JPH0362787B2 - - Google Patents

Info

Publication number
JPH0362787B2
JPH0362787B2 JP60147336A JP14733685A JPH0362787B2 JP H0362787 B2 JPH0362787 B2 JP H0362787B2 JP 60147336 A JP60147336 A JP 60147336A JP 14733685 A JP14733685 A JP 14733685A JP H0362787 B2 JPH0362787 B2 JP H0362787B2
Authority
JP
Japan
Prior art keywords
solder
copper
wire
plated
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60147336A
Other languages
Japanese (ja)
Other versions
JPS627841A (en
Inventor
Kanetatsu Yanagi
Masao Yamada
Koichi Kitaura
Kozo Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP14733685A priority Critical patent/JPS627841A/en
Publication of JPS627841A publication Critical patent/JPS627841A/en
Publication of JPH0362787B2 publication Critical patent/JPH0362787B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、電子部品用リード線に用いられる
銅または銅合金、銅覆鋼線等の耐変色性溶融半田
めつき線の製造方法に関するものである。 (従来技術) 電子機器、電子部品等のリード線として用いら
れている半田めつき線においては、半田付け性の
良否は重要な問題である。とくに半田めつき線が
製造後、長期間保存されあるいは加工中に加熱処
理等の影響を受けた場合でも、半田付け性が劣化
しないことが重要である。 通常、溶融半田めつき銅線または銅覆鋼線を
170℃以上の高温に長時間保持したり、塩水噴霧
中に保持したりすると、表面が青色に変色してそ
のままでは半田付けがほとんど不可能になること
がある。このような変色は、フラツクスとして用
いられている塩化物の残存または溶融半田中に溶
け込んだ塩素イオンが原因の1つであると考えら
れるが、それに対する解決はなされていない。 従来から一般に使用されているフラツクスは塩
酸、塩化アンモン、塩化亜鉛等の無機酸素系フラ
ツクスが主で、この他に有機系フラツクス、ロジ
ン系フラツクスがある。これらのフラツクスはい
ずれも線に付着されてそのまま溶融半田浴中に入
つていくため、溶融半田中に塩素イオンや有機物
等が蓄積することになり、この塩素イオンや有機
物等が半田層に混入されて、半田めつき線の半田
付け性に悪影響を及ぼすことになる。 (発明の目的) この発明は、このような従来の課題の解決のた
めになされたものであり、半田めつき層中に塩素
イオンやその他の不純物が混入するのを防止し、
これによつて長期間保存後や、加熱処理後も半田
付け性が低下しないようにした耐変色溶融半田め
つき線の製造方法を提供するものである。 (発明の構成) この発明は、銅系金属線の連続溶融半田めつき
において、塩素イオンを含まない無機酸または無
機酸溶液中で電解酸洗を行つた後、塩素イオンを
含まない無機酸または無機酸溶液中に浸漬して活
性化処理し、ついで水洗の後溶融半田めつき浴中
に浸漬するものである。 上記金属とは、銅または銅合金、銅覆鋼線等の
金属線を意味するものである。また上記電解洗浄
としては、塩素イオンを含まない無機酸、例えば
硫酸、燐酸、弗酸、硝酸等の溶液中またはこれら
の無機混酸溶液を用い、下記の作業条件とするの
がよい。 濃度範囲:5重量%〜40重量% 温度:常温 処理時間:2秒以上 電流密度:20〜200A/dm2 濃度が40%以上と高くなると、電解洗浄時にヒ
ユームが激しくなり、環境上問題がある。5%以
下では液の電気抵抗が高くなり、効果が下がる。
処理時間は電流密度と関係があり、電流密度が低
いと長時間を要する。電流密度が高く、処理時間
が長いと線径が細くなる。 上記電解洗浄処理の後、水洗してそのまま溶融
半田浴中に浸漬めつきしてもよいが、金属線表面
にスマツトの発生がある場合は、その部分がめつ
きされないので、上記同様の無機酸または無機混
酸溶液中でスマツト除去を行い、水洗した後、半
田浴中に浸漬するのがよい。酸洗液の濃度は、10
重量%未満では効果が低いので、10重量%以上に
するのが好ましい。また水洗後に金属線が乾燥し
たり、あるいは半田浴中に浸漬するまでの時間に
長時間を要したりすると、めつき後の半田付け性
が劣化するので、水洗後半田浴中に浸漬するまで
の時間は10秒以内に押さえなければならない。 一般に金属の溶融めつきを行う場合の前処理方
法としては、スケール除去またはゴミ、油分除去
を行つた後、フラツクス処理を行う。この脱スケ
ールまたは脱脂処理だけでは被めつき物の金属表
面が極く薄い酸化皮膜に覆われていたりする。す
なわち、活性な金属表面が現れていないので、そ
のまま溶融金属中に浸漬しても密着性の良いめつ
き層が得られない。そこで被めつき物を塩素イオ
ン等が含有するフラツクス中に浸漬して金属表面
を活性化させると同時にその状態を保持して、溶
融金属中に浸漬した時、被めつき物と溶融金属と
が反応しやすくするフラツクス処理を行うのが従
来の方法である。 銅または銅合金に溶融半田めつきを行う場合
は、半田中の錫と素材の銅との間で選択拡散が起
り、界面に生成される金属間化合物は純銅側より
Cu3Sn、Cu6Sn5の2種類であるといわれている。
これらの金属間化合物の生成が密着性、半田付け
性の良い半田めつき層を形成するために重要であ
るが、そのためにはフラツクス処理を行うより
も、むしろ活性な表面を保持したままの銅または
銅合金を溶融半田中に浸漬できるようにすること
が重要である。 この目的のためには、上記のような電解洗浄処
理が最適である。また酸化皮膜を再生成されない
ために洗浄後10秒以内に溶融半田に浸漬するのが
望ましい。つぎに、このようにしてめつきした半
田めつき線について、半田付け性試験を行つた結
果を説明する。 (実施例) 直径0.6mmの銅線を15%硫酸水溶液中で電流密
度20A/dm2で5秒間陽極電解洗浄を行つた後、
常温の20%硫酸水溶液中に3秒間浸漬後水洗し
た。水洗後3秒後に半田(Sn:63%、Pb:37%)
で溶融めつきした半田めつき銅線を製作した。比
較のために市販のHcl混合の無機酸系フラツクス
を使用して、同様の半田めつきを施した半田めつ
き銅線を製作した。半田付け試験による半田付付
着率は第1表に示す通りである。 なお、半田付け試験は、170±5℃の大気中で
24時間加熱保持した後、JIS−C5033に規定され
ている方法で測定した。また塩水噴霧後の半田付
け性は、JIS−Z−2371に規定されている塩水噴
霧試験方法に基づいて48時間保持後、JIS−C−
5033に規定されている方法で測定した。また、同
表において試料はこの発明の方法によるもの、
試料は上記比較例のものを示している。
(Industrial Field of Application) The present invention relates to a method for manufacturing a discoloration-resistant molten solder-plated wire such as copper or copper alloy, copper-clad steel wire, etc. used as a lead wire for electronic components. (Prior Art) In solder-plated wires used as lead wires for electronic devices, electronic components, etc., the quality of solderability is an important issue. In particular, it is important that the solderability does not deteriorate even if the solder-plated wire is stored for a long period of time after manufacturing or is subjected to heat treatment or the like during processing. Typically, molten solder-plated copper wire or copper-clad steel wire is used.
If it is kept at a high temperature of 170 degrees Celsius or higher for a long time, or if it is kept in salt water spray, the surface may turn blue, making it almost impossible to solder. It is thought that one of the causes of such discoloration is residual chloride used as a flux or chlorine ions dissolved in the molten solder, but no solution has been found to this problem. Fluxes that have been commonly used are mainly inorganic oxygen fluxes such as hydrochloric acid, ammonium chloride, and zinc chloride, and in addition to these, there are organic fluxes and rosin fluxes. All of these fluxes are attached to the wires and directly enter the molten solder bath, so chlorine ions and organic substances accumulate in the molten solder, and these chlorine ions and organic substances are mixed into the solder layer. This will adversely affect the solderability of the solder-plated wire. (Purpose of the Invention) The present invention was made to solve such conventional problems, and it is an object of the present invention to prevent chlorine ions and other impurities from being mixed into the solder plating layer.
This provides a method for manufacturing a discoloration-resistant fused solder-plated wire in which the solderability does not deteriorate even after long-term storage or heat treatment. (Structure of the Invention) In continuous melt soldering of copper-based metal wires, after performing electrolytic pickling in an inorganic acid or an inorganic acid solution that does not contain chlorine ions, It is activated by immersing it in an inorganic acid solution, and then, after washing with water, it is immersed in a molten solder plating bath. The above-mentioned metal means a metal wire such as copper, copper alloy, or copper-clad steel wire. Further, for the electrolytic cleaning, it is preferable to use a solution of an inorganic acid that does not contain chlorine ions, such as sulfuric acid, phosphoric acid, hydrofluoric acid, nitric acid, etc., or a mixed acid solution of these inorganic acids, and to use the following working conditions. Concentration range: 5% to 40% by weight Temperature: Room temperature Processing time: 2 seconds or more Current density: 20 to 200A/dm 2 If the concentration is as high as 40% or more, fumes will become intense during electrolytic cleaning, which is an environmental problem. . If it is less than 5%, the electrical resistance of the liquid increases and the effectiveness decreases.
Processing time is related to current density, and if the current density is low, it takes a long time. When the current density is high and the processing time is long, the wire diameter becomes thinner. After the electrolytic cleaning treatment described above, it may be washed with water and then immersed in a molten solder bath for plating. However, if smut occurs on the surface of the metal wire, that part will not be plated. It is preferable to remove the smut in an inorganic mixed acid solution, wash with water, and then immerse in a solder bath. The concentration of pickling solution is 10
If the amount is less than 10% by weight, the effect will be low, so it is preferably 10% by weight or more. In addition, if the metal wire dries after washing with water, or if it takes a long time to immerse it in the solder bath, the solderability after plating will deteriorate. must be held within 10 seconds. Generally, as a pretreatment method for hot-melting metal, after removing scale, dust, and oil, flux treatment is performed. If only this descaling or degreasing treatment is performed, the metal surface of the plated object may be covered with a very thin oxide film. That is, since the active metal surface is not exposed, a plated layer with good adhesion cannot be obtained even if it is immersed in molten metal as it is. Therefore, the plated object is immersed in a flux containing chlorine ions, etc. to activate the metal surface and at the same time maintain that state, and when immersed in the molten metal, the plated object and the molten metal are separated. The conventional method is to perform flux treatment to facilitate reaction. When performing molten solder plating on copper or copper alloy, selective diffusion occurs between the tin in the solder and the copper material, and the intermetallic compounds generated at the interface are more concentrated than on the pure copper side.
It is said that there are two types: Cu 3 Sn and Cu 6 Sn 5 .
The generation of these intermetallic compounds is important for forming a solder plating layer with good adhesion and solderability, but for this purpose, rather than flux treatment, it is necessary to use copper that retains its active surface. Alternatively, it is important to be able to immerse the copper alloy into molten solder. For this purpose, electrolytic cleaning treatment as described above is optimal. It is also desirable to immerse the device in molten solder within 10 seconds after cleaning to prevent the oxide film from being regenerated. Next, the results of a solderability test performed on the solder-plated wires plated in this manner will be explained. (Example) After performing anodic electrolytic cleaning on a copper wire with a diameter of 0.6 mm in a 15% sulfuric acid aqueous solution at a current density of 20 A/dm 2 for 5 seconds,
It was immersed in a 20% sulfuric acid aqueous solution at room temperature for 3 seconds and then washed with water. Solder 3 seconds after washing with water (Sn: 63%, Pb: 37%)
We produced solder-plated copper wire that was melt-plated. For comparison, a solder-plated copper wire was produced using a commercially available inorganic acid flux mixed with HCl and subjected to similar solder plating. The solder adhesion rates determined by the soldering test are shown in Table 1. Please note that the soldering test was conducted in air at 170±5℃.
After heating and holding for 24 hours, measurement was performed using the method specified in JIS-C5033. In addition, the solderability after salt water spray was determined based on the salt water spray test method specified in JIS-Z-2371, after holding for 48 hours, JIS-C-
Measured using the method specified in 5033. In addition, in the same table, the samples are those obtained by the method of this invention;
The sample shown is that of the above comparative example.

【表】 なお、同表中で未処理とは、めつき浴にから引
上げたままの状態を示している。上記表に示され
るように、比較例のものは半田付け性が劣化して
いるのに対し、この発明によつて硫酸電解洗浄に
より表面活性化を行い、フラツクス処理を行わず
に半田めつきを行つた半田めつき銅線は、加熱処
理後や塩水噴霧処理も半田付け性がほとんど劣化
しない効果があると認められる。 また耐蝕性試験として、この発明によるもの
と、従来法によるものとの、直径0.6mmの半田め
つき銅線をJIS−Z−2371による塩水噴霧に長時
間暴露して変色発生までの時間を比較した結果、
第2表に示すようになつた。
[Table] In the same table, "untreated" refers to the state as it is removed from the plating bath. As shown in the table above, the solderability of the comparative example deteriorated, whereas the present invention activates the surface by electrolytic cleaning with sulfuric acid and enables solder plating without flux treatment. It is recognized that the solder-plated copper wire has the effect that the solderability hardly deteriorates even after heat treatment or salt water spray treatment. In addition, as a corrosion resistance test, we compared the time until discoloration occurs when 0.6 mm diameter solder-plated copper wires were exposed to salt water spray according to JIS-Z-2371 for a long time, using the method according to the present invention and the method according to the conventional method. As a result,
The results are as shown in Table 2.

【表】 上記表において、変色とは縁色に変色したこと
を示している。この表からも、この発明のものは
耐蝕性においても優れていることがわかる。 (発明の効果) 以上のように、従来使用されていたフラツクス
処理ではフラツクス中の塩素イオンがめつき後の
めつき層中にも残存し、長期間保存中に変色等を
起して半田付け性を劣化させる傾向があつたが、
上記のようにこの発明による電解洗浄処理を行う
と、加熱処理を行つた場合あるいは長期間保存後
にも半田付け性が低下せず、かつ耐蝕性において
も優れており、また上記従来法におけるフラツク
ス処理が不用となるという利点がある。
[Table] In the above table, discoloration indicates discoloration to the edge color. From this table, it can be seen that the products of this invention are also excellent in corrosion resistance. (Effect of the invention) As described above, in the conventional flux treatment, the chlorine ions in the flux remain in the plating layer after plating, causing discoloration during long-term storage and making the solderability difficult. There was a tendency to deteriorate the
When the electrolytic cleaning treatment according to the present invention is performed as described above, the solderability does not deteriorate even after heat treatment or long-term storage, and the corrosion resistance is also excellent. This has the advantage that it becomes unnecessary.

Claims (1)

【特許請求の範囲】[Claims] 1 銅系金属線の連続溶融半田めつきにおいて、
塩素イオンを含まない無機酸または無機混酸溶液
中で電解酸洗を行つた後、塩素イオンを含まない
無機酸または無機混酸溶液中に浸漬して活性化処
理し、ついで水洗の後溶融半田めつき浴中に浸漬
することを特徴とする耐変色溶融半田めつき線の
製造方法。
1 In continuous molten soldering of copper-based metal wires,
After electrolytic pickling in an inorganic acid or inorganic mixed acid solution that does not contain chlorine ions, activation treatment is performed by immersing it in an inorganic acid or inorganic mixed acid solution that does not contain chlorine ions, followed by molten solder plating after washing with water. A method for producing a discoloration-resistant molten solder plated wire, the method comprising immersing the wire in a bath.
JP14733685A 1985-07-03 1985-07-03 Manufacture of wire coated with solder by hot dipping Granted JPS627841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14733685A JPS627841A (en) 1985-07-03 1985-07-03 Manufacture of wire coated with solder by hot dipping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14733685A JPS627841A (en) 1985-07-03 1985-07-03 Manufacture of wire coated with solder by hot dipping

Publications (2)

Publication Number Publication Date
JPS627841A JPS627841A (en) 1987-01-14
JPH0362787B2 true JPH0362787B2 (en) 1991-09-27

Family

ID=15427871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14733685A Granted JPS627841A (en) 1985-07-03 1985-07-03 Manufacture of wire coated with solder by hot dipping

Country Status (1)

Country Link
JP (1) JPS627841A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389834A (en) * 1977-01-19 1978-08-08 Sumitomo Electric Industries Melting plating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389834A (en) * 1977-01-19 1978-08-08 Sumitomo Electric Industries Melting plating method

Also Published As

Publication number Publication date
JPS627841A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
IL34111A (en) Conditioning aluminous surfaces for the reception of electroless nickel plating
JPS6043436B2 (en) Composition for metal stripping and method thereof
US2873233A (en) Method of electrodepositing metals
JPS58136759A (en) Flux for coating with zinc-aluminum alloy by hot dipping
US4929422A (en) Process for the adhesive metallization of synthetic materials
US3622470A (en) Continuous plating method
US2398738A (en) Process of metal coating light metals
JPS626744B2 (en)
EP0127857B1 (en) Solderable stainless steel article and method for making same
JPH02243749A (en) Coating process with melting of metal
US4285782A (en) Method for providing uranium with a protective copper coating
JP2550436B2 (en) Anti-tarnish solution for copper
JPH0362787B2 (en)
US2761792A (en) Process for preparing aluminum cables for soldering
US6090493A (en) Bismuth coating protection for copper
JP2551274B2 (en) Surface treatment method for aluminum materials
JPS6277481A (en) Method for preventing growth of tin whisker
US2569030A (en) Preparing aluminum welding wire
JPS621896A (en) Method for plating stainless steel with tin-lead alloy
KR100728550B1 (en) Lead wire made of aluminium materials manufacturing method
JPH1112751A (en) Method for electroless plating with nickel and/or cobalt
JPS6047913B2 (en) How to apply gold plating directly to stainless steel
JP3500239B2 (en) Electrolytic etching solution and electrolytic etching method for precipitation strengthened copper alloy products
JP3567539B2 (en) Electronic component substrate and method of manufacturing the same
JP2807359B2 (en) Plating method of copper alloy material containing tin