JPH0362734B2 - - Google Patents

Info

Publication number
JPH0362734B2
JPH0362734B2 JP28229288A JP28229288A JPH0362734B2 JP H0362734 B2 JPH0362734 B2 JP H0362734B2 JP 28229288 A JP28229288 A JP 28229288A JP 28229288 A JP28229288 A JP 28229288A JP H0362734 B2 JPH0362734 B2 JP H0362734B2
Authority
JP
Japan
Prior art keywords
prepreg
resin
honeycomb sandwich
phenolic resin
nbr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28229288A
Other languages
Japanese (ja)
Other versions
JPH02129233A (en
Inventor
Yoshiaki Kubota
Shinichi Inaba
Shiro Tsubochi
Yoshiaki Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP28229288A priority Critical patent/JPH02129233A/en
Publication of JPH02129233A publication Critical patent/JPH02129233A/en
Publication of JPH0362734B2 publication Critical patent/JPH0362734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は接着性および加工性に優れた難燃性フ
エノール系樹脂プリプレグに係り、更に詳しくは
燃焼時の発熱量、発煙量が少なく、航空機、車
両、船舶、建築物などの構造材および内装材の製
造に好適な難燃性フエノール系樹脂プリプレグに
関する。 (従来の技術) 近年、ハニカムサンドウイツチパネルは軽量、
且つ強度、剛性に優れているため、航空機をはじ
め、スポーツ用品、船舶、建築物などの構造材に
多く用いられている。 ハニカムサンドウイツチパネルはハニカムの両
面に表面材を重ね合わせ加熱加圧して作られる成
形体であるが、一般にハニカムコアとしてはアル
ミニウム製か、ノーメツクス(Nomexデユポン
社製、芳香族ポリアミド不織布)製のものが、そ
して表面材としてはアルミニウム材や繊維強化プ
ラスチツク材が使用されている。 特に航空機内装関係のパネルはノーメツクスハ
ニカムとガラス繊維、ケプラー繊維、炭素繊維で
強化されたプラスチツク表面材が多く用いられて
いる。又、最近の航空機の内装材は、火災時に乗
客の安全確保のため、難燃性且つ燃焼時に低発煙
性、低発熱性の材料が求められている。 従来、これらの強化材の織物にマトリツクス樹
脂としてエポキシ樹脂またはフエノール樹脂を含
浸たせてプリプレグとなし、ハニカムに加圧加熱
してハニカムサンドウイツチパネルとしていた。 しかし、エポキシ樹脂は、接着性は良好である
が、燃焼時の発熱量および発煙量が大きく好まし
くなく、またフエノール樹脂は難燃性且つ低発煙
性であるが、ハニカムパネルの表面材に用いた場
合には、接着剥離強度が低いという欠点があつ
た。 また、通常のフエノール樹脂、即ちレゾール樹
脂は未反応のモノマーである遊離フエノールが多
量に含まれ、しかも低分子量であるため、貯蔵安
定性が悪く、しかもプリプレグ製造工程で悪臭が
発生するとか、高濃度ワニスが必要とか、作業
上、問題が多い。 (発明が解決しようとする課題) 本発明者らは、上記問題点に鑑み、鋭意研究し
た結果、熱硬化性フエノール系樹脂にエポキシ樹
脂とアクリロニトリル・ブタジエンゴムおよびア
ルミナ水和物を配合したものが、接着性にすぐれ
且つ難燃性で、就中、燃焼時において低発熱性、
低発煙性であることを見出し、本発明を完成した
ものである。 本発明の目的は、接着剥離強度が大きく、燃焼
時に低発熱性且つ低発煙性のハニカムサンドウイ
ツチパネル製造用の難燃性フエノール系樹脂プリ
プレグを提供するにある。 更に他の目的及び効果は以下の説明から明らか
にされよう。 (課題を解決するための手段) 本発明の上記目的は、樹脂プリプレグにおい
て、熱硬化性フエノール系樹脂、エポキシ樹脂、
アクリロニトリル・ブタジエンゴム、及びアルミ
ナ水和物を主成分とするマトリツクス樹脂を使用
することを特徴とする難燃性フエノール系樹脂プ
リプレグによつて達成される。 本発明に用いられる熱硬化性フエノール系樹脂
は、ホルマリンとフエノール類から製造されるも
のであり、例えばレゾール樹脂や、ノボラツク樹
脂が挙げられ、更に特公昭62−30210号公報、特
公昭62−30211号公報等で提案された粉末状の樹
脂(以下「粒状フエノール樹脂」と記す)が好ま
しく用いられるが、これらに限定されるものでは
ない。 「粒状フエノール樹脂」は、レゾール樹脂やノ
ボラツク樹脂に比べ分子量が大きく且つ遊離のフ
エノールが少ないため、作業時にフエノール臭が
ほとんどなく、また高粘度ワニスが得やすく、更
に安定性、保存性にすぐれ、ベトツキも少なく成
板操作が容易であるなど極めて好適に用いられ
る。 本発明においてエポキシ樹脂とは、例えばビス
フエノールA型、クレゾールボラツク型、フエノ
ールボラツク型、ポリグリコール型、環状脂肪族
型、長鎖脂肪族型、臭素化ビスフエノール型、ヒ
ダントイン型、イソシアネート型などが挙げられ
るがこれらに限定されるものではない。好ましく
はビスフエノールA型、クレゾールノボラツク
型、フエノールノボラツク型、ポリグリコール型
が用いられ、就中ポリグリコール型がプリプレグ
の柔軟性が増すなどの点で好適である。また、エ
ポキシ樹脂は組成物として溶液になるものであれ
ば液状、固形のいずれでもよい。 本発明においてアクリロニトリル・ブタジエン
ゴム(以下NBRと記す)とは、アクリロニトリ
ルおよびブタジエンを主成分とする共重合ゴムの
ことであるが、例えばアクリル酸、メタクリル酸
を成分とする3元重合ゴムも含まれる。特に、カ
ルボキシリツクな成分を有する3元共重合体のも
のが接着力を強くするなど好ましい。 本発明のアルミナ水和物とは化学式Al2O3
nH2OまたはAl(OH)3で表わされる微粉末であ
り、例えばジプサイト、バイヤライトなどが挙げ
られ、就中3水和物の粉末結晶であるジプサイト
が好適に用いられる。また、粒径は、分散性及び
難燃性の点から、好ましくは50μ以下であり、よ
り好ましくは20μ以下で、更に好ましくは5μ以下
である。粒径が50μより大きいものは、本発明の
マトリツクス樹脂とした場合、アルミナ水和物の
分散が不均一となり易く、得られたマトリツクス
樹脂を基材へ含浸する工程で、含浸斑を生じた
り、濃度不足が発生し易い傾向にある。 本発明のマトリツクス樹脂中において、アルミ
ナ水和物は分散性が良好であり、燃焼時の発熱量
を効果的に低減するものである。 本発明のマトリツクス樹脂において、フエノー
ル系樹脂の配合割合が多いほど、発煙特性は良好
となるが接着性は悪くなる傾向にあり、従つてそ
の組成比率は重量比で、好ましくは、フエノール
樹脂/(エポキシ樹脂+NBR成分)=50/50〜
95/5で、より好ましくは70/30〜90/10であ
る。 また、エポキシ樹脂とNBR成分の組成比率は、
重量比で好ましくは、エポキシ樹脂/NBR成分
=50/50〜90/10で、より好ましくは60/40〜
80/20である。NBR成分の割合が小さ過ぎると
接着性が悪くなる傾向にあり、NBR成分の割合
が大き過ぎると発煙特性が悪くなるとともに、組
成物をガラスクロスなどへ含浸する工程におい
て、含浸斑が多くなり、均一なプリプレグが得に
くい傾向にある。 本発明のマトリツクス樹脂において、アルミナ
水和物の配合量が増すにつれて難燃性が向上し、
且つ燃焼時の発熱量及び発煙量が減少するが、多
過ぎると溶液の粘度が高くなり、基材への含浸性
が悪くなる。本発明においてアルミナ水和物の配
合量は樹脂成分に対し、好ましくは5〜100重量
%で、より好ましくは10〜70重量%で用いられ
る。 本発明に用いる基材としては、例えば各種ガラ
ス繊維、カーボン繊維、アラミド繊維、グラフア
イト繊維、炭化ケイ素繊維等が挙げられるが、こ
れらに限定されるものではない。また基材の形態
は繊維そのものに限られるものではなく、例えば
上記繊維を朱子織、平織、綾織した織物やユニデ
イレクシヨン等の繊維構造物の形態としたもので
もよい。これらの基材は、必要とする強度、剛
性、重量、経済性によつて自由に選択することが
できる。 次に本発明の難燃性フエノール系樹脂プリプレ
グの一般的な製造方法について説明する。 まず、前記熱硬化性フエノール系樹脂、エポキ
シ樹脂、およびNBRを有機溶剤に溶解し溶液と
する。有機溶剤としては例えば、メタノール、プ
ロパノール、ブタノール、アセトン、メチルエチ
ルケトン、メチルイソブチルケトン、メチルセロ
ソルブ、エチルセロソルブ、テトラヒドロフラ
ン、エチルカルビトール、ブチルカルビトール、
酢酸エチル、エチルカルビトールの酢酸エステ
ル、ブチルカルビトールの酢酸エステル、DMF、
DMSO等、あるいはそれら2種以上の混合溶剤
が適しており、就中、アセトンおよびメチルエチ
ルケトンが取り扱い性と溶解性において特に好適
である。次に、前記のアルミナ水和物を上記溶液
に撹拌しながら投入すれば本発明のマトリツクス
樹脂が製造できる。尚、本発明のマトリツクス樹
脂には、前述の必須成分以外に他の添加剤、着色
剤、安定剤等を配合してもよい。 次に上記方法で得られた含浸用のマトリツクス
樹脂を、前記基材に例えば、浸漬、吹き付け、あ
るいはホツトメルト法等により含浸せしめた後、
必要に応じ乾燥することにより本発明の難燃性フ
エノール系樹脂プリプレグを得ることができる。 更に、上記本発明のプリプレグを例えばノーメ
ツクスペーパー製ハニカムコアの両面に貼り合わ
せた後、熱プレス機あるいはオートクレーブ等に
て加圧、加熱成形することにより、ハニカムサン
ドウイツチパネルとすることができる。 以下実施例により本発明を詳述する。尚、その
前に本明細書における種々の特性値の測定法及び
「粒状フエノール樹脂」の製造法について記述す
る。 (1) 接着剥離強度(ドラムピール強度): ドラムピール法(MIL−STD−401B法)で
ハニカムサンドウイツチパネルについて測定し
た。 (2) 発煙性(NBS Ds値): NBS法(ASTM−E−662、ノンフレーム
法)にてハニカムサンドウイツチパネルについ
て測定した。チヤンバー内の光透過率がT%の
場合、Ds=131log100/T (3) 発熱量: プリプレグ中のマトリツクス樹脂成分をアル
ミホイル製カツプに取り、熱オーブン中で150
℃×1時間加熱硬化した後、冷却した。該冷却
物を粉砕し、TG−DTA(理学電機製)にて10
℃/分で700℃まで昇温し、発熱ピーク面積よ
り求めた。 (4) 揮発分: プリプレグを150℃で15分加熱した時の加熱
前後の重量差と加熱前の重量との割合。 又、本実施例の「粒状フエノール樹脂」は次の
通りに製造した。 「粒状フエノール樹脂の製造法」 10のセパラブルフラスコに、18重量%の塩酸
と7重量%のホルムアルデヒドとを含む混合水溶
液10Kgを入れた。室温は20℃であつたが混合水溶
液温度は温度調整により、18℃に保持した。これ
を撹拌しながら、フエノール315gを水35gを用
いた希釈した希釈液を一度に投入した。希釈液を
投入後45秒間で撹拌を停止して静止したが、混合
液は撹拌停止後68秒で急激に白濁し、乳白色の生
成物が観察され、この乳白色の生成物は次第にピ
ンク色に変色した。液温は上記の18℃から徐々に
上り、希釈液投入後15分間で32℃のピークに達
し、再び降下した。希釈液を投入後60分間放置し
た後、内容物の生成した混合水溶液を再び5分間
撹拌した。ガラスフイルターを用いて固液分離し
た内容物を水洗し、0.5重量%のアンモニア水溶
液中、30〜32℃の温度で2時間処理した後、水
洗、次いで脱水し、35℃の温度で8時間乾燥し
た。乾燥後の水分率は0.3重量%であり、収量は
377gであつた。 上記の内容物は光学顕微鏡観察において大半
が、粒径1〜15ミクロンの球状ないし粒状微粉末
であつた。また、GPO法によるポリスチレン換
算重量平均分子量は3200で、フリーフエノール含
量はHPLC法で測定した結果、32ppmであつた。 実施例 1 「粒状フエノール樹脂」、ポリグリコールエポ
キシ樹脂DER736〔ダウ・ケミカル製、エポキシ
当量193、n=3〕およびアクリロニトリル・ブ
タジエンゴム(NBR)ニポール1072J〔日本ゼオ
ン製、アクリロニトリル値27%、カルボキシル基
含有元求共重合体〕を組成比率(重量比)フエノ
ール樹脂/エポキシ樹脂/NBR=8/2/1で
メチルエチルケトンに常温でホモデイスパーを用
いて溶解し、ワニスを得た。このワニスの固形分
濃度は49.1%であつた。 次に、このワニス樹脂成分に対して50重量%の
アルミナ水和物ハイジライトH−43M〔昭和電工
製、平均粒径0.6μ〕を加えてマトリツクス樹脂を
作成した。 このマトリツクス樹脂をガラスクロスKS181/
A−1100〔鐘紡製〕に含浸した後、乾燥機により
70℃で9分間乾燥し、樹脂付着量40%、揮発分
4.5%のプリプレグを作成した。尚、マトリツク
ス樹脂中へのハイジライトH−43Mの分散状態は
良好で、得られたプリプレグの含浸斑もなかつ
た。更にフエノール樹脂特有のフエノール臭もな
く、作業性も良好であつた。 次に、得られたプリプレグをノーメツクス製ハ
ニカムSAH1/8−3.0〔昭和飛行機工業製〕の両
側に貼り合わせ、熱プレス機で温度150℃、圧力
3.5Kg/cm2で1時間成形して、ハニカムサンドウ
イツチパネルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの接着剥離強度および燃焼時の発熱性、
発煙性は第1表の通りであつた。第1表に示す如
く、燃焼による発熱量は小さく、発煙量も少な
く、且つ接着剥離強度が大きく、良好な特性効果
であつた。 実施例 2〜4 実施例1におけるアルミナ水和物ハイジライト
H−43Mの配合量をワニスの樹脂成分に対し50重
量%でなく、それぞれ10〜70重量%の範囲で第1
表に示す如く配合した。その他の方法は実施例1
と同様にして、それぞれプリプレグ及びハニカム
サンドウイツチパネルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの燃焼時の発熱量と発煙量及び接着剥離
強度を第1表に示す。アルミナ水和物の配合量が
増える程、発熱量及び発煙量は減少する傾向にあ
るが、接着剥離強度も低下する傾向にあつた。 比較例 1 アルミナ水和物を配合しない他は、実施例1と
同様の方法でプリプレグ及びハニカムサンドウイ
ツチパネルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの各種特性を第1表に示す。第1表に示
す如く、接着剥離強度は大きく良好であつたが、
発熱量が大きく好ましくなかつた。 比較例 2 マトリツクス樹脂成分として「粒状フエノール
樹脂」だけを用い、その他は実施例1と同様の方
法でプリプレグ及びハニカムサンドウイツチパネ
ルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの各種特性を第1表に示す。第1表に示
す如く、接着剥離強度が小さく、発熱量も高く好
ましくなかつた。
(Industrial Application Field) The present invention relates to a flame-retardant phenolic resin prepreg with excellent adhesiveness and processability, and more specifically, it has low calorific value and smoke emission upon combustion, and is suitable for use in aircraft, vehicles, ships, and buildings. The present invention relates to a flame-retardant phenolic resin prepreg suitable for manufacturing structural materials and interior materials such as. (Conventional technology) In recent years, honeycomb sandwich panels have become lightweight,
Because of its excellent strength and rigidity, it is often used in structural materials such as aircraft, sporting goods, ships, and buildings. A honeycomb sandwich panel is a molded body made by layering surface materials on both sides of a honeycomb and applying heat and pressure.Generally, the honeycomb core is made of aluminum or Nomex (manufactured by Nomex DuPont, aromatic polyamide nonwoven fabric). However, aluminum and fiber-reinforced plastic are used as surface materials. In particular, aircraft interior panels often use Nomex honeycomb and plastic surface materials reinforced with glass fiber, Kepler fiber, and carbon fiber. Furthermore, in order to ensure the safety of passengers in the event of a fire, interior materials for modern aircraft are required to be flame retardant, and have low smoke and heat generation properties when burned. Conventionally, fabrics of these reinforcing materials were impregnated with epoxy resin or phenolic resin as a matrix resin to form a prepreg, and the honeycomb was pressurized and heated to form a honeycomb sandwich panel. However, although epoxy resin has good adhesive properties, it is undesirable because it generates a large amount of heat and smoke when burned, and phenolic resin is flame retardant and has low smoke emission, but it cannot be used as a surface material for honeycomb panels. In some cases, the disadvantage was that the adhesive peel strength was low. In addition, ordinary phenolic resins, that is, resol resins, contain a large amount of free phenol, which is an unreacted monomer, and have a low molecular weight. There are many problems in terms of work, such as the need for concentrated varnish. (Problems to be Solved by the Invention) In view of the above-mentioned problems, the present inventors have conducted intensive research and have discovered a product that is a mixture of thermosetting phenolic resin, epoxy resin, acrylonitrile-butadiene rubber, and alumina hydrate. , has excellent adhesion and flame retardancy, especially low heat generation during combustion,
They discovered that it has low smoke generation properties and completed the present invention. An object of the present invention is to provide a flame-retardant phenolic resin prepreg for manufacturing honeycomb sandwich panels, which has a high adhesive peel strength, produces low heat generation and smoke when burned. Further objects and advantages will become apparent from the description below. (Means for Solving the Problems) The above object of the present invention is to provide thermosetting phenolic resin, epoxy resin,
This is achieved by a flame-retardant phenolic resin prepreg characterized by using acrylonitrile-butadiene rubber and a matrix resin whose main components are alumina hydrate. The thermosetting phenolic resin used in the present invention is produced from formalin and phenols, and includes, for example, resol resin and novolac resin, and is further disclosed in Japanese Patent Publication No. 62-30210 and Japanese Patent Publication No. 62-30211. Powdered resins (hereinafter referred to as "granular phenolic resins") proposed in the above publications are preferably used, but the resin is not limited thereto. "Granular phenolic resin" has a larger molecular weight and less free phenol than resol resins and novolac resins, so there is almost no phenol odor during operation, it is easy to obtain high viscosity varnish, and it has excellent stability and storage stability. It is extremely suitable for use because it is less sticky and the sheet forming operation is easy. In the present invention, epoxy resins include, for example, bisphenol A type, cresol volak type, phenol volak type, polyglycol type, cycloaliphatic type, long chain aliphatic type, brominated bisphenol type, hydantoin type, and isocyanate type. Examples include, but are not limited to, the following. Preferably, bisphenol A type, cresol novolak type, phenol novolak type, and polyglycol type are used, and polyglycol type is particularly preferred from the viewpoint of increasing the flexibility of the prepreg. Further, the epoxy resin may be either liquid or solid as long as it becomes a solution as a composition. In the present invention, acrylonitrile-butadiene rubber (hereinafter referred to as NBR) refers to a copolymer rubber whose main components are acrylonitrile and butadiene, but also includes terpolymer rubber whose main components are acrylic acid and methacrylic acid. . In particular, terpolymer copolymers containing carboxylic components are preferred, as they provide strong adhesive strength. The alumina hydrate of the present invention has the chemical formula Al 2 O 3 .
It is a fine powder represented by nH 2 O or Al(OH) 3 , such as gypsite, bayerite, etc. Among them, gypsite, which is a trihydrate powder crystal, is preferably used. Further, from the viewpoint of dispersibility and flame retardancy, the particle size is preferably 50 μm or less, more preferably 20 μm or less, and even more preferably 5 μm or less. If the particle size is larger than 50μ, when used as the matrix resin of the present invention, the dispersion of alumina hydrate tends to be uneven, and impregnation spots may occur during the process of impregnating the base material with the resulting matrix resin. There is a tendency for insufficient concentration to occur. In the matrix resin of the present invention, alumina hydrate has good dispersibility and effectively reduces the amount of heat generated during combustion. In the matrix resin of the present invention, the greater the blending ratio of phenolic resin, the better the smoke generation properties will be, but the adhesiveness will tend to be worse. Epoxy resin + NBR component) = 50/50 ~
The ratio is 95/5, more preferably 70/30 to 90/10. In addition, the composition ratio of epoxy resin and NBR component is
The weight ratio is preferably epoxy resin/NBR component = 50/50 to 90/10, more preferably 60/40 to
It's 80/20. If the proportion of the NBR component is too small, the adhesion tends to deteriorate, and if the proportion of the NBR component is too large, the smoke generation properties will deteriorate, and in the process of impregnating the composition into glass cloth etc., impregnation spots will increase. It tends to be difficult to obtain uniform prepreg. In the matrix resin of the present invention, flame retardancy improves as the amount of alumina hydrate increases,
In addition, the amount of heat generated and the amount of smoke generated during combustion are reduced, but if the amount is too large, the viscosity of the solution increases and impregnation into the base material becomes poor. In the present invention, the alumina hydrate is preferably used in an amount of 5 to 100% by weight, more preferably 10 to 70% by weight, based on the resin component. Examples of the base material used in the present invention include, but are not limited to, various glass fibers, carbon fibers, aramid fibers, graphite fibers, silicon carbide fibers, and the like. Further, the form of the base material is not limited to the fiber itself, but may be in the form of a fibrous structure such as a satin weave, plain weave, twill weave fabric, or unidirectional weave, for example. These base materials can be freely selected depending on the required strength, rigidity, weight, and economical efficiency. Next, a general method for producing the flame-retardant phenolic resin prepreg of the present invention will be explained. First, the thermosetting phenolic resin, epoxy resin, and NBR are dissolved in an organic solvent to form a solution. Examples of organic solvents include methanol, propanol, butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, tetrahydrofuran, ethyl carbitol, butyl carbitol,
Ethyl acetate, ethyl carbitol acetate, butyl carbitol acetate, DMF,
DMSO or a mixed solvent of two or more thereof is suitable, and acetone and methyl ethyl ketone are particularly suitable in terms of ease of handling and solubility. Next, the matrix resin of the present invention can be produced by adding the alumina hydrate to the solution while stirring. The matrix resin of the present invention may contain other additives, colorants, stabilizers, etc. in addition to the above-mentioned essential components. Next, the matrix resin for impregnation obtained by the above method is impregnated into the base material by, for example, dipping, spraying, or a hot melt method.
The flame-retardant phenolic resin prepreg of the present invention can be obtained by drying if necessary. Furthermore, a honeycomb sandwich panel can be obtained by laminating the prepreg of the present invention on both sides of a honeycomb core made of Nomex paper, for example, and then pressurizing and heat-forming it in a heat press machine, autoclave, etc. . The present invention will be explained in detail with reference to Examples below. Before that, methods for measuring various characteristic values and methods for producing "granular phenolic resin" in this specification will be described. (1) Adhesive peel strength (drum peel strength): Measured on honeycomb sandwich panels by drum peel method (MIL-STD-401B method). (2) Smoke generation property (NBS Ds value): Measured on honeycomb sandwich panels by NBS method (ASTM-E-662, non-flame method). When the light transmittance inside the chamber is T%, Ds = 131log100/T (3) Calorific value: Take the matrix resin component in the prepreg in an aluminum foil cup and heat it in a hot oven for 150%.
After heating and curing at ℃×1 hour, it was cooled. The cooled material was crushed and crushed with TG-DTA (manufactured by Rigaku Denki) for 10 minutes.
The temperature was raised to 700°C at a rate of °C/min, and the exothermic peak area was determined. (4) Volatile content: Ratio between the weight difference before and after heating when prepreg is heated at 150℃ for 15 minutes and the weight before heating. Moreover, the "granular phenolic resin" of this example was manufactured as follows. "Method for producing granular phenolic resin" 10 kg of a mixed aqueous solution containing 18% by weight hydrochloric acid and 7% by weight formaldehyde was placed in 10 separable flasks. Although the room temperature was 20°C, the temperature of the mixed aqueous solution was maintained at 18°C by temperature adjustment. While stirring this, a diluted solution prepared by diluting 315 g of phenol with 35 g of water was added at once. Stirring was stopped 45 seconds after the diluent was added and the mixture stood still, but the mixture suddenly became cloudy 68 seconds after stopping stirring, and a milky white product was observed, and this milky white product gradually turned pink. did. The liquid temperature gradually rose from the above 18°C, reached a peak of 32°C 15 minutes after adding the diluent, and then dropped again. After adding the diluted solution and leaving it for 60 minutes, the mixed aqueous solution of the contents was stirred again for 5 minutes. The contents separated into solid and liquid using a glass filter were washed with water, treated in a 0.5% by weight ammonia aqueous solution at a temperature of 30 to 32°C for 2 hours, washed with water, then dehydrated, and dried at a temperature of 35°C for 8 hours. did. The moisture content after drying is 0.3% by weight, and the yield is
It was 377g. When observed under an optical microscope, most of the above contents were found to be spherical or granular fine powder with a particle size of 1 to 15 microns. Furthermore, the weight average molecular weight in terms of polystyrene by GPO method was 3200, and the free phenol content was 32 ppm as measured by HPLC method. Example 1 "Granular phenolic resin", polyglycol epoxy resin DER736 [manufactured by Dow Chemical, epoxy equivalent: 193, n=3] and acrylonitrile-butadiene rubber (NBR) Nipole 1072J [manufactured by Nippon Zeon, acrylonitrile value 27%, carboxyl group] A varnish was obtained by dissolving the composition (weight ratio) of phenolic resin/epoxy resin/NBR in methyl ethyl ketone using a homodisper at room temperature. The solid content concentration of this varnish was 49.1%. Next, 50% by weight of alumina hydrate Hygilite H-43M (manufactured by Showa Denko, average particle size 0.6 μm) was added to the varnish resin component to prepare a matrix resin. This matrix resin is applied to glass cloth KS181/
After impregnating with A-1100 [manufactured by Kanebo], it is dried in a dryer.
Dry at 70℃ for 9 minutes, resin adhesion amount is 40%, volatile content
A 4.5% prepreg was made. The dispersion state of Hygilite H-43M in the matrix resin was good, and there were no impregnation spots in the obtained prepreg. Furthermore, there was no phenol odor characteristic of phenolic resins, and workability was good. Next, the obtained prepreg was pasted on both sides of Nomex honeycomb SAH1/8-3.0 [manufactured by Showa Aircraft Industry Co., Ltd.], and the temperature and pressure were 150°C and
A honeycomb sandwich panel was produced by molding at 3.5 kg/cm 2 for 1 hour. Adhesive peel strength and heat generation property during combustion of the obtained prepreg and honeycomb sandwich panels,
The smoke generation properties were as shown in Table 1. As shown in Table 1, the amount of heat generated by combustion was small, the amount of smoke emitted was also small, and the adhesive peel strength was high, indicating good characteristic effects. Examples 2 to 4 The blending amount of alumina hydrate Hygilite H-43M in Example 1 was not 50% by weight based on the resin component of the varnish, but was adjusted in the range of 10 to 70% by weight.
The ingredients were mixed as shown in the table. Other methods are Example 1
In the same manner as above, prepreg and honeycomb sandwich panels were respectively produced. Table 1 shows the amount of heat generated during combustion, amount of smoke, and adhesive peel strength of the obtained prepreg and honeycomb sandwich panels. As the amount of alumina hydrate increased, the amount of heat generation and smoke generation tended to decrease, but the adhesive peel strength also tended to decrease. Comparative Example 1 A prepreg and a honeycomb sandwich panel were produced in the same manner as in Example 1, except that alumina hydrate was not blended. Various properties of the obtained prepreg and honeycomb sandwich panels are shown in Table 1. As shown in Table 1, the adhesive peel strength was large and good, but
The amount of heat generated was large, which was not desirable. Comparative Example 2 A prepreg and a honeycomb sandwich panel were produced in the same manner as in Example 1 except that only "granular phenolic resin" was used as the matrix resin component. Various properties of the obtained prepreg and honeycomb sandwich panels are shown in Table 1. As shown in Table 1, the adhesive peel strength was low and the calorific value was high, which was not preferable.

【表】【table】

【表】 実施例 5〜7 アルミナ水和物として、第2表に示す如き平均
粒径のものを用いた他は、実施例1と同様の方法
でマトリツクス樹脂及びプリプレグを作成した。
アルミナ水和物のマトリツクス樹脂中への分散状
態は、平均粒径の小さいもの程良好であり、平均
粒径100μのハイジライトH−10Cは沈降により粒
子が偏在する傾向にあり、また得られたプリプレ
グの外観は表面がザラザラし不良で好ましくなか
つた。 引き続き実施例1と同様の方法でハニカムサン
ドウイツチパネルを作成した。各種特性結果を第
2表に示す。 第2表に示す如く平均粒径の小さいもの程接着
剥離強度が高く、発熱量と発煙量が小さい傾向で
あつた。
[Table] Examples 5 to 7 Matrix resins and prepregs were prepared in the same manner as in Example 1, except that alumina hydrates having the average particle diameters shown in Table 2 were used.
The smaller the average particle size, the better the dispersion state of alumina hydrate in the matrix resin, and the particles of Hygilite H-10C with an average particle size of 100μ tend to be unevenly distributed due to sedimentation. The appearance of the prepreg was unfavorable as the surface was rough and defective. Subsequently, a honeycomb sandwich panel was produced in the same manner as in Example 1. Table 2 shows the results of various characteristics. As shown in Table 2, the smaller the average particle diameter, the higher the adhesive peel strength, and the smaller the amount of heat generated and smoke emitted.

【表】 実施例 8 「粒状フエノール樹脂」に替えてレゾール樹脂
シヨウノールCKS343〔昭和高分子製〕を用いる
他は、実施例1と同様の方法でプリプレグ及びハ
ニカムサンドウイツチパネルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの各種特性を第3表に示す。第3表に示
す如くフエノール系樹脂としてレゾール樹脂を用
いても粒状フエノールの場合と同様接着剥離強
度、発熱性、発煙性は良好であつた。
[Table] Example 8 A prepreg and a honeycomb sandwich panel were prepared in the same manner as in Example 1, except that the resol resin Shonol CKS343 (manufactured by Showa Kobunshi) was used in place of the "granular phenolic resin". Table 3 shows various properties of the obtained prepreg and honeycomb sandwich panels. As shown in Table 3, even when resol resin was used as the phenolic resin, the adhesive peel strength, heat generation property, and smoke generation property were good as in the case of granular phenol.

【表】 実施例 9 ニポール1072Jに替えてニポール1042〔日本ゼオ
ン製、アクリルニトリル値33%、カルボキシル基
非含有共重合体〕をNBR成分に用いる他は、実
施例1と同様の方法でプリプレグ、ハニカムサン
ドウイツチパネルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの各種特性を第4表に示す。各種特性は
良好であつた。 比較例 3 マトリツクス樹脂成分としてNBRを用いない
他は、実施例1と同様の方法でプリプレグ、ハニ
カムサンドウイツチパネルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの各種特性を第4表に示す。マトリツク
ス樹脂成分にNBRを用いないと、接着剥離強度
が小さく、好ましくなかつた。
[Table] Example 9 Prepreg, I created a honeycomb sandwich panel. Table 4 shows various properties of the obtained prepreg and honeycomb sandwich panels. Various properties were good. Comparative Example 3 A prepreg and honeycomb sandwich panel was produced in the same manner as in Example 1, except that NBR was not used as the matrix resin component. Table 4 shows various properties of the obtained prepreg and honeycomb sandwich panels. If NBR was not used in the matrix resin component, the adhesive peel strength would be low, which was not desirable.

【表】 実施例 10〜13 マトリツクス樹脂成分中のエポキシ樹脂とし
て、第5表に示す如きものを用いる他は、実施例
1と同様の方法でプリプレグ及びハニカムサンド
ウイツチパネルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの燃焼発熱特性、発煙性及び接着剥離強
度を第5表に示す。いずれのエポキシ樹脂の場合
も、各種特性は良好であつた。
[Table] Examples 10 to 13 Prepreg and honeycomb sandwich panels were prepared in the same manner as in Example 1, except that the epoxy resin shown in Table 5 was used as the epoxy resin in the matrix resin component. Table 5 shows the combustion heat generation properties, smoke generation properties, and adhesive peel strengths of the obtained prepreg and honeycomb sandwich panels. All epoxy resins had good properties.

【表】 実施例 14〜19 実施例1で用いたのと同じポリグリコール型エ
ポキシ樹脂DER736とNBRニポール1072Jを組成
比がエポキシ樹脂/NBR成分=3/1とし、粒
状フエノール樹脂の組成比率を第6表に示す如き
割合で配合してメチルエチルケトンに溶解したの
ち、樹脂成分とNBR成分を合わせた重量に対し
て50〜80重量%のアルミナ水和物ハイジライトH
−43Mを加えてマトリツクス樹脂を作成した。次
に、実施例1と同様の方法でプリプレグ及びハニ
カムサンドウイツチパネルを作成した。 得られたプリプレグ及びハニカムサンドウイツ
チパネルの各種特性を第6表に示す。エポキシ樹
脂及びNBR成分が増えると接着剥離強度が良く
なる傾向にあつた。
[Table] Examples 14 to 19 The same polyglycol type epoxy resin DER736 and NBR Nipole 1072J used in Example 1 were used in a composition ratio of epoxy resin/NBR component = 3/1, and the composition ratio of granular phenolic resin was After blending in the proportions shown in Table 6 and dissolving it in methyl ethyl ketone, alumina hydrate Hygilite H is added in an amount of 50 to 80% by weight based on the combined weight of the resin component and NBR component.
-43M was added to create a matrix resin. Next, prepreg and honeycomb sandwich panels were produced in the same manner as in Example 1. Various properties of the obtained prepreg and honeycomb sandwich panels are shown in Table 6. The adhesive peel strength tended to improve as the epoxy resin and NBR components increased.

【表】 実施例 20〜25 粒状フエノール樹脂/(エポキシ樹脂+
NBR)/アルミナ水和物=80/20/50の配合割
合とし、更にエポキシ樹脂とNBRの配合割合を
第7表に示す如き比率とする他は実施例1と同様
の方法で、プリプレグ及びハニカムサンドウイツ
チパネルを作成した。得られたプリプレグ及びハ
ニカムサンドウイツチパネルの各種特性を第7表
に示す。 NBR成分の割合が増えると接着剥離強度は大
きくなるが、発煙量も増える傾向にあつた。
[Table] Examples 20 to 25 Granular phenolic resin/(epoxy resin +
Prepreg and honeycomb were prepared in the same manner as in Example 1, except that the mixing ratio of NBR)/alumina hydrate was 80/20/50, and the mixing ratio of epoxy resin and NBR was as shown in Table 7. I created a sandwich panel. Table 7 shows various properties of the obtained prepreg and honeycomb sandwich panels. As the proportion of NBR components increased, the adhesive peel strength increased, but the amount of smoke emission also tended to increase.

【表】 実施例 26〜27 基材としてガラスクロスKS181/A−1100に替
えて、ケプラークロスK285/KE420〔鐘紡製〕、
カーボンクロスCF3101〔鐘紡製〕を用い、ケプラ
ークロスの場合はレジンコンテントを58%、カー
ボンクロスの場合は49%として、ガラスクロスの
場合と単位面積あたりのマトリツクス重量をそろ
えた以外は実施例1と同様の方法でプリプレグお
よびハニカムサンドウイツチパネルを作成し、各
種特性を調べた。その結果を第8表に示す。 第8表に示す如く、基材の種類が異なつても同
等の効果を示した。 尚、上記実施例で使用した基材の詳細は第9表
の通りである。
[Table] Examples 26-27 Instead of glass cloth KS181/A-1100 as a base material, Kepler cloth K285/KE420 [manufactured by Kanebo],
Example 1 was used except that carbon cloth CF3101 [manufactured by Kanebo] was used, the resin content was 58% for Kepler cloth and 49% for carbon cloth, and the matrix weight per unit area was the same as for glass cloth. Prepreg and honeycomb sandwich panels were made using the same method and various properties were investigated. The results are shown in Table 8. As shown in Table 8, the same effects were obtained even when the types of substrates were different. The details of the base materials used in the above examples are shown in Table 9.

【表】【table】

【表】 (発明の効果) 本発明の難燃性フエノール系樹脂プリプレグ
は、接着性に優れ、ハニカムサンドウイツチパネ
ルの他、積層板、FRPなどの用途にも利用でき
有用である。本発明のプリプレグを用いて作成し
たハニカムサンドウイツチパネルは難燃性で、燃
焼時においても低発煙性且つ低発熱性であり、航
空機の内装材として用いられる他、船舶、車両お
よび建造物の内装材としても好適である。
[Table] (Effects of the Invention) The flame-retardant phenolic resin prepreg of the present invention has excellent adhesive properties and is useful for applications such as honeycomb sandwich panels, laminates, and FRP. Honeycomb sandwich panels made using the prepreg of the present invention are flame retardant, emitting low smoke and generating low heat even when burned, and are used as interior materials for aircraft, as well as for interior interiors of ships, vehicles, and buildings. It is also suitable as a material.

Claims (1)

【特許請求の範囲】[Claims] 1 樹脂プリプレグにおいて、熱硬化性フエノー
ル系樹脂、エポキシ樹脂、アクリロニトリル・ブ
タジエンゴム、及びアルミナ水和物を主成分とす
るマトリツクス樹脂を使用することを特徴とする
難燃性フエノール系樹脂プリプレグ。
1. A flame-retardant phenolic resin prepreg characterized in that the resin prepreg uses a matrix resin whose main components are a thermosetting phenolic resin, an epoxy resin, acrylonitrile-butadiene rubber, and alumina hydrate.
JP28229288A 1988-11-08 1988-11-08 Flame-retardant phenol resin prepreg Granted JPH02129233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28229288A JPH02129233A (en) 1988-11-08 1988-11-08 Flame-retardant phenol resin prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28229288A JPH02129233A (en) 1988-11-08 1988-11-08 Flame-retardant phenol resin prepreg

Publications (2)

Publication Number Publication Date
JPH02129233A JPH02129233A (en) 1990-05-17
JPH0362734B2 true JPH0362734B2 (en) 1991-09-26

Family

ID=17650525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28229288A Granted JPH02129233A (en) 1988-11-08 1988-11-08 Flame-retardant phenol resin prepreg

Country Status (1)

Country Link
JP (1) JPH02129233A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE80526B1 (en) * 1994-02-10 1998-08-26 Belfield Mfg Ltd A process for producing limited fire hazard epoxide glass laminates
US5685936A (en) * 1994-10-11 1997-11-11 Showa Aircraft Industry Co., Ltd. Method for preparing carbon honeycomb structure
US8449638B2 (en) 1999-11-05 2013-05-28 Donaldson Company, Inc. Filter element, air cleaner, and methods
US6348084B1 (en) 1999-11-05 2002-02-19 Donaldson Company, Inc. Filter element, air cleaner, and methods
US6348085B1 (en) 1999-11-10 2002-02-19 Donaldson Company, Inc. Filter arrangement and methods
KR101312897B1 (en) 2004-03-24 2013-09-30 도날드슨 컴파니, 인코포레이티드 Filter elements, air cleaner, assembly, and, methods
JP4882613B2 (en) * 2006-08-31 2012-02-22 トヨタ紡織株式会社 Air cleaner filter and air cleaner
ES2437165T3 (en) 2009-10-02 2014-01-09 Donaldson Company, Inc. Filter cartridge with center board, dust collectors, and methods

Also Published As

Publication number Publication date
JPH02129233A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
TWI598402B (en) Halogen-free epoxy resin composition and prepreg, laminate and printed circuit board therewith
JP6301473B2 (en) Thermosetting resin composition for semiconductor package, prepreg and metal foil laminate using the same
US5284702A (en) Low fuming phenolic resin prepreg and process for producing the same
JP2004059643A (en) Prepreg and laminated plate
US6632511B2 (en) Manufacture of prepregs and laminates with relatively low dielectric constant for printed circuit boards
JPH0362734B2 (en)
JP2002194119A (en) Prepreg and metal foil clad laminated plate
US5714419A (en) Composite material suitable for aircraft interiors
US5328566A (en) Process for producing inorganic fiber-based prepreg sheet and process for producing insulating laminate
JPH02129234A (en) Flame-retardant phenol resin prepreg
US20200190313A1 (en) Thermosetting resin composition for semiconductor package and prepreg using the same
JPH02127462A (en) Thermosetting phenolic resin composition
JP3363388B2 (en) Epoxy resin composition, prepreg and metal foil-clad laminate
JPH02127459A (en) Thermosetting phenolic resin composition
JP2633136B2 (en) Flame retardant phenolic resin prepreg
JPH03207745A (en) Thermosetting phenolic resin composition
JPH03210356A (en) Thermosetting phenolic resin composition
JP4258364B2 (en) Manufacturing method of prepreg
JPH02132128A (en) Flame-retardant phenolic resin prepreg
JPH0381383A (en) Film adhesive
JP2005281487A (en) Manufacturing process of prepreg and laminate
JP4866087B2 (en) Prepreg for printed wiring boards, copper-clad laminates
JP2021183380A (en) Prepreg and noncombustible material
JP2000154232A (en) Heat-resistant resin composition, and prepreg and laminate using same
JP2591543B2 (en) Aramid substrate copper clad laminate etching method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees