JPH0362667B2 - - Google Patents

Info

Publication number
JPH0362667B2
JPH0362667B2 JP63057020A JP5702088A JPH0362667B2 JP H0362667 B2 JPH0362667 B2 JP H0362667B2 JP 63057020 A JP63057020 A JP 63057020A JP 5702088 A JP5702088 A JP 5702088A JP H0362667 B2 JPH0362667 B2 JP H0362667B2
Authority
JP
Japan
Prior art keywords
manufacturing
silazane polymer
gas
organic silazane
infusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63057020A
Other languages
Japanese (ja)
Other versions
JPS63243328A (en
Inventor
Minoru Takamizawa
Mitsuo Umemura
Masato Kanari
Yoshifumi Takeda
Akira Hayashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63057020A priority Critical patent/JPS63243328A/en
Publication of JPS63243328A publication Critical patent/JPS63243328A/en
Publication of JPH0362667B2 publication Critical patent/JPH0362667B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、セラミツクス前駆体として有機シラ
ザン重合体を用いたセラミツクスの製造方法に関
する。 従来の技術及び発明が解決しようとする課題 セラミツクスは、耐熱性、耐摩耗性、高温強度
等に優れた材料として注目を集めているが、固
く、そして脆いため、セラミツクスを加工するこ
とは極めて困難である。従つて、セラミツクス製
品を製造する場合、セラミツクス材料の微粉末を
加圧等の方法により予め所望の形状に成形した
後、焼結する方法、或いはセラミツクス前駆体と
しての有機重合体を溶融若しくは溶剤に溶解し、
これを所望の形状に加工した後、焼成して無機化
する前駆体法等が採用されている。上記前駆体法
の最大の特徴は、微粉末による焼結法では不可能
な形状のセラミツクス製品を得ることができ、従
つて繊維状或いはシート状といつた特殊形状の製
品を製造し得ることである。 この場合、一般にセラミツクスと呼ばれるもの
のうちSiC及びSi3N4は、それぞれSiCが耐熱性、
高温強度に優れ、Si3N4が耐熱衝撃性、破壊靱性
に優れるなど、高温での優れた特性を有するため
に広く注目を集めており、このため従来より、下
記〜に示すように、前駆体法によるSiC−Si3
N4系セラミツクスの製造方法及びその有機珪素
前駆体の製造方法に関する種々の提案がなされて
いるが、これらの提案はいずれも問題点を有する
ものであつた。即ち 米国特許第3853567号明細書には、クロロシ
ラン類とアミン類とを反応させ、次いで200〜
800℃に加熱してカルボシラザンを得た後、こ
れを紡糸、不融化して800〜2000℃で高温焼成
することにより、SiC−Si3N4系セラミツクス
を得る方法が開示されている。しかし、この方
法は、カルボシラザンを得るために520〜650℃
という高温が必要であつて、工業的製法として
極めて困難であること、またカルボシラザンを
無機化する際にセラミツク化収率が約55%とい
う低収率となることといつた欠点を有する。な
お、この米国特許明細書の実施例には、クロロ
シラン類としてはメチルトリクロロシラン、ジ
メチルジクロロシラン、アミン類としてはメチ
ルアミンの例しか記述されていない。 米国特許第4097294号明細書には、種々の珪
素を含有するポリマーが熱分解によつてセラミ
ツク物質に変換されることが示されている。し
かし、シラザンポリマーに関しては僅かに一例
しか開示されておらず、しかもそのセラミツク
化収率は最大で12%という低収率である。ま
た、この米国特許明細書にはセラミツクスの繊
維化、薄膜化等も可能であると記載されている
が、単にその可能性を示唆したに過ぎず、前駆
体法で最も重要とされるポリマーの成形性、加
工性については全く言及されていない。 特開昭57−117532号公報には、クロロジシラ
ン類とジシラザン類との反応により、特開昭57
−139124号公報にはクロロシラン類とジシラザ
ン類との反応により、特開昭58−63725号公報
にはクスジシラン類とアンモニアとの反応によ
り、特開昭60−135431号公報にはトリクロロシ
ランとジシラザン類との反応により、それぞれ
シラザンポリマーを得ることが示されている。
また、米国特許第4535007号明細書にはクロロ
シラン類及びジシラザン類に金属ハロゲン化物
を添加することにより、特開昭60−208331号公
報にはクロロジシラン類及びジシラザン類に金
属ハロゲン化物を添加することにより、それぞ
れシラザンポリマーを製造することが開示され
ている。以上のシラザンポリマーは、いずれも
熱分解によつてセラミツク化が可能であるとさ
れている。しかしながら、セラミツク化収率は
いずれのシラザンポリマーも50〜60%であつて
低収率である。また、上記各刊行物は、の明
細書と同様に前駆体法で最も重要であるポリマ
ーの成形性、加工性については詳しく記載され
ておらず、特に、繊維化の実施例のないもの、
或いは繊維化した実施例はあつてもそのセラミ
ツク化繊維の強度については言及していないも
のが殆どである。僅かに特開昭60−208331号公
報に強度の記載が見られるが、この場合も引張
強度で53Kg/mm2或いは63Kg/mm2という極めて強
度の低いものしか得られていない。 特開昭60−226890号公報には、
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing ceramics using an organic silazane polymer as a ceramic precursor. Problems to be Solved by Conventional Technologies and Inventions Ceramics are attracting attention as materials with excellent heat resistance, wear resistance, and high-temperature strength, but it is extremely difficult to process ceramics because they are hard and brittle. It is. Therefore, when manufacturing ceramic products, there are two methods: first forming a fine powder of ceramic material into a desired shape using a method such as pressurization, and then sintering it, or melting an organic polymer as a ceramic precursor or using a solvent. dissolve,
A precursor method is employed in which the material is processed into a desired shape and then fired to become inorganic. The most important feature of the above precursor method is that it is possible to obtain ceramic products in shapes that are impossible with the sintering method using fine powder, and it is therefore possible to produce products with special shapes such as fibers or sheets. be. In this case, SiC and Si 3 N 4 , which are generally called ceramics, are heat resistant and SiC, respectively.
Si 3 N 4 has attracted wide attention due to its excellent properties at high temperatures, such as excellent thermal shock resistance and fracture toughness. SiC−Si 3 by physical method
Various proposals have been made regarding methods for producing N 4 -based ceramics and methods for producing organosilicon precursors thereof, but all of these proposals have had problems. That is, US Pat. No. 3,853,567 discloses that chlorosilanes and amines are reacted, and then
A method is disclosed in which SiC-Si 3 N 4 ceramics are obtained by heating to 800°C to obtain carbosilazane, spinning it, making it infusible, and firing at a high temperature of 800 to 2000°C. However, this method requires 520-650℃ to obtain carbosilazane.
This method requires high temperatures, making it extremely difficult as an industrial production method, and has drawbacks such as the low ceramicization yield of about 55% when carbosilazane is mineralized. In addition, in the examples of this US patent specification, only methyltrichlorosilane and dimethyldichlorosilane are described as chlorosilanes, and methylamine is described as an amine. U.S. Pat. No. 4,097,294 shows that various silicon-containing polymers are converted into ceramic materials by pyrolysis. However, only one example of silazane polymers has been disclosed, and the yield of ceramic formation is as low as 12% at maximum. Additionally, although this US patent specifies that it is possible to make ceramics into fibers and thin films, this is merely a suggestion of that possibility, and it is not intended to be a mere suggestion of the possibility of making ceramics into fibers or thin films. There is no mention of moldability or processability. JP-A No. 57-117532 discloses that the reaction between chlorodisilanes and disilazane
-139124 describes the reaction between chlorosilanes and disilazane, JP-A-58-63725 describes the reaction between chlorosilane and ammonia, and JP-A-60-135431 describes the reaction between trichlorosilane and disilazane. It has been shown that silazane polymers can be obtained by reaction with each other.
Furthermore, US Pat. No. 4,535,007 discloses that a metal halide is added to chlorosilanes and disilazane, and JP-A-60-208331 discloses that a metal halide is added to chlorodisilanes and disilazane. disclose the production of silazane polymers, respectively. It is said that all of the above silazane polymers can be made into ceramics by thermal decomposition. However, the ceramicization yield for all silazane polymers is 50 to 60%, which is a low yield. In addition, the above-mentioned publications do not describe in detail the moldability and processability of polymers, which are most important in the precursor method, as in the specification of .
In addition, even if there are examples of fiberized fibers, most of them do not mention the strength of the ceramicized fibers. There is a slight description of strength in JP-A-60-208331, but even in this case, only extremely low tensile strength of 53 Kg/mm 2 or 63 Kg/mm 2 was obtained. In Japanese Patent Application Laid-Open No. 60-226890,

【式】 で示される有機珪素化合物アンモニアとの反応
により、アンモノリシス生成物を得た後、この
生成物をアルカリ金属又はアルカリ土類金属の
水素化物で脱水素縮合させてシラザンポリマー
を得る方法が開示されている。この方法で得ら
れるポリマーは、脱水素縮合の度合いによつて
その性状をオイル状から融点を持たない固体ま
で種々調整することが可能であるとされてい
る。しかし、ポリマーを溶融した状態から成
形、加工する場合、例えば溶融紡糸法で連続繊
維を製造する場合には、ポリマーが一定重合度
でかつ熱的に安定であることが必要であるが、
上記方法では重合を途中で停止させないとポリ
マーが融点を持たない固体となつていまい、溶
融可能なポリマーを得るためには反応時間、反
応温度、触媒量、溶媒量等の微妙なコントロー
ルを必要とし、その調整が非常に困難であると
共に、再現性にかけるという問題がある。更
に、この方法によつて得られるポリマーは熱的
に安定でなく、ゲル状物の生成を伴うといつた
欠点があり、以上の二つの点から上記方法はシ
ラザンポリマーの工業的製法として適当ではな
い。 特開昭60−228489号公報には、
Discloses a method for obtaining an ammonolysis product by reacting an organosilicon compound represented by the formula with ammonia, and then dehydrogenating and condensing this product with an alkali metal or alkaline earth metal hydride to obtain a silazane polymer. has been done. It is said that the properties of the polymer obtained by this method can be varied from oil-like to solid with no melting point depending on the degree of dehydrogenation condensation. However, when molding and processing a polymer from a molten state, for example when producing continuous fibers by melt spinning, it is necessary that the polymer has a constant degree of polymerization and is thermally stable.
In the above method, unless the polymerization is stopped midway, the polymer will become a solid with no melting point, and in order to obtain a meltable polymer, delicate control of reaction time, reaction temperature, amount of catalyst, amount of solvent, etc. is required. However, the adjustment is very difficult and there are problems with reproducibility. Furthermore, the polymer obtained by this method has disadvantages such as not being thermally stable and accompanied by the formation of gel-like substances.For these two reasons, the above method is not suitable as an industrial method for producing silazane polymers. do not have. In Japanese Patent Application Laid-Open No. 60-228489,

〔実施例 1〕[Example 1]

アンモノリシス工程 〔メチルジクロロシラン:メチルトリクスロロ
シラン:ジメチルジクロロシラン=75:15:10
(モル%)〕 攪拌機、温度計、NH3導入管、深冷コンデン
サーを装備し、乾燥した1の4つ口フラスコに
ヘキサン850mlを仕込んだ後、メチルジクロロシ
ラン43.1g、メチルトリクロロシラン11.2g、ジ
メチルジクロロシラン6.5gを加え、−20℃に冷却
した。過剰の気体状アンモニアを12/Hrの速
度で4時間この溶液に加えた(NH3全添加量2.1
モル)。この反応混合物を室温まで温め、その際
未反応NH3が逃げられるよう冷却器を空冷凝縮
器に変えた。 次に、ドライボツクス中で反応混合物から副生
した塩化アンモニウムを過により除去した。更
にケークを200mlのヘキサンで洗浄し、液から
減圧下(60℃/1mmHg)においてヘキサンをス
トリツプした。残留物(アンモノリシス生成物)
は透明な流動性の液体で、26gを得た。 アンモノリシス工程 〔メチルジクロロシラン:メチルトリクロロシ
ラン:ジメチルジクロロシラン=65:25:10(モ
ル%)〕 上記と同様な装備をもつ1の4つ口フラスコ
にヘキサン850mlを仕込み、これにメチルジクロ
ロシラン29.9g、メチルトリクロロシラン14.9
g、ジメチルジクロロシラン5.2gを加え、−20℃
に冷却した。気体状アンモニアを12/Hrの速
度で4時間この溶液に加えた。その後、上記と
同様の処理を行ない、透明な流動性の液体(アン
モノリシス生成物)20gを得た。 アンモノリシス工程 〔メチルジクロロシラン:メチルトリクロロシ
ラン:ジメチルジクロロシラン=65:20:15(モ
ル%)〕 上記と同様な装備をもつ2の4つ口フラスコ
に脱水ヘキサン1500mlを入れ、メチルジクロロシ
ラン59.8g、メチルトリクロロシラン23.9g、ジ
メチルジクロロシラン15.5gを加え、同様に気体
状アンモニアと反応させた。その後、上記と同
様に処理し、透明な流動性液体(アンモノリシス
生成物)42gを得た。 重合工程 300mlの3つ口フラスコに撹拌機、温度計、滴
下ロートをとりつけ、ドライボツクス中で水素化
カリウム0.2g(5ミリモル)及びNaHで脱水処
理したTHF125mlをフラスコに注入した。このフ
ラスコをドライボツクス中よりとり出し、窒素管
路に連結した。常温下、混合物を撹拌してKHを
分散させながら滴下ロートよりTHF75mlに溶解
したアンモノリシス工程で得られた生成物10g
を15分かけてゆつくりと加えた。この添加の間に
気体の発生がみられ、1時間後に気体の発生が停
止した。沃化メチル3gを加えるとKIの白色沈
殿が生じた。更に30分間撹拌後、大部分のTHF
溶媒を減圧で除去し、残留する白色スラリーに80
mlのヘキサンを加えた。この混合物を過し、
液を減圧下(1mmHg)70℃にてヘキサンを除去
すると、9.1gの粘稠固体(シラザン重合体)が
得られた。 このものは固有粘度(ベンゼン、20℃)0.07、
融点90℃で、ヘキサン、ベンゼン、THF及びそ
の他の有機溶媒に可溶性であつた。また、IRか
らは3400cm-1にNH、2980cm-1にC−H、2150cm
−1にSi−H、1260cm-1にSiCH3の各々の吸収が認
められた。また、ベンゼン凝固点降下法による分
子量測定では1020であつた。 重合工程 アンモノリシス工程で得られたアンモノリシ
ス生成物10gを重合工程と同様にTHF中
KH0.2gで90分反応させた。ガスの発生停止後
CH3Iを添加し、以下同様の処理をした。粘稠固
体(シラザン重合体)9.3gが得られ、このもの
は固有粘度0.08、融点120℃であつた。 重合工程 アンモノリシス工程で得られたアンモノリシ
ス生成物10gを重合工程と同様にTHF中
KH0.2gで90分反応させた。ガスの発生停止後
CH3Iを添加し、以下同様の処理をした。粘稠固
体(シラザン重合体)9.1gが得られ、このもの
は固有粘度0.07、融点115℃であつた。 繊維化工程 重合工程で得られたシラザン重合体30gをモ
ルホール紡糸装置(ノズル直径0.5mm)により130
℃にて溶融紡糸した。紡糸は4時間後も非常に良
好で、捲取速度400m/minで実施し、更に得ら
れた生糸を電子線にて120Mradで不融化処理を
行なつた。その後、わずかな張力下、N2気流中
100℃/Hrの昇温速度で1100℃にて30分間焼成し
た。セラミツク収率は75%であり、得られた繊維
は繊維径6μ、引張強度250Kg/mm2、弾性率25t/mm2
という物性であつた。また、繊維組成を元素分析
により分析したところ、Si58.3%、C20.3%、
N19.4%、O2%からなるSiC−Si3N4を主体とす
る繊維であることが確認された。 繊維化工程 重合工程で得られたシラザン重合体10gを繊
維化工程と同様の紡糸装置を用いて160℃にて
溶融紡糸した。捲取速度は420m/minで、紡糸
は非常に良好であつた。更に得られた生糸をわず
かな張力下、空気中にて90〜110℃(5℃/Hr)
で加熱して不融化を行なつた。次いで無張力下
N2気流中で100℃/Hrの昇温速度で1200℃にて
30分間焼成した。セラミツク収率は80%であり、
得られた繊維は繊維径8μ、引張強度200Kg/mm2
弾性率17t/mm2であつた。繊維組成を元素分析し
たところ、Si56.2%、C19.2%、N15.4%、O9.2%
からなるSiC−Si3N4を主体とする繊維であつた。 繊維化工程 重合工程で得られたシラザン重合体20gをド
ライボツクス中において繊維化工程と同様の紡
糸装置を用いて150℃にて450m/minの捲取速度
で溶融紡糸した。紡糸は終始良好であつた。得ら
れた生糸を真空中電子線装置にて90Mradの照射
を行ない、不融化した。その後、得られた繊維を
張力下N2気流中1250℃(100℃/Hr)にて30分
間焼成した。セラミツク収率は77%であつた。ま
た、繊維は繊維径6μ、引張強度260Kg/mm2、弾性
率23t/mm2であつた。 〔比較例〕 アンモノリシス工程 撹拌機、温度計、NH3導入管、深冷コンデン
サーを装備した1の4つ口フラスコに脱水ヘキ
サン850mlを仕込んだ後、メチルジクロロシラン
46gを加えた。これに気体状アンモニアを12/
Hrの速度で3.5時間導入し、反応させた。以下、
上記実施例のアンモノリシス工程と同様の処理
を行ない、20g(85%)の透明な流動性液体を得
た。 重合工程 300mlの3つ口フラスコにKH0.2gとTHF125
mlを注入後、撹拌してKHを分散させ、滴下ロー
トよりTHF75mlと前に得られた透明な流動性液
体10gの混合物を常温にて15分かけて滴下した。
滴下終了後、30分して反応を途中で停止するため
CH3I2gを加えた。以下、実施例の重合工程と
同様の処理を行ない、粘稠固体9.0gを得た。こ
のものの固有粘度は0.06、融点は75℃であつた。
なお、この系での重合を温度、触媒量、重合時間
をコントロールしてポリマーの重合度を一定にし
ようと試みたが全く再現性に欠けるものであつ
た。 繊維化工程 得られたシラザン重合体8gをモノホール(ノ
ズル直径0.5mm)紡糸装置に仕込み、110℃にて溶
融させ、紡糸を行なつた。初めはノズルよりの吐
出もよく、紡糸可能であつたが、30分後ノズルよ
り吐出しなくなつた。温度を徐々に上げたが全く
吐出せず、冷却後、ポリマーを取り出し、融点を
測定したところ、300℃でも溶融せず、更には溶
媒にも不溶なものであつた。多少紡糸できた生糸
を電子線にて90Mrad照射後、N2気流中100℃/
Hrの昇温速度で1100℃にて30分間焼成した。セ
ラミツク収率は58%であり、得られた繊維は繊維
径7μで、引張強度50Kg/mm2、弾性率5t/mm2と低物
性であつた。 [実施例 2] 実施例1の重合工程で得られた有機シラザン
重合体20重量部、炭化珪素粉末80重量部、ヘキサ
ン100重量部を混合して分散・混練した後、ヘキ
サンを蒸発させた。得られた混合粉末を1t/mm2
成形圧で加圧成形して直径25mm×厚さ10mmのシー
ト上の圧粉成形体を得た。次いで、この圧粉成形
体を室温から2℃/分の昇温速度で150℃迄昇温
し、150℃で1時間保持して不融化処理した後、
アルゴン気流中で室温から100℃/Hrの昇温速度
で1200℃まで昇温し、この温度で1時間保持した
後、炉を冷却した。得られたセラミツク成形体は
密度2.2g/cm3、曲げ強度12Kg/mm2であつた。 [実施例 3] 実施例1の重合工程で得られた有機シラザン20
重量部、窒化珪素微粉末(平均粒径1μm)70重量
部、炭化珪素ウイスカー15重量部、キシレン30重
量部をボールミルに入れて8時間混合した。混合
終了後、キシレンを減圧下で除去し、粉体を冷却
粉砕し、微細な粉末とした。この粉末を金型に入
れ、均一にならして、1.5t/cm2の圧力で加圧成形
した後、金型から成形物を取り出し、厚さ1mmの
シート状成形物を得た。次いで、このシートを空
気中で室温から2℃/分の昇温速度で150℃迄昇
温し、150℃で1時間保持して、不融化処理を行
った。更に、不融化処理したシートを窒素雰囲気
下、200℃/Hrの昇温速度で1200℃まで昇温し、
この温度に1時間保持した後、炉を冷却した。得
られたセラミツクシートは厚さ0.95mm、密度2.2
g/cm3で、可とう性を有するものであつた。 [実施例 4] 平均粒径0.5μmのβ−炭素珪素粉末に、ホウ素
3重量%及び実施例1の重合工程で得られた有
機シラザン重合体15重量%を添加し、混合したも
のと、長さ5cm、太さ10〜15μmの炭化珪素繊維
を一方向に均一に配向させたものを繊維含有量が
40容量%になるように交互に積層させた後、金型
プレスで0.4t/mm2の圧力で成形した。この成形体
を室温から2℃/分の昇温速度で150℃まで昇温
し、150℃で1時間保持して不融化処理した後、
窒素気流下240℃/Hrの昇温速度で1600℃に加熱
し、次いで1400℃で1時間保持して、無機繊維強
化複合セラミツクスを得た。このものの室温での
抗折強度は40Kg/mm2で、高物性であつた。
Ammonolysis step [Methyldichlorosilane: Methyltricchlorosilane: Dimethyldichlorosilane = 75:15:10
(mol%)] After charging 850 ml of hexane into a dry four-necked flask (1) equipped with a stirrer, thermometer, NH 3 inlet tube, and deep-cooled condenser, 43.1 g of methyldichlorosilane, 11.2 g of methyltrichlorosilane, 6.5 g of dimethyldichlorosilane was added and the mixture was cooled to -20°C. Excess gaseous ammonia was added to this solution at a rate of 12/Hr for 4 hours (total addition of NH 3 2.1
mole). The reaction mixture was warmed to room temperature while the condenser was replaced with an air-cooled condenser to allow unreacted NH3 to escape. Next, by-produced ammonium chloride was removed from the reaction mixture in a dry box by filtration. The cake was further washed with 200 ml of hexane, and the hexane was stripped from the liquid under reduced pressure (60°C/1 mmHg). Residue (ammonolysis product)
Obtained 26 g of clear fluid liquid. Ammonolysis process [Methyldichlorosilane: methyltrichlorosilane: dimethyldichlorosilane = 65:25:10 (mol%)] 850 ml of hexane was charged into a four-necked flask (1) equipped with the same equipment as above, and 29.9 ml of methyl dichlorosilane was added to the 4-necked flask. g, methyltrichlorosilane 14.9
g, add 5.2 g of dimethyldichlorosilane, -20℃
It was cooled to Gaseous ammonia was added to this solution at a rate of 12/Hr for 4 hours. Thereafter, the same treatment as above was carried out to obtain 20 g of a transparent fluid liquid (ammonolysis product). Ammonolysis process [Methyldichlorosilane: Methyltrichlorosilane: Dimethyldichlorosilane = 65:20:15 (mol%)] Pour 1500ml of dehydrated hexane into No. 2 four-necked flask equipped with the same equipment as above, and add 59.8g of methyldichlorosilane. , 23.9 g of methyltrichlorosilane, and 15.5 g of dimethyldichlorosilane were added, and reacted with gaseous ammonia in the same manner. It was then treated in the same manner as above to obtain 42 g of a clear fluid liquid (ammonolysis product). Polymerization Step A 300 ml three-necked flask was equipped with a stirrer, a thermometer, and a dropping funnel, and 0.2 g (5 mmol) of potassium hydride and 125 ml of THF dehydrated with NaH were poured into the flask in a dry box. This flask was taken out of the dry box and connected to a nitrogen pipe. 10 g of the product obtained in the ammonolysis step was dissolved in 75 ml of THF from the dropping funnel at room temperature while stirring the mixture to disperse KH.
was added slowly over 15 minutes. Gas evolution was observed during this addition and stopped after 1 hour. Addition of 3 g of methyl iodide resulted in a white precipitate of KI. After stirring for another 30 minutes, most of the THF
The solvent was removed under reduced pressure and the remaining white slurry was
ml of hexane was added. Strain this mixture
When the hexane was removed from the liquid at 70° C. under reduced pressure (1 mmHg), 9.1 g of a viscous solid (silazane polymer) was obtained. This one has an intrinsic viscosity (benzene, 20℃) of 0.07,
It had a melting point of 90°C and was soluble in hexane, benzene, THF and other organic solvents. Also, from IR, NH at 3400cm -1 , C-H at 2980cm -1 , and C-H at 2150cm
Absorption of Si-H at -1 and SiCH 3 at 1260 cm -1 were observed. Furthermore, the molecular weight was determined to be 1020 by benzene freezing point depression method. Polymerization process 10g of the ammonolysis product obtained in the ammonolysis process was added to THF in the same manner as in the polymerization process.
The reaction was carried out with 0.2 g of KH for 90 minutes. After gas generation stops
CH 3 I was added and the same treatment was carried out. 9.3 g of a viscous solid (silazane polymer) was obtained, which had an intrinsic viscosity of 0.08 and a melting point of 120°C. Polymerization process 10g of the ammonolysis product obtained in the ammonolysis process was added to THF in the same manner as in the polymerization process.
The reaction was carried out with 0.2 g of KH for 90 minutes. After gas generation stops
CH 3 I was added and the same treatment was carried out. 9.1 g of a viscous solid (silazane polymer) was obtained, which had an intrinsic viscosity of 0.07 and a melting point of 115°C. Fiberization process 30g of the silazane polymer obtained in the polymerization process was spun into fibers using a molhole spinning device (nozzle diameter 0.5mm).
Melt spinning was carried out at ℃. The spinning was very good even after 4 hours, and it was carried out at a winding speed of 400 m/min, and the obtained raw silk was further infusible treated with an electron beam at 120 Mrad. Then under slight tension and in a N2 stream
It was baked at 1100°C for 30 minutes at a temperature increase rate of 100°C/Hr. The ceramic yield was 75%, and the obtained fibers had a fiber diameter of 6μ, a tensile strength of 250Kg/mm 2 , and an elastic modulus of 25t/mm 2
This is the physical property. In addition, when the fiber composition was analyzed by elemental analysis, Si58.3%, C20.3%,
It was confirmed that the fiber was mainly composed of SiC-Si 3 N 4 consisting of 19.4% N and 2% O. Fiberization step 10 g of the silazane polymer obtained in the polymerization step was melt-spun at 160° C. using the same spinning device as in the fiberization step. The winding speed was 420 m/min, and the spinning was very good. Furthermore, the obtained raw silk was heated at 90 to 110℃ (5℃/Hr) in air under slight tension.
It was heated to make it infusible. Then under no tension
At 1200°C with a heating rate of 100°C/Hr in a N2 stream
Bake for 30 minutes. The ceramic yield is 80%,
The obtained fiber has a fiber diameter of 8μ, a tensile strength of 200Kg/mm 2 ,
The elastic modulus was 17t/ mm2 . Elemental analysis of the fiber composition revealed that Si56.2%, C19.2%, N15.4%, O9.2%
The fiber was mainly composed of SiC-Si 3 N 4 . Fiberization Step 20 g of the silazane polymer obtained in the polymerization step was melt-spun in a dry box at 150° C. at a winding speed of 450 m/min using the same spinning device as in the fiberization step. The spinning was good from beginning to end. The obtained raw silk was irradiated with 90 Mrad using an electron beam device in a vacuum to make it infusible. Thereafter, the obtained fibers were fired for 30 minutes at 1250° C. (100° C./Hr) in a N 2 stream under tension. The ceramic yield was 77%. The fibers had a fiber diameter of 6μ, a tensile strength of 260Kg/mm 2 , and an elastic modulus of 23t/mm 2 . [Comparative example] Ammonolysis process After charging 850 ml of dehydrated hexane into a four-necked flask (1) equipped with a stirrer, thermometer, NH 3 inlet tube, and deep cooling condenser, methyldichlorosilane was added.
Added 46g. Add 12% gaseous ammonia to this
The reaction was carried out at a rate of Hr for 3.5 hours. below,
A treatment similar to the ammonolysis step of the above example was carried out to obtain 20 g (85%) of a clear flowable liquid. Polymerization process KH0.2g and THF125 in a 300ml three-necked flask
ml was injected, the KH was dispersed by stirring, and a mixture of 75 ml of THF and 10 g of the previously obtained transparent fluid liquid was added dropwise from the dropping funnel over 15 minutes at room temperature.
To stop the reaction 30 minutes after completion of the dropwise addition.
2 g of CH 3 I was added. Thereafter, the same treatment as in the polymerization step of the example was carried out to obtain 9.0 g of a viscous solid. This product had an intrinsic viscosity of 0.06 and a melting point of 75°C.
An attempt was made to control the temperature, amount of catalyst, and polymerization time to maintain a constant degree of polymerization in this system, but this resulted in a complete lack of reproducibility. Fiberization Step 8 g of the obtained silazane polymer was charged into a monohole (nozzle diameter: 0.5 mm) spinning device, melted at 110° C., and spun. Initially, the nozzle discharged well and spinning was possible, but after 30 minutes the nozzle no longer discharged. Although the temperature was gradually raised, the polymer did not discharge at all. After cooling, the polymer was taken out and its melting point was measured, and it was found that it did not melt even at 300°C and was also insoluble in the solvent. After irradiating the slightly spun raw silk with an electron beam at 90 Mrad, it was heated at 100°C in a N2 stream.
It was baked at 1100°C for 30 minutes at a heating rate of Hr. The ceramic yield was 58%, and the obtained fibers had a fiber diameter of 7μ, a tensile strength of 50Kg/mm 2 , and an elastic modulus of 5t/mm 2 , which were low physical properties. [Example 2] 20 parts by weight of the organic silazane polymer obtained in the polymerization step of Example 1, 80 parts by weight of silicon carbide powder, and 100 parts by weight of hexane were mixed, dispersed and kneaded, and then the hexane was evaporated. The obtained mixed powder was pressure molded at a molding pressure of 1 t/mm 2 to obtain a compacted powder compact on a sheet with a diameter of 25 mm and a thickness of 10 mm. Next, this compacted compact was heated from room temperature to 150°C at a temperature increase rate of 2°C/min, and held at 150°C for 1 hour to be infusible.
The temperature was raised from room temperature to 1200°C at a temperature increase rate of 100°C/Hr in an argon stream, and after holding at this temperature for 1 hour, the furnace was cooled. The obtained ceramic molded body had a density of 2.2 g/cm 3 and a bending strength of 12 Kg/mm 2 . [Example 3] Organic silazane 20 obtained in the polymerization process of Example 1
Parts by weight, 70 parts by weight of silicon nitride fine powder (average particle size 1 μm), 15 parts by weight of silicon carbide whiskers, and 30 parts by weight of xylene were placed in a ball mill and mixed for 8 hours. After mixing, the xylene was removed under reduced pressure, and the powder was cooled and ground into a fine powder. This powder was placed in a mold, leveled uniformly, and pressure-molded at a pressure of 1.5 t/cm 2 , and then the molded product was taken out from the mold to obtain a sheet-like molded product with a thickness of 1 mm. Next, this sheet was heated in air from room temperature to 150°C at a heating rate of 2°C/min, and held at 150°C for 1 hour to perform an infusibility treatment. Furthermore, the temperature of the infusible sheet was raised to 1200°C at a heating rate of 200°C/Hr in a nitrogen atmosphere.
After holding this temperature for 1 hour, the furnace was cooled. The obtained ceramic sheet has a thickness of 0.95 mm and a density of 2.2
g/cm 3 and had flexibility. [Example 4] 3% by weight of boron and 15% by weight of the organic silazane polymer obtained in the polymerization process of Example 1 were added to β-carbon silicon powder with an average particle size of 0.5 μm, and a mixture of Silicon carbide fibers with a length of 5 cm and a thickness of 10 to 15 μm are uniformly oriented in one direction, and the fiber content is
After layering them alternately to a volume of 40%, they were molded using a mold press at a pressure of 0.4t/mm 2 . This molded body was heated from room temperature to 150°C at a heating rate of 2°C/min, and held at 150°C for 1 hour to make it infusible.
The mixture was heated to 1600°C at a temperature increase rate of 240°C/Hr under a nitrogen stream, and then held at 1400°C for 1 hour to obtain inorganic fiber reinforced composite ceramics. This material had a bending strength of 40 Kg/mm 2 at room temperature and had high physical properties.

Claims (1)

【特許請求の範囲】 1 メチルジクロロシラン、メチルトリクロロシ
ラン及びジメチルジクロロシランの混合物とアン
モニアとを反応させてアンモノリシス生成物を得
ると共に、このアンモノリシス生成物を脱プロト
ン化が可能な塩基性触媒により重合させて有機シ
ラザン重合体を得、次いでこの有機シラザン重合
体を溶融、成形し、更に不融化した後、焼成して
セラミツクスを得ることを特徴とするセラミツク
スの製造方法。 2 メチルジクロロシランとメチルトリクロロシ
ランとジメチルジクロロシランとの混合比が55〜
80モル%:10〜30モル%:5〜25モル%である特
許請求の範囲第1項記載の製造方法。 3 有機シラザン重合体が融点60〜200℃のもの
である特許請求の範囲第1項又は第2項記載の製
造方法。 4 有機シラザン重合体を溶融、成形した後、空
気中で50〜150℃に加熱して不融化するようにし
た特許請求の範囲第1項乃至第3項のいずれか1
項に記載の製造方法。 5 有機シラザン重合体を溶融、成形した後、真
空中又はN2ガス中において50〜200Mradの照射
量で電子線照射を行なつて不融化するようにした
特許請求の範囲第1項乃至第3項のいずれか1項
に記載の製造方法。 6 成形工程が紡糸工程であり、溶融した有機シ
ラザン重合体を紡糸してセラミツク繊維を得るよ
うにした特許請求の範囲第1項乃至第5項のいず
れか1項に記載の製造方法。 7 焼成温度が700〜2000℃である特許請求の範
囲第1項乃至第6項のいずれか1項に記載の製造
方法。 8 焼成雰囲気が真空中又は不活性ガス、N2
ス、H2ガス及びNH3ガスから選ばれるガス中で
ある特許請求の範囲第1項乃至第7項のいずれか
1項に記載の製造方法。
[Claims] 1 A mixture of methyldichlorosilane, methyltrichlorosilane and dimethyldichlorosilane is reacted with ammonia to obtain an ammonolysis product, and this ammonolysis product is polymerized using a basic catalyst capable of deprotonation. 1. A method for producing ceramics, which comprises: obtaining an organic silazane polymer, then melting and molding the organic silazane polymer, making it infusible, and then firing it to obtain ceramics. 2 The mixing ratio of methyldichlorosilane, methyltrichlorosilane, and dimethyldichlorosilane is 55~
80 mol%: 10 to 30 mol%: 5 to 25 mol%. The manufacturing method according to claim 1. 3. The manufacturing method according to claim 1 or 2, wherein the organic silazane polymer has a melting point of 60 to 200°C. 4. Any one of claims 1 to 3, wherein the organic silazane polymer is melted and molded and then heated in air to 50 to 150°C to make it infusible.
The manufacturing method described in section. 5. Claims 1 to 3, in which the organic silazane polymer is melted and molded and then irradiated with an electron beam at a dose of 50 to 200 Mrad in vacuum or N2 gas to make it infusible. The manufacturing method according to any one of Items. 6. The manufacturing method according to any one of claims 1 to 5, wherein the forming step is a spinning step, and the ceramic fiber is obtained by spinning a molten organic silazane polymer. 7. The manufacturing method according to any one of claims 1 to 6, wherein the firing temperature is 700 to 2000°C. 8. The manufacturing method according to any one of claims 1 to 7, wherein the firing atmosphere is in a vacuum or in a gas selected from inert gas, N 2 gas, H 2 gas, and NH 3 gas. .
JP63057020A 1988-03-10 1988-03-10 Production of ceramics Granted JPS63243328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057020A JPS63243328A (en) 1988-03-10 1988-03-10 Production of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057020A JPS63243328A (en) 1988-03-10 1988-03-10 Production of ceramics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61135437A Division JPS62290730A (en) 1986-06-10 1986-06-10 Production of organosilazane polymer and production of ceramics using said polymer

Publications (2)

Publication Number Publication Date
JPS63243328A JPS63243328A (en) 1988-10-11
JPH0362667B2 true JPH0362667B2 (en) 1991-09-26

Family

ID=13043749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057020A Granted JPS63243328A (en) 1988-03-10 1988-03-10 Production of ceramics

Country Status (1)

Country Link
JP (1) JPS63243328A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176941A (en) * 1987-11-07 1993-01-05 Hoechst Aktiengesellschaft Process of producing a ceramic/fiber composite using a molten polysilazone
JPH02307916A (en) * 1989-05-19 1990-12-21 Japan Atom Energy Res Inst Production of silicon carbide-silicon nitride-based ceramic fiber
FR2653131A1 (en) * 1989-10-17 1991-04-19 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF POLYORGANOSILAZANE OF HIGH MOLECULAR WEIGHT
JP6238988B2 (en) * 2012-08-30 2017-11-29 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Method for producing thermoplastic preceramic polymer

Also Published As

Publication number Publication date
JPS63243328A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JPH0215577B2 (en)
US4869854A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
EP0153008B1 (en) Preceramic organosilazane polymers
US4720532A (en) Organopolysilazane precursors to silicon nitride-rich mixed SiC/Si3 N4
US4414403A (en) Branched polycarbosilanes and their use in the production of silicon carbide
US5312942A (en) Silicon boron nitride ceramic and precursor compounds, a process for their preparation and their use
US4847345A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
CA1281477C (en) Method for converting si-h containing polysiloxanes to new and useful preceramic polymers and ceramic materials
EP0323062B1 (en) Process for manufacturing organic silazane polymers
JPH0362667B2 (en)
JPH0662776B2 (en) Polytitanocarbosilazane polymer and method for producing ceramics using the polymer
JPH0238127B2 (en)
JPH0313188B2 (en)
JPH0219135B2 (en)
JPH0577691B2 (en)
JP2518119B2 (en) Ceramics manufacturing method
US5863848A (en) Preparation of substantially crystalline silicon carbide fibers from borosilazanes
US5145813A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPH0798865B2 (en) Ceramics manufacturing method
JPH0615619B2 (en) Method for producing hafnium-containing silazane polymer and method for producing ceramics using the polymer
US5210058A (en) Method for preparing organic silazane polymers and method for preparing ceramics from the polymers
JPH0234565A (en) Method of in fusibilising organic silazane polymer
JPH05148720A (en) Polysilazane fiber, its production and ceramic fiber
JPH0798866B2 (en) Ceramics manufacturing method
US5008348A (en) Infusibilization of organic silazane polymers