relatively high heat resistance when made into a sintered body, so it can be used at high temperatures. Sulfonated polybutene has excellent mechanical properties and impact resistance at low temperatures when made into a sintered body. The above polyolefin resin powder can be easily sulfonated using a sulfonating agent in a conventional manner. Examples of the sulfonating agent include fuming sulfuric acid,
Sulfuric anhydride, hot concentrated sulfuric acid, chlorosulfonic acid, sulfuric anhydride diluted with a solvent, and the like can be used by methods generally used industrially. Exchange equivalent is measured by the following method. Exchange equivalent: sulfonated, sulfonic acid (+
SO 3 H) type resin powder (Wg) is taken and immersed in a 1N calcium chloride aqueous solution to reach an equilibrium state, and the hydrogen chloride generated in the aqueous solution is reduced to 0.1N.
- Titration with aqueous caustic soda solution (potency f).
The neutralization value (xcc) with the indicator phenolphthalein is determined and calculated using the following formula. Exchange equivalent = 1/10・f・x/W (milliequivalent/gram) When using this sulfonated resin powder for applications that do not require ion exchange function,
Usually, sulfonate (-SO 3 M, M is Na, K,
Oa, Mg.NH 4 , Li, etc.) type is preferable. Examples will be described below. Examples 1 to 11, Comparative Examples 1 to 11 Mixing of resin powders Specified polyolefin resin powders shown in the table below were mixed in a small powerful stirring mixer (manufactured by Takasaki Kagaku Kikai Co., Ltd.,
TSK-M10) and charge about 5 at 0 to 60 rpm.
Mix by stirring for a minute. Sintering 23.5 g of the above resin powder was uniformly filled into an aluminum mold capable of producing a molded body with a diameter of 100 mm, and heated in an oven under predetermined conditions to obtain a sintered body with a thickness of about 5 mm. Production method of sulfonated polyolefin (sodium salt)Polyethylene (Santech B- manufactured by Asahi Kasei Co., Ltd.)
180), polypropylene (Sumitomo Chemical Noblen D
-501), Polybutene-1 (manufactured by Adeka Argus)
WITRON-6400) in various particle shapes as is, or after crushing and sieving, SO 3
React for a specified period of time in fuming sulfuric acid containing 10% as sulfuric acid. The sulfonated powder is filtered, neutralized with caustic soda, washed with water, and then dried to form a product. The sulfonation weight is measured by the method described above.
Moreover, the particle size was calculated as an average particle size by microscopic observation. The above-mentioned sintered body is attached to the bottom of a cylinder with a diameter of about 100 mm, so that the contents of the cylinder can pass through.
Then add 800ml of water or gasoline into the cylinder,
start passing. The time required for the entire amount of water or gasoline in the cylinder to pass is measured and determined as the elapsed time.

【表】【table】

【表】【table】

【表】【table】

【表】 ** 不均一で表面の粗い焼結体が得られた。
*** ガソリンの場合
[Table] ** A sintered body with a non-uniform and rough surface was obtained.
*** For gasoline

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオレフイン系樹脂のスルホン化反応によ
り親水化された樹脂粉末で、スルホン化の程度が
交換当量にして0.0005〜0.1ミリ当量/グラムで
あり、該樹脂粉末の平均粒径が50〜50μである親
水化された樹脂粉末を20〜90%含有したポリオレ
フイン系樹脂粉末よりなり、かつ親水化された樹
脂粉末を親水化されていない樹脂粉末との粒径の
比が1/5〜5/1である改良された焼結体用成
形材料。
1 A hydrophilic resin powder made hydrophilic by a sulfonation reaction of a polyolefin resin, in which the degree of sulfonation is 0.0005 to 0.1 milliequivalent/g in terms of exchange equivalent, and the average particle size of the resin powder is 50 to 50μ. It is made of polyolefin resin powder containing 20 to 90% of hydrophilized resin powder, and the particle size ratio of the hydrophilized resin powder to the non-hydrophilized resin powder is 1/5 to 5/1. Improved molding material for sintered bodies.
JP12131882A 1982-07-14 1982-07-14 Improved molding compound for sintered body Granted JPS5912949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12131882A JPS5912949A (en) 1982-07-14 1982-07-14 Improved molding compound for sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12131882A JPS5912949A (en) 1982-07-14 1982-07-14 Improved molding compound for sintered body

Publications (2)

Publication Number Publication Date
JPS5912949A JPS5912949A (en) 1984-01-23
JPH0363577B2 true JPH0363577B2 (en) 1991-10-01

Family

ID=14808273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12131882A Granted JPS5912949A (en) 1982-07-14 1982-07-14 Improved molding compound for sintered body

Country Status (1)

Country Link
JP (1) JPS5912949A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513463C (en) * 2001-08-02 2009-07-15 旭化成化学株式会社 Sinter, resin particles, and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112460A (en) * 1974-07-21 1976-01-31 Somar Mfg YUSUIBUNRIROKATAI
JPS57109837A (en) * 1980-12-26 1982-07-08 Asahi Chem Ind Co Ltd Improved sintered porous material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112460A (en) * 1974-07-21 1976-01-31 Somar Mfg YUSUIBUNRIROKATAI
JPS57109837A (en) * 1980-12-26 1982-07-08 Asahi Chem Ind Co Ltd Improved sintered porous material

Also Published As

Publication number Publication date
JPS5912949A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
US3375208A (en) Method for preparing a microporous thermoplastic resin material
US6166094A (en) Blowing agent and method for producing foamed polymers and related compositions
JPH0126363B2 (en)
US6228896B1 (en) Process for the preparation of very acidic cation exchangers
US3932140A (en) Forming highly absorbent, low bulk density sodium silicate by contacting with H2 O2 and heating to about 45° to 60°C
US4374204A (en) Porous open-cell filled reactive material containing a polymeric matrix and reactive filler
CN101717459B (en) Method for preparing polyvinyl chloride resin with reduced leather diaphragm and improved porosity
JPS5887133A (en) Open-pore porous formed body based on polyvinyl acetate and manufacture of same
JPH0363577B2 (en)
US3959445A (en) Highly absorbent, low bulk density sodium silicate
CH653663A5 (en) METHOD FOR PRODUCING AN INORGANIC-ORGANIC FOAM FROM SILICATES AND POLY (METH) ACRYLIC ACIDS.
US2691639A (en) Water-dispersible molding compositions and articles prepared therefrom
US2529602A (en) Ion exchange material and method of making the same
JPS637575B2 (en)
US3770665A (en) Process of making an open celled vinyl chloride polymer plastisol
JPS63258930A (en) Aromatic polymer
JPH0363563B2 (en)
JPS5818870A (en) Separator for alkaline battery
JP2001294685A (en) Porous heterogeneous ion exchange membrane and method for producing the same
JPH02120339A (en) Production of water-absorptive resin
JPS62262364A (en) Acid-resisting injection-molded container
JP4498532B2 (en) Heterogeneous ion exchange membrane and method for producing the same
RU2650503C1 (en) Method for producing ion-exchange molded catalyst
JPS5911341A (en) Molding material for sintered article
Okuyama Formation of a strong, high-porosity spinodal silica and its impregnation with a perfluoro ionomer to obtain a high performance solid acid catalyst composite