JPH0363413B2 - - Google Patents

Info

Publication number
JPH0363413B2
JPH0363413B2 JP58196964A JP19696483A JPH0363413B2 JP H0363413 B2 JPH0363413 B2 JP H0363413B2 JP 58196964 A JP58196964 A JP 58196964A JP 19696483 A JP19696483 A JP 19696483A JP H0363413 B2 JPH0363413 B2 JP H0363413B2
Authority
JP
Japan
Prior art keywords
membrane
gas
asymmetric
layer
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58196964A
Other languages
Japanese (ja)
Other versions
JPS6090005A (en
Inventor
Junichi Matsura
Osamu Kidai
Yumiko Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19696483A priority Critical patent/JPS6090005A/en
Publication of JPS6090005A publication Critical patent/JPS6090005A/en
Publication of JPH0363413B2 publication Critical patent/JPH0363413B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は気体混合物からある気体を選択して促
進輸送する気体分離膜に関する。詳しくは気体と
選択的親和性を有する物質を水中に含む液を、撥
水性の緻密層と多孔層とからなる非対称膜の表面
及び/又は緻密層の裏側の孔を有する面に保持せ
しめた気体分離膜に於て、非対称膜が10-5cm3
(STP)/cm2・sec・cmHg以上の窒素の透過速度
を有し、非対称膜のいずれかの表面及び/又は緻
密層の裏側の孔を有する面に気体を選択的親和性
を有する物質の水溶液を含んで形成されたハイド
ロゲルの層又は当該水溶液で表面がぬれたプラズ
マ重合層を形成し、この膜を介した時の液を保持
した第1の側の圧力と第2の側の圧力の差が0.5
Kg/cm2以上、好ましくは1Kg/cm2以上に於ても水
を液滴として第2の側に漏出させない様な気体分
離膜に関する。 従来、特定の気体と相互作用を有する親和性物
質を膜に保持し、該気体を選択的に促進輸送する
例は、ヘモグロビンによる酸素の分離、アルカリ
金属重炭酸塩による二酸化炭素の分離、塩化第一
銅による一酸化炭素の分離、酢酸銀によるオレフ
インの分離その他数多く知られている。単なる高
分子膜への溶解拡散によつて気体混合物を分離す
る場合には比較的透過速度の大きい気体、及び比
較的透過速度の小さい気体をその透過速度の差に
よつてある程度選択的に分離することは可能であ
るが、主としてある特定の気体のみを選択的に分
離することは困難であり、気体混合物の種類や組
成、分離生成体の組成に対する要求等に応じて適
用出来る用途の範囲が限られていた。従つて特定
の気体のみを選択透過する膜が開発されれば、分
離対象の混合気体の組成に関係なく高濃度の気体
を分離出来るので広範囲の用途に適用することが
可能である。 特定の気体と相互作用を有する親和性物質を溶
液として膜に保持する為に従来実施されている方
法は、均質フイルムの上又は二枚の均質フイルム
の間に溶液を保持する方法、又はゲル膜や多孔質
膜に溶液を含ませる方法等である。しかし、これ
等の方法の中で前者の方法は均質フイルムとして
シリコーンゴムの如き気体の透過係数の最も大き
い素材を使用し、最小限の強度を保ち得る限界ま
で膜厚を薄くしても薄く出来る膜厚に限界があ
り、この均質フイルムへの気体の透過速度は小さ
く、ここに律速段階を生じ充分効率的な性能が得
られない。又後者の方法は大きい透過速度は得ら
れるものの膜の両面に圧力差があると溶液が漏出
し、これを防ぐ為には透過ガスの流出側に不活性
気体が溶媒を流して膜両面の圧力の均衡をはから
ねばならない。 これら従来の方法の欠点を補い、しかも特定の
気体と相互作用を有する親和性物質の溶液を利用
する利点を生かす為にはどの様にすればよいかを
考え本発明に到達した。即ち撥水性で透過係数の
大きい膜素材を使用して緻密層の膜厚が極めて薄
い非対称膜を形成し、これに特定の気体と相互作
用を有する親和性物質の溶液を保持すれば透過の
律速段階は液膜の膜厚を充分薄くしても親和性物
質の溶液の部分に存在し、高い選択性と大きい透
過速度が得られる上に、緻密層によつて溶液の漏
出が阻止され膜の両面に実質的な圧力差があつて
も使用出来るのでよい。更にこの様な気体の透過
速度の大きい非対称膜に親和性物質の溶液を薄い
膜厚で保持し、高い透過速度を得る為には、親和
性物質の溶液を含むハイドロゲルの層として、あ
るいは非対称膜の緻密層の表面にプラズマ重合に
より架橋した重合膜の薄膜層を形成し、これに親
和性物質の溶液でぬらす方法が考えられる。本発
明の主旨は以上の点にある。次に本発明の内容に
ついて更に詳しく説明する。 非対称膜は、透過係数と透過速度から測定した
膜厚が、10μ以下好ましくは0.00μ〜1μの緻密層
と、10μ以上好ましくは100μ以上の膜厚の多孔層
から形成される。緻密層は気体の透過係数が高い
素材で形成されることが大きい透過速度を得る上
で好ましく、多孔層は素材の透過係数の大小はあ
まり関係がない。この様な非対称膜は例えば特公
昭52−21021号、米国特許3852388号に記載されて
いる方法で製膜される。この様な素材の透過係数
が大きく、緻密層と多孔層からなる非対称膜を製
膜出来る素材の例としては、ポリ2,6−ジメチ
ルフエニレンオキサイド、ポリトリメチルビニル
シラン、ポリカーボエート、ポリフツ化ビニリデ
ンなどが例示される。非対称膜の形状は平板状、
管状、スパイラル状、中空糸状などいずれの形状
をとることも出来る。 本発明に於て使用されうる親和性物質は特定の
気体と可逆的に相互作用しうる化合物であればよ
く特に限定しないが、例えば、エチレン、プロピ
レン、ブテン、ブタジエン、ペンテン、ヘキセン
などの脂肪族の不飽和炭化水素と錯体を形成しう
るAgNO3、AgCl4、AgBF4等の銀化合物、エチ
レンと錯体を形成しうる第一銅などの銅化合物、
二酸化炭素を解離する重炭酸ナトリウム、重炭酸
カリウム、重炭酸セシウムなどのアルカリ金属重
炭酸塩、二酸化硫黄を解離しうる亜硫酸カリウ
ム、亜硫酸ナトリウムなどの亜硫酸アルカリ化合
物、酸素又は一酸化炭素の運搬機能を有するヘモ
グロビン、一酸化炭素と錯体を形成しうるCu
(NH32 +、Cu(Cl32-などが例示される。 又これとは別にアルカリ金属重炭酸塩による二
酸化炭素の促進輸送に於けるNa2AsO2や炭酸ア
ンヒドラーゼの如き気体と相互作用しうる親和性
物質の濃度を実質的に増大させる効果のある物質
を添加することが出来る。 親和性物質を溶媒としての水に溶解する濃度は
特に限定しないが、例えば溶媒1リツトル当り
0.1ミリモルの如き低い濃度から10モルの如き高
い濃度まで実施することが出来る。また、親和性
物質は溶解状態、懸濁状態又はスラリー状態とし
て水中に存在することが出来る。 気体と選択的親和水性を有する物質を含む水溶
液を保持する為に、非対称膜の緻密層を有する面
又はその裏側の孔を有する面に保持することが出
来る。 親和性物質を薄い膜厚の液膜として保持する為
にハイドロゲルの層が非対称膜の緻密層を有する
面又はその裏側の孔を有する面に形成されるがハ
イドロゲルとは親和性物質を含む水溶液を保有す
るゲルを意味する。ハイドロゲルの層は親和性物
質とハイドロゲルを形成する物質を水に溶解し、
場合によつてはゲル化促進剤を加えて非対称膜の
いずれかの面上に塗布し、必要に応じて加熱、冷
却光、放射線照射などの手段によりゲル化させて
形成することが出来る。 ハイドロゲルの骨組を構成する材料としては次
の物質が例示される。すなわちデンプン、アミロ
ース、アミロペクチン、セルロース、デキストラ
ン、イヌリン、寒天、アラビアゴム、ペクチン
酸、アルギン酸、ヘパリン、ヒアルロン酸、その
他のグルカン、フルクタン、キシラン、マンナ
ン、ガラクタン、ポリウロン酸、キチン、ムコ多
糖など各種の多糖類、メチルセルロース、エチル
セルロース、ヒドロキシエチルセルロース、カル
ボキシメチルセルロース、カルボキシメチルデン
プン、ジアルデヒドデンプン、アルギン酸ナトリ
ウムなど上記各種の多糖類の変成品、ポリビニル
アルコール、ポリアクリル酸、ポリヒドロキシエ
チルメタアクリレート−エチレングリコール、ジ
メタアクリレート共重合体、ポリエチレンオキサ
イド、ポリビニルピロリドン、ポリアクリルアミ
ドゲル、ポリビニルエーテル、などの親水性高分
子、スチレン−ジビニルベンゼン共重合体、スチ
レン−ブタジエン共重合体、アクリル酸−ジニル
ベンゼン共重合体、メタクリル酸−ジビニルベン
ゼン共重合体、又はこれら共重合体をスルホン
化、クロルメチル化、アミノ化したイオン交換型
ポリマー、各種の高分子電解質、及びポリマーイ
オンコンプレツクスなどがあげられる。 気体と選択的親和性を有する物質を含む水溶液
を保持するための他の方法として非対称膜の表面
にプラズマ重合膜層を形成し、これを上記水溶液
でぬらすことも出来る。 プラズマ重合膜層を形成する物質は親水性で架
橋した重合薄膜層を形成しうる物質であればどの
様な化合物でも使用することが出来る。例えば、
ヒドロキシエチルメタアクリレート、エチレング
リコールジメタアクリレート、アリルアルコー
ル、アクリル酸、メタアクリル酸、ビニルピリジ
ン、ビニルピロリドン、酢酸ビニルなどの化合物
が例示される。 これらの化合物は蒸気としてプラズマ重合反応
器の中に導入され基板上の非対称膜の表面に重合
させたり、非対称膜にそのまま塗布するか、溶液
として塗布した後溶媒を蒸発させて非対称膜上に
被覆し、これにプラズマ放電して重合層を形成さ
せる。上記化合物は単一で用いることも出来る
し、又、二つ以上の上記化合物を混合してプラズ
マ重合層を形成することも出来る。 ハイドロゲルの層、又はプラズマ重合層の膜厚
は特に限定しないが、1000μ以下、好ましくは
0.01μ〜100μ、更に好ましくは0.1μ〜10μの厚さに
形成される。 かくして得られた本発明の気体分離膜は各種の
気体混合物を分離する目的に有用であり多くの用
途に使用出来る。例えば空気から分離して得られ
た酸素は化学反応、活性汚泥処理に有用であり、
又これを空気と混合することにより省エネルギー
型燃焼システムや医療用に有用な酸素富化空気を
得ることが出来る。又コークスガス、高炉ガス、
転炉ガスなどの製鉄ガスから分離した一酸化炭素
は化学反応の原料として有用である。エチレン、
プロピレン、等は石油化学の原料として多くの製
品の製造に用いられるが、廃ガス中に含まれる未
反応の原料を回収利用する為に本発明の気体分離
膜は有用である。その他アンモニアプラント等に
於けるガスや燃焼ガスからの炭素ガスの分離や、
廃ガスからの亜硫酸ガスの除去などに有用であ
る。 以下本発明の内容を実施例で示すが、これらの
実施例は単に例示目的で示されるものであり、そ
こに示されている特定物質、方法等に本発明を限
定するものと解してはならない。 比較例 1 市販の多孔質膜でありミリポアフイルター(商
標)VSWP(ミリポアリミテイツド社製、平均孔
径0.025μ)を膜セルに装着した。膜面積は12.6cm2
であつた。次にこの膜の上に2規定の硝酸銀水溶
液5ml(液膜の厚さは4mm)を加えてミリポアフ
イルターの表面を硝酸銀水溶液で被覆した。一方
n−ブタン35%、1−ブテン35%、1,3−ブタ
ジエン30%を含む混合ガスを圧力容器に調合し、
これを上記膜セルの一次側に約1.2気圧で流した。
膜の二次側をほぼ真空(約500mmHg)にして透過
する気体の容量及び組成を測定しようとしたが硝
酸銀水溶液の液滴が流出し、適当な状態で透過実
験を行うことが出来なかつた。 比較例 2〜5 特公昭52−21021記載の方法に準じて製膜した
ポリトリメチルビニルシラン非対称膜を膜セルに
装着した。膜面積は12.6cm2であつた。次にこの膜
の上に所定濃度(0.2M、0.7M、2.0M、5.0M)
の硝酸銀水溶液5ml(液膜の厚さは4mm)を加え
てポリトリメチルビニルシラン非対称膜の表面を
硝酸銀水溶液で被覆した。 一方比較例1と同様に圧力容器に調合したn−
ブタン35%、1−ブテン35%、1,3ブタジエン
30%を含む混合ガスを膜セルの一次側に約1.2気
圧で流した。膜の二次側を10cmHg以下の真空に
して透過する気体の組成及び時間当りの透過量を
測定した。結果を表−1に示すが1−ブテン及び
1,3−ブタジエンがn−ブタンに比較して選択
的に透過し、約1.2気圧の差圧下に於ても硝酸銀
の水溶液が膜を透過して漏出することはなかつ
た。しかし液膜の膜厚が厚く、1−ブテン及び
1,3−ブタジエンはn−ブタンに対して選択的
に透過しているものの、それらの透過速度は期待
した値より低く、膜厚を一層薄くする必要があつ
た。
The present invention relates to a gas separation membrane for selectively transporting a certain gas from a gas mixture. Specifically, a gas in which a liquid containing a substance in water that has a selective affinity for gas is held on the surface of an asymmetric membrane consisting of a water-repellent dense layer and a porous layer and/or on the surface with pores on the back side of the dense layer. In separation membranes, asymmetric membranes are 10 -5 cm 3
(STP)/ cm2・sec・cmHg or more of a substance that has a nitrogen permeation rate and has a selective affinity for gas to either surface of the asymmetric membrane and/or the surface with pores on the back side of the dense layer. A hydrogel layer formed containing an aqueous solution or a plasma polymerized layer whose surface is wetted with the aqueous solution is formed, and the pressure on the first side holding the liquid and the pressure on the second side when passing through this membrane. The difference is 0.5
The present invention relates to a gas separation membrane that prevents water from leaking out as droplets to the second side even at a pressure of Kg/cm 2 or more, preferably 1 Kg/cm 2 or more. Conventionally, examples of selectively promoting transport of a specific gas by retaining an affinity substance that interacts with a specific gas in a membrane include separation of oxygen by hemoglobin, separation of carbon dioxide by alkali metal bicarbonate, and separation of carbon dioxide by chloride. Separation of carbon monoxide using copper, separation of olefins using silver acetate, and many others are known. When a gas mixture is separated by simple dissolution and diffusion in a polymer membrane, gases with a relatively high permeation rate and gases with a relatively low permeation rate are separated selectively to some extent based on the difference in permeation rate. However, it is difficult to selectively separate only a specific gas, and the range of applicable applications is limited depending on the type and composition of the gas mixture, the composition of the separated product, etc. It was getting worse. Therefore, if a membrane that selectively permeates only a specific gas is developed, it can be applied to a wide range of applications because it can separate highly concentrated gases regardless of the composition of the gas mixture to be separated. The conventional methods for retaining an affinity substance that interacts with a specific gas in the form of a solution in a membrane include retaining the solution on a homogeneous film or between two homogeneous films, or using a gel membrane. or a method of impregnating a porous membrane with a solution. However, among these methods, the former method uses a material with the highest gas permeability coefficient, such as silicone rubber, as a homogeneous film, and the film thickness can be reduced to the limit that maintains the minimum strength. There is a limit to the film thickness, and the rate of gas permeation through this homogeneous film is low, causing a rate-limiting step and making it impossible to obtain sufficiently efficient performance. Although the latter method can achieve a high permeation rate, if there is a pressure difference on both sides of the membrane, the solution will leak out. A balance must be struck. The present invention was developed by considering how to compensate for the drawbacks of these conventional methods and take advantage of the advantage of using a solution of an affinity substance that interacts with a specific gas. In other words, if a membrane material that is water repellent and has a large permeability coefficient is used to form an asymmetric membrane with an extremely thin dense layer, and a solution of an affinity substance that interacts with a specific gas is held in this membrane, the rate of permeation will be determined. Even if the thickness of the liquid membrane is made sufficiently thin, the stage exists in the solution area of the affinity substance, and not only high selectivity and high permeation rate are obtained, but also the dense layer prevents leakage of the solution and prevents the membrane from leaking. It can be used even if there is a substantial pressure difference on both sides. Furthermore, in order to retain a solution of an affinity substance in a thin film thickness and obtain a high permeation rate in such an asymmetric membrane with a high gas permeation rate, it is necessary to use a hydrogel layer containing a solution of an affinity substance or an asymmetric membrane. A possible method is to form a thin film layer of a crosslinked polymer film on the surface of the dense layer of the film by plasma polymerization, and wet this with a solution of an affinity substance. The gist of the present invention lies in the above points. Next, the content of the present invention will be explained in more detail. The asymmetric membrane is formed of a dense layer with a thickness of 10μ or less, preferably 0.00μ to 1μ, and a porous layer with a thickness of 10μ or more, preferably 100μ or more, as measured from the permeability coefficient and permeation rate. It is preferable for the dense layer to be formed of a material with a high gas permeability coefficient in order to obtain a high permeation rate, and for the porous layer, the magnitude of the permeability coefficient of the material does not matter much. Such an asymmetric membrane is produced, for example, by the method described in Japanese Patent Publication No. 52-21021 and US Pat. No. 3,852,388. Examples of materials that have a large permeability coefficient and can form asymmetric membranes consisting of a dense layer and a porous layer include poly2,6-dimethylphenylene oxide, polytrimethylvinylsilane, polycarboate, and polyvinylidene fluoride. is exemplified. The shape of the asymmetric membrane is flat,
It can take any shape such as tubular, spiral, hollow fiber, etc. The affinity substance that can be used in the present invention is not particularly limited as long as it can interact reversibly with a specific gas, but examples include aliphatic substances such as ethylene, propylene, butene, butadiene, pentene, and hexene. Silver compounds such as AgNO 3 , AgCl 4 , AgBF 4 that can form complexes with unsaturated hydrocarbons, copper compounds such as cuprous that can form complexes with ethylene,
Alkali metal bicarbonates such as sodium bicarbonate, potassium bicarbonate, and cesium bicarbonate that dissociate carbon dioxide; alkali sulfite compounds such as potassium sulfite and sodium sulfite that dissociate sulfur dioxide; and transport functions for oxygen or carbon monoxide. Hemoglobin with Cu, which can form complexes with carbon monoxide
Examples include (NH 3 ) 2 + and Cu(Cl 3 ) 2- . Additionally, substances that have the effect of substantially increasing the concentration of affinity substances that can interact with gases such as Na 2 AsO 2 and carbonic anhydrase in the facilitated transport of carbon dioxide by alkali metal bicarbonates are also used. Can be added. The concentration at which the affinity substance is dissolved in water as a solvent is not particularly limited, but for example,
Concentrations as low as 0.1 mmol up to as high as 10 molar can be implemented. The affinity substance can also be present in water as a solution, suspension or slurry. In order to hold an aqueous solution containing a substance having selective hydrophilicity to gas, it can be held on the surface of the asymmetric membrane having a dense layer or the surface having pores on the back side thereof. In order to retain the affinity substance as a thin liquid film, a hydrogel layer is formed on the surface of the asymmetric membrane that has a dense layer or on the surface that has pores on the back side.A hydrogel contains an affinity substance. A gel containing an aqueous solution. The hydrogel layer is created by dissolving the affinity substance and the substance forming the hydrogel in water.
In some cases, a gelling promoter may be added and applied onto either side of the asymmetrical film, and the film may be formed by gelling by means of heating, cooling light, radiation irradiation, etc., if necessary. The following substances are exemplified as materials constituting the framework of the hydrogel. Namely, starch, amylose, amylopectin, cellulose, dextran, inulin, agar, gum arabic, pectic acid, alginic acid, heparin, hyaluronic acid, other glucan, fructan, xylan, mannan, galactan, polyuronic acid, chitin, mucopolysaccharide, etc. Polysaccharides, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, carboxymethyl starch, dialdehyde starch, sodium alginate and other modified products of the above polysaccharides, polyvinyl alcohol, polyacrylic acid, polyhydroxyethyl methacrylate-ethylene glycol, Hydrophilic polymers such as methacrylate copolymer, polyethylene oxide, polyvinylpyrrolidone, polyacrylamide gel, polyvinyl ether, styrene-divinylbenzene copolymer, styrene-butadiene copolymer, acrylic acid-dinylbenzene copolymer, methacryl Examples include acid-divinylbenzene copolymers, ion-exchange polymers obtained by sulfonating, chloromethylating, or aminating these copolymers, various polymer electrolytes, and polymer ion complexes. Another method for retaining an aqueous solution containing a substance having a selective affinity with gas is to form a plasma polymerized membrane layer on the surface of the asymmetric membrane and wet it with the aqueous solution. Any compound can be used as the substance forming the plasma polymerized film layer as long as it is hydrophilic and can form a crosslinked polymerized thin film layer. for example,
Examples include compounds such as hydroxyethyl methacrylate, ethylene glycol dimethacrylate, allyl alcohol, acrylic acid, methacrylic acid, vinylpyridine, vinylpyrrolidone, and vinyl acetate. These compounds can be introduced as vapor into a plasma polymerization reactor and polymerized onto the surface of the asymmetric membrane on the substrate, or can be applied directly to the asymmetric membrane, or applied as a solution and then coated onto the asymmetric membrane by evaporating the solvent. This is then subjected to plasma discharge to form a polymerized layer. The above compounds can be used alone, or two or more of the above compounds can be mixed to form a plasma polymerized layer. The thickness of the hydrogel layer or plasma polymerized layer is not particularly limited, but is preferably 1000μ or less, preferably
It is formed to have a thickness of 0.01μ to 100μ, more preferably 0.1μ to 10μ. The gas separation membrane of the present invention thus obtained is useful for separating various gas mixtures and can be used for many purposes. For example, oxygen separated from air is useful for chemical reactions and activated sludge treatment.
By mixing this with air, oxygen-enriched air useful for energy-saving combustion systems and medical purposes can be obtained. Also, coke gas, blast furnace gas,
Carbon monoxide separated from steelmaking gas such as converter gas is useful as a raw material for chemical reactions. ethylene,
Propylene and the like are used as petrochemical raw materials in the production of many products, and the gas separation membrane of the present invention is useful for recovering and utilizing unreacted raw materials contained in waste gas. Separation of carbon gas from gas and combustion gas in other ammonia plants, etc.
It is useful for removing sulfur dioxide gas from waste gas. The content of the present invention will be illustrated below with examples; however, these examples are merely for illustrative purposes, and should not be construed as limiting the present invention to the specific materials, methods, etc. shown therein. No. Comparative Example 1 A commercially available porous membrane, Millipore Filter (trademark) VSWP (manufactured by Millipore Limited, average pore diameter 0.025 μm), was attached to a membrane cell. Membrane area is 12.6cm 2
It was hot. Next, 5 ml of a 2N silver nitrate aqueous solution (liquid film thickness: 4 mm) was added onto this membrane to coat the surface of the Millipore filter with the silver nitrate aqueous solution. On the other hand, a mixed gas containing 35% n-butane, 35% 1-butene, and 30% 1,3-butadiene was prepared in a pressure vessel.
This was flowed into the primary side of the membrane cell at about 1.2 atmospheres.
An attempt was made to measure the volume and composition of the permeating gas by making the secondary side of the membrane almost vacuum (approximately 500 mmHg), but droplets of the silver nitrate aqueous solution leaked out, making it impossible to conduct the permeation experiment under appropriate conditions. Comparative Examples 2 to 5 A polytrimethylvinylsilane asymmetric membrane formed according to the method described in Japanese Patent Publication No. 52-21021 was attached to a membrane cell. The membrane area was 12.6 cm 2 . Next, apply a predetermined concentration (0.2M, 0.7M, 2.0M, 5.0M) on top of this membrane.
5 ml of a silver nitrate aqueous solution (liquid film thickness: 4 mm) was added to coat the surface of the polytrimethylvinylsilane asymmetric membrane with the silver nitrate aqueous solution. On the other hand, n-
Butane 35%, 1-butene 35%, 1,3-butadiene
A mixed gas containing 30% was flowed into the primary side of the membrane cell at approximately 1.2 atmospheres. The secondary side of the membrane was evacuated to a vacuum of 10 cmHg or less, and the composition of the gas that permeated and the amount of permeation per hour were measured. The results are shown in Table 1. 1-butene and 1,3-butadiene permeate selectively compared to n-butane, and an aqueous solution of silver nitrate permeates through the membrane even under a pressure difference of approximately 1.2 atmospheres. There was no leakage. However, the thickness of the liquid film is thick, and although 1-butene and 1,3-butadiene permeate selectively relative to n-butane, their permeation rates are lower than expected, so the film thickness must be made thinner. I needed to.

【表】 参考までに本比較例で使用したポリトリメチル
ビニルシラン非対称膜に硝酸銀水溶液を加える前
のポリトリメチルビニルシラン非対称膜のみに対
する窒素、及びn−ブタン、1−ブテン、1,3
−ブタジエン混合ガスの透過速度はいずれも10-4
cm3/cm2・sec・cmHg以上であり、n−ブタン、1
−ブテン、1,3ブタジエン混合ガスの膜透過後
の組成は膜透過前と殆んで変わらなかつた。 比較例 6 比較例2〜5と同じ製膜lotのポリトリメチル
ビニルシラン非対称膜を膜セルに装着した。膜面
積は12.6cm2であつた。次にこの膜の上に2規定の
硝酸銀水溶液0.2ml(液膜の厚さは0.16mm)を加
えてポリトリメチルビニルシラン非対称膜の表面
に被覆したがポリトリメチルビニルシラン膜の撥
水性の為に硝酸銀水溶液が膜面全体に拡がらなか
つた。液膜の液量を少くしてその膜厚が薄くする
場合には非対称膜の表面に液膜が拡がるようにす
る工夫が必要である。 実施例 1〜8 比較例2〜5と同一lotのポリトリメチルビニ
ルシランと非対称膜をこれを5cm四方の大きさに
切り、ベルジヤー型のプラズマ重合反応器内の基
板の上に置いた。ヒドロキシエチルメタアクリレ
ート9.9g、エチレングリコールジメタクリレー
ト0.1gを皿に入れ同じくプラズマ重合反応器内
に挿入した。反応器内を真空にひきながら放電
し、RF電力25W、圧力0.3〜0.4mbarで30分間反
応し、主にヒドロキシエチルメタアクリレートか
らなる薄膜の重合層をポリトリメチルビニルシラ
ン異方性膜の表面に形成した。所定時間の後に反
応器をアルゴン又はヘリウムで復圧しプラズマ重
合膜を取り出した。このプラズマ重合膜を膜セル
に装着した。(膜面積12.6cm2)次にこの膜の上に
所定濃度(0.2M、0.7M、2.0M、5.0M)の硝酸
銀水溶液を実施例1〜4に於ては2ml(液膜の厚
さは1.6mm)、実施例5〜8に於ては0.2ml(液膜
の厚さは0.16mmに相当する)を加えてプラズマ重
合膜の表面を被覆した。実施例5〜8については
プラズマ重合膜上の余分の液を瀘紙でぬぐいと
り、液膜の厚さは0.16mmより更に小さくした。 比較例2〜5と同様に行い表−2の結果を得
た。
[Table] For reference, nitrogen, n-butane, 1-butene, 1,3 for only the polytrimethylvinylsilane asymmetric membrane used in this comparative example before adding silver nitrate aqueous solution to the polytrimethylvinylsilane asymmetric membrane
−The permeation rate of butadiene mixed gas is 10 -4 in both cases.
cm 3 /cm 2・sec・cmHg or more, n-butane, 1
-The composition of the mixed gas of butene and 1,3-butadiene after permeation through the membrane was almost unchanged from that before permeation through the membrane. Comparative Example 6 A polytrimethylvinylsilane asymmetric membrane from the same membrane production lot as in Comparative Examples 2 to 5 was attached to a membrane cell. The membrane area was 12.6 cm 2 . Next, 0.2 ml of a 2N silver nitrate aqueous solution (liquid film thickness 0.16 mm) was added to this film to coat the surface of the polytrimethylvinylsilane asymmetric film. did not spread over the entire membrane surface. When reducing the amount of liquid in the liquid film to make the film thinner, it is necessary to take measures to spread the liquid film over the surface of the asymmetric membrane. Examples 1 to 8 The same lot of polytrimethylvinylsilane and asymmetric membrane as in Comparative Examples 2 to 5 was cut into 5 cm square pieces and placed on a substrate in a Bergier type plasma polymerization reactor. 9.9 g of hydroxyethyl methacrylate and 0.1 g of ethylene glycol dimethacrylate were placed in a dish, which was also inserted into the plasma polymerization reactor. The inside of the reactor was vacuumed and discharged, and the reaction was carried out for 30 minutes at RF power of 25 W and pressure of 0.3 to 0.4 mbar, forming a thin polymer layer mainly composed of hydroxyethyl methacrylate on the surface of the polytrimethylvinylsilane anisotropic film. did. After a predetermined time, the pressure in the reactor was restored with argon or helium, and the plasma polymerized film was taken out. This plasma polymerized membrane was attached to a membrane cell. (Membrane area: 12.6cm 2 ) Next, on this membrane, a silver nitrate aqueous solution with a predetermined concentration (0.2M, 0.7M, 2.0M, 5.0M) was applied to 2ml in Examples 1 to 4 (the thickness of the liquid film was 1.6 mm), and in Examples 5 to 8, 0.2 ml (the thickness of the liquid film corresponds to 0.16 mm) was added to coat the surface of the plasma polymerized film. In Examples 5 to 8, excess liquid on the plasma polymerized film was wiped off with filter paper, and the thickness of the liquid film was made even smaller than 0.16 mm. The same procedure as in Comparative Examples 2 to 5 was carried out to obtain the results shown in Table 2.

【表】 1−ブテン、1,3−ブタジエンが選択的に透
過した。又実施例5〜8に於てはプラズマ重合膜
を液膜でぬらせて、液膜をひろがり易くして液膜
の厚さを薄くすることにより比較例2〜5より1
−ブテン及び1,3−ブタジエンの透過速度を増
大させることが出来た。また、プラズマ重合膜と
接して存在する非対称膜が撥水性であるために膜
両面に於ける1.2気圧の圧力差に於ても硝酸銀水
溶液は膜を透過して漏出することはなかつた。さ
らに非対称膜の透過性能が高いため、この部分が
バリヤーとなることはなく、1−ブテン及び1,
3−ブタジエンの高い透過速度が得られた。 実施例 9及び10 比較例2〜5と同じ製膜lotのポリトリメチル
ビニルシラン非対称膜を膜セルに装着した。(膜
面積12.6cm2)1M硝酸銀水溶液に5%のゼラチン
を、又は2M硝酸銀水溶液に10%のゼラチンをそ
れぞれ溶解してゼラチンを含む硝酸銀水溶液を調
整した。ポリトリメチルビニルシラン非対称膜を
装着した2つの膜セルについて上記2種類の溶液
をそれぞれ0.5ml(液膜の厚さは0.4mm)を別々に
加えたところいずれもポリトリメチルビニルシラ
ン非対称膜の表面に溶液が均一に拡がつた。これ
を冷却してゲル化させ、かくして得られたポリト
リメチルビニルシラン非対称膜上に保持した硝酸
銀水溶液を含むゼラチンゲル膜について、プロピ
レン47%、プロパン53%を含む混合ガスを1.2気
圧の圧力で膜の一次側に流し、膜の二次側を10cm
Hg以下の減圧にして一定時間に透過する気体の
容量及び組成を測定した。測定結果を表−3に示
す。
[Table] 1-Butene and 1,3-butadiene selectively permeated. In addition, in Examples 5 to 8, the plasma polymerized membrane was wetted with a liquid film to make the liquid film easier to spread and to reduce the thickness of the liquid film.
It was possible to increase the permeation rate of -butene and 1,3-butadiene. Furthermore, since the asymmetric membrane in contact with the plasma-polymerized membrane is water-repellent, the silver nitrate aqueous solution did not permeate through the membrane and leak out even when there was a pressure difference of 1.2 atmospheres on both sides of the membrane. Furthermore, because the asymmetric membrane has high permeability, this part does not act as a barrier, and 1-butene and 1,
High permeation rates of 3-butadiene were obtained. Examples 9 and 10 Polytrimethylvinylsilane asymmetric membranes from the same membrane production lot as in Comparative Examples 2 to 5 were attached to membrane cells. (Membrane area: 12.6 cm 2 ) Silver nitrate aqueous solutions containing gelatin were prepared by dissolving 5% gelatin in 1M silver nitrate aqueous solution or 10% gelatin in 2M silver nitrate aqueous solution. When 0.5 ml of each of the above two types of solutions (liquid film thickness: 0.4 mm) was separately added to two membrane cells equipped with polytrimethylvinylsilane asymmetric membranes, the solution appeared on the surface of the polytrimethylvinylsilane asymmetric membrane in both cases. It spread evenly. This was cooled and gelatinized, and a gelatin gel membrane containing an aqueous silver nitrate solution held on the polytrimethylvinylsilane asymmetric membrane obtained in this way was heated using a mixed gas containing 47% propylene and 53% propane at a pressure of 1.2 atm. 10cm from the secondary side of the membrane.
The volume and composition of gas permeated over a certain period of time were measured under reduced pressure below Hg. The measurement results are shown in Table 3.

【表】 撥水性で高透過性の非対称膜上にプロピレンと
選択的親和性を有する硝酸銀水溶液を含んで形成
されたゼラチンのハイドロゲル膜を形成すること
により膜両面に於ける1.2気圧の圧力差に於ても
硝酸銀水溶液は膜を通過して漏出することはな
く、しかもプロピレンが高選択的に、高速度で透
過した。このようなハイドロゲル膜に保持した水
溶液は膜セルを傾けても流出しない。
[Table] By forming a gelatin hydrogel membrane containing a silver nitrate aqueous solution that has a selective affinity for propylene on a water-repellent and highly permeable asymmetric membrane, a pressure difference of 1.2 atmospheres is created on both sides of the membrane. In this case, the aqueous silver nitrate solution did not leak through the membrane, and propylene permeated with high selectivity and at a high rate. The aqueous solution retained in such a hydrogel membrane does not flow out even if the membrane cell is tilted.

Claims (1)

【特許請求の範囲】 1 気体と選択的親和性を有する物質の水溶液を
含んで形成されたハイドロゲルの層又は当該水溶
液で表面がぬれたプラズマ重合膜層を、撥水性の
緻密層と多孔層からなる非対称膜のいずれかの表
面及び/又は緻密層の裏側の孔を有する面に接し
て有する気体分離膜であつて非対称膜が10-5cm3
(STP)/cm2・sec・cmHg以上の窒素の透過速度
を有し、この膜を介した時の液を保持した膜への
流入側(第1側)の圧力と膜からの流出側(第2
側)の圧力の差が0.5Kg/cm2以上に於いても水を
液滴として第2の側へ漏出させない膜であること
を特徴とする気体分離膜。 2 非対称膜が10-4cm3(STP)/cm2・sec・cmHg
以上の窒素の透過速度を有する特許請求の範囲第
1項記載の気体分離膜。
[Scope of Claims] 1. A hydrogel layer formed by containing an aqueous solution of a substance that has a selective affinity for gas or a plasma polymerized membrane layer whose surface is wetted with the aqueous solution, and a water-repellent dense layer and a porous layer. A gas separation membrane that is in contact with either the surface of the asymmetric membrane and/or the surface with pores on the back side of the dense layer, where the asymmetric membrane is 10 -5 cm 3
It has a nitrogen permeation rate of (STP)/ cm2・sec・cmHg or more, and the pressure on the inflow side (first side) to the membrane holding the liquid when passing through this membrane and the pressure on the outflow side (first side) from the membrane. Second
A gas separation membrane characterized in that the membrane does not allow water to leak out as droplets to the second side even if the pressure difference between the two sides is 0.5 kg/cm 2 or more. 2 Asymmetric membrane is 10 -4 cm 3 (STP)/cm 2・sec・cmHg
The gas separation membrane according to claim 1, which has a nitrogen permeation rate of at least 10%.
JP19696483A 1983-10-22 1983-10-22 Gas separation membrane Granted JPS6090005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19696483A JPS6090005A (en) 1983-10-22 1983-10-22 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19696483A JPS6090005A (en) 1983-10-22 1983-10-22 Gas separation membrane

Publications (2)

Publication Number Publication Date
JPS6090005A JPS6090005A (en) 1985-05-21
JPH0363413B2 true JPH0363413B2 (en) 1991-10-01

Family

ID=16366571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19696483A Granted JPS6090005A (en) 1983-10-22 1983-10-22 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPS6090005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014808A (en) * 2012-07-11 2014-01-30 Fujifilm Corp Method for producing carbon dioxide separation complex, carbon dioxide separation complex, and carbon dioxide separation module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393789A (en) * 1986-10-08 1988-04-25 Agency Of Ind Science & Technol Schiff base based metal complex compound and oxygen adsorbent and oxygen-separating membrane consisting of said compound
CA2040798A1 (en) * 1990-05-25 1991-11-26 Dean T. Tsou Facilitated liquid membranes for olefin/paraffin gas separations and related process
JP3247953B2 (en) * 1992-09-30 2002-01-21 独立行政法人産業技術総合研究所 Hydrous gel-like gas separation membrane
US6083297A (en) * 1995-12-13 2000-07-04 Whatman, Inc. Gas dehydration membrane with low oxygen and nitrogen permeability
JP2013027806A (en) * 2011-07-27 2013-02-07 Fujifilm Corp Carbon dioxide separation membrane, support for carbon dioxide separation membrane, and method of manufacturing them
JP2019018169A (en) * 2017-07-19 2019-02-07 旭化成株式会社 Composite separation membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286981A (en) * 1976-01-16 1977-07-20 Matsushita Electric Ind Co Ltd Reverse permeable membrane
JPS52152888A (en) * 1976-06-11 1977-12-19 Exxon Research Engineering Co Elimination of gas component existent in gas stream
JPS5833248A (en) * 1981-08-20 1983-02-26 Konishiroku Photo Ind Co Ltd Formation of silver halide color photographic image

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286981A (en) * 1976-01-16 1977-07-20 Matsushita Electric Ind Co Ltd Reverse permeable membrane
JPS52152888A (en) * 1976-06-11 1977-12-19 Exxon Research Engineering Co Elimination of gas component existent in gas stream
JPS5833248A (en) * 1981-08-20 1983-02-26 Konishiroku Photo Ind Co Ltd Formation of silver halide color photographic image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014808A (en) * 2012-07-11 2014-01-30 Fujifilm Corp Method for producing carbon dioxide separation complex, carbon dioxide separation complex, and carbon dioxide separation module

Also Published As

Publication number Publication date
JPS6090005A (en) 1985-05-21

Similar Documents

Publication Publication Date Title
US3396510A (en) Liquid membranes for use in the separation of gases
US5009824A (en) Process for preparing an asymmetrical macroporous membrane polymer
RU2045509C1 (en) Process for recovering olefins from gaseous stock stream
US4318714A (en) Facilitated separation of a select gas through an ion exchange membrane
US6440309B1 (en) Ceramic-supported polymer (CSP) pervaporation membrane
JPH07102310B2 (en) Carbon dioxide separation gel membrane and method for producing the same
JPH0551331B2 (en)
CA2056020A1 (en) Adsorbents for the removal of volatile substances from aqueous systems
KR20130137133A (en) Steam permselective membrane, and method using same for separating steam from mixed gas
JP2829268B2 (en) Method for the separation of acidic gases from gas mixtures
US20220105475A1 (en) Enzymatically active high-flux selectively gas-permeable membranes for enhanced oil recovery and carbon capture
US3651030A (en) Process for making a membrane
JPH0363413B2 (en)
JPH0550331B2 (en)
JPH07275672A (en) Production of polymeric gel composite membrane, gas separation membrane and gas separation accelerating transport membrane
CN111699031B (en) CO2 removal method and apparatus
Hirose et al. Wet poly (vinyl chloride) membrane
Ohya et al. A study on pore size distribution of modified ultrathin membrances
WO2022009514A1 (en) Gas separation method and device
EP2793021A1 (en) Protein adsorbent
JPH024446A (en) Gas adsorbent
JPS5840102A (en) Separation of mixed liquid
JPH05253455A (en) Cyclodextrine-polyvinyl alcohol composite membrane
JP2541294B2 (en) Composite membrane
JPH0363414B2 (en)