JPH0362545A - Instrument for measuring mobility of carrier - Google Patents

Instrument for measuring mobility of carrier

Info

Publication number
JPH0362545A
JPH0362545A JP19661589A JP19661589A JPH0362545A JP H0362545 A JPH0362545 A JP H0362545A JP 19661589 A JP19661589 A JP 19661589A JP 19661589 A JP19661589 A JP 19661589A JP H0362545 A JPH0362545 A JP H0362545A
Authority
JP
Japan
Prior art keywords
probe
sample
pulse
mobility
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19661589A
Other languages
Japanese (ja)
Inventor
Akira Sakai
明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19661589A priority Critical patent/JPH0362545A/en
Publication of JPH0362545A publication Critical patent/JPH0362545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To effectively measure the mobility of a carrier by providing the second probe which is electrically insulated from the first probe at a position separated from the first probe by a fixed distance and using one of the probes as a probe for injection and the other as a probe for detecting injected carriers. CONSTITUTION:When a potential difference is given in advance to an electrode of a power source 14 fitted to a sample 3, injected electrons move along an electric field and, when they reach a point just below a probe 1, the electric potential is instantaneously changed and a pulse-like change is caused in the tunnel current between the probe 1 and sample 3. When the pulse is detected by means of a detection circuit 11 and the time lag between the detected pulse and the voltage pulse first applied across a probe 2 is measured with a timer 12, the flying time tau of the injected electrons can be found. When the interval (d) between the probes 1 and 2 is measured in advance by means of a scanning tunnel microscope STM, the average speed of the injected electrons can be found from v=d/tau (where, v = speed). Therefore, the mobility of electrons is measured at a very small area on the surface of the sample.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、2本の探針を備え、試料表面の形状を測定す
るとともに、試料表面の特定の微小領域でのキャリア易
動度を測定する評価装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is equipped with two probes, and measures the shape of a sample surface, and also measures carriers in a specific micro region on the sample surface. The present invention relates to an evaluation device for measuring mobility.

(従来の技術) 半導体表面でのキャリア易動度は半導体素子の特性を左
右する重要なパラメーターであるが、素子の微細化に伴
ない、表面の微小な領域での局所的なキャリア易動度を
求める必要性が高まっている。特にステップや結晶粒界
、ペテロ界面などに沿った方向、あるいはそれらに垂直
な方向でのキャリア易動度は実用的にも重要な量となっ
ている。このような局所的なキャリア易動度を測定する
ためには、(i)表面形状を&i察し、目的とする個所
(ステップ等)を見つけ出す、(五)目的とする個所に
電子を注入する、(m)ある離れた所で電子を検出する
ことが必要とされる。このうち、(ii)、 (ui)
では、電子の注入と検出にたとえば。
(Prior art) Carrier mobility on the semiconductor surface is an important parameter that influences the characteristics of semiconductor devices, but as devices become smaller, local carrier mobility in minute regions on the surface There is a growing need to seek In particular, the carrier mobility in the direction along steps, grain boundaries, Peter interfaces, etc., or in the direction perpendicular to them, is a practically important quantity. In order to measure such local carrier mobility, (i) estimate the surface shape and find the target location (step, etc.), (5) inject electrons into the target location. (m) It is required to detect electrons at some distance. Among these, (ii), (ui)
For example, consider electron injection and detection.

l−以下の高い空間分解能が要求される。A high spatial resolution of l- or less is required.

電子の注入法としてよく用いられる光による電子とホー
ルの対励起は、光のビーム径をサブミクロンの大きさに
することが困難であるので局所的な方法としては役に立
たず、また表面形状のw4祭も困難である。一方、電子
ビームを用いる場合には、SEMを利用することによっ
て表面形状を観察することが可能であり、しかもSEM
によって見い出した特定の個所にSEMの電子ビームを
絞って照射することにより、(且)の要求を満たしても
いる。しかしながらSEMの電子ビームはエネルギーが
高すぎ1表面下深くまで電子が注入されるばかりではな
く、表面付近で原子の励起、脱離。
Pair excitation of electrons and holes by light, which is often used as an electron injection method, is not useful as a local method because it is difficult to make the light beam diameter submicron. Festivals are also difficult. On the other hand, when using an electron beam, it is possible to observe the surface shape by using an SEM;
By focusing and irradiating the SEM's electron beam onto the specific location found by the method, the requirements of (and) are also satisfied. However, the energy of the SEM electron beam is so high that not only are electrons injected deep below the surface, but atoms are excited and desorbed near the surface.

表面の加熱等様々のトラブルを引き起こす、このため、
現状ではSEMによる電子注入は易動度測定に適当なも
のであるとは言い難い。
This causes various problems such as surface heating.
At present, it is difficult to say that electron injection using SEM is suitable for measuring mobility.

(発明が解決しようとする課題) このように従来技術では、局所的な易動度を測定するた
めに必要な、表面形状のイメージングと、特定の微小領
域への低エネルギー電子の注入を同時に達成することは
困難であった0本発明はこの技術的な困難を克服するた
めになされたものであり、半導体表面をイメージし、且
つ目的とする所に局所的に電子を注入・検出する装置を
提供するものである。
(Problem to be solved by the invention) In this way, the conventional technology simultaneously achieves surface topography imaging, which is necessary to measure local mobility, and injection of low-energy electrons into a specific micro region. The present invention has been made to overcome this technical difficulty, and has developed a device that images the semiconductor surface and locally injects and detects electrons at the target location. This is what we provide.

〔発明の構成〕 (m1題を解決するための手段) 上記目的を達成するために2本発明では走査型トンネル
顕微鏡(STM)の技術を利用する。
[Structure of the Invention] (Means for Solving Problem m1) In order to achieve the above objects, the present invention utilizes scanning tunneling microscopy (STM) technology.

即ちSTMに於いて、STM探針から一定距離だけ離れ
た所にSTM探針とは電気的に絶縁された第2の探針を
設け、探針または試料の移動により、両探針を試料表面
に沿って走査させることを要旨とする。
That is, in STM, a second probe that is electrically insulated from the STM probe is provided at a certain distance from the STM probe, and by moving the probe or the sample, both probes are connected to the sample surface. The gist is to scan along the

上記構成に於いて、STM探針はSTMによる表面m察
に使用され、また目的の個所に位置合わせされて、電子
の検出器として作用する。一方、第2の探針は電子のエ
ミッターとして作用し、電子の局所的な注入を行なう。
In the above configuration, the STM probe is used for STM surface sensing and is aligned to a target location to act as an electron detector. On the other hand, the second probe acts as an electron emitter and locally injects electrons.

しかし、表面m%?には走査型電子顕微鏡(SEM)を
用いること、即ち、SEMとSTMを組合せることも可
能である。
But surface m%? It is also possible to use a scanning electron microscope (SEM), that is, to combine SEM and STM.

(作 用) 二本の探針を設けることによって、まず、第1の探針で
半導体基板などの試料の表面を観察し、つぎに、第1お
よび第2の2本の探針を用いて目的とする試料表面の微
小領域でのキャリアの動きを検出し、易動度を測定する
(Function) By providing two probes, the surface of a sample such as a semiconductor substrate can be observed first with the first probe, and then the surface of a sample such as a semiconductor substrate can be observed using the first and second probes. The movement of carriers in a microscopic area on the target sample surface is detected and the mobility is measured.

(実施例) 以下、本発明の実施例を第1図(a)、 (b)、第2
図及び第3図を用いて説明する。
(Example) Examples of the present invention will be described below in Figures 1 (a), (b), and 2.
This will be explained using the drawings and FIG.

第1図(a)は、本発明の探針部を示す。探針部は互い
に電気的に絶縁された2本の探針1.2がら構成されて
いる。探針は、タングステンからなるものであるがとく
に、この材料に限定されるものではない。プラチナ、お
よびプラチナ合金(プラチナ−ロジウム、プラチナ−イ
リジウム)など酸化しにくい金属なら何んでも用いるこ
とができる。これら探針を支持する絶縁基板15は、プ
ラスチックでもセラミックでもよく絶縁性の高い絶縁物
なら材質は問わない。第1図(b)は、本発明探針部の
移動機構と該探針部に対向する試料の移動機構を示す。
FIG. 1(a) shows the probe section of the present invention. The probe section is composed of two probes 1.2 that are electrically insulated from each other. The probe is made of tungsten, but is not particularly limited to this material. Any metal that is difficult to oxidize, such as platinum and platinum alloys (platinum-rhodium, platinum-iridium), can be used. The insulating substrate 15 that supports these probes may be made of any material, such as plastic or ceramic, as long as it is a highly insulating material. FIG. 1(b) shows a mechanism for moving a probe according to the present invention and a mechanism for moving a sample facing the probe.

探針部はSTMの通常の探針接近機構4によって試料表
面3に接近させられる。探針1,2の長さは正確には等
しくはないため、どちらかが表面3に先に近づき、表面
3との距離がlnm程度になると、探針1(仮に探針l
の方が先に表面3に近づいたものとする)と表面3との
間にトンネル電流が流れ、STMとしての動作が可能と
なる。以下測定は次のように行なわれる。
The probe is brought close to the sample surface 3 by a normal probe approach mechanism 4 of the STM. Since the lengths of probes 1 and 2 are not exactly equal, when one of them approaches surface 3 first and the distance from surface 3 becomes about 1 nm, probe 1 (temporarily, probe l
A tunnel current flows between the surface 3 and the surface 3, which enables operation as an STM. The following measurements are performed as follows.

先づ装置をSTMとして動作させ、数V程度の電圧を加
えて試料、たとえば、シリコン半導体基板表面の形状を
微視的に観察する。この時、トンネル電流は試料に取り
付けられた電極5の1つを通して、電流検出器6によっ
て測定される。探針部の移動には圧電素子7が用いられ
、その動きは、通常のSTMと同様に、STM制御・走
査システムによって制御される。大型の圧電素子の使用
により、数−×数pの領域をinn以下の分解能で観察
することが可能であり、ステップや粒界を見つけること
は困難ではない。−以上の大きさの領域をもII察する
ために、試料にも移動機構8が設けられている。
First, the apparatus is operated as an STM, and a voltage of about several volts is applied to microscopically observe the shape of the surface of a sample, for example, a silicon semiconductor substrate. At this time, the tunneling current is measured by a current detector 6 through one of the electrodes 5 attached to the sample. A piezoelectric element 7 is used to move the probe, and its movement is controlled by the STM control and scanning system, similar to normal STM. By using a large piezoelectric element, it is possible to observe a region of several −× several p with a resolution of inn or less, and it is not difficult to find steps or grain boundaries. A moving mechanism 8 is also provided on the sample in order to detect areas larger than -2.

目的とする対象9が試料表面で見つかった時には、試料
移動機構8、圧電素子7により探針lを対象9の近傍の
任意の場所に位置合わせする。次にもう一方の探針2に
パルス発生器IOから負電圧パルスを印加し、試料表面
3に電子を注入する。
When the target object 9 is found on the sample surface, the sample moving mechanism 8 and the piezoelectric element 7 position the probe l at an arbitrary location near the object 9. Next, a negative voltage pulse is applied from the pulse generator IO to the other probe 2 to inject electrons into the sample surface 3.

電圧パルスの幅は数n5ec、パルスの高さは数Vから
数10Vの負電圧であり、具体的な値は場合によって異
なる。探針2に負電圧を加えると、トンネル現象または
電界放射(電圧が高い場合)によって電子が試料3に注
入されるが、探針2の尖鋭度が十分であれば、注入され
る領域の広がりは数nm程度であり、電子の局所的な注
入が実現される。
The width of the voltage pulse is several n5 ec, and the height of the pulse is a negative voltage of several volts to several tens of volts, and the specific values vary depending on the case. When a negative voltage is applied to the tip 2, electrons are injected into the sample 3 by tunneling or field emission (if the voltage is high), but if the tip 2 has sufficient sharpness, the area where the electrons are injected will expand. is on the order of several nm, and local injection of electrons is realized.

注入領域の広がりは、具体的には探針2をSTMに用い
た時の面内分解能とほぼ等しい0通常STMで用いられ
る研磨された探針でlnm程度の面内分解能を達成する
ことはさして困難ではなく、従って、数nmの注入領域
を実現することは十分に可能である。
Specifically, the spread of the injection region is approximately equal to the in-plane resolution when probe 2 is used for STM.0 It is very difficult to achieve an in-plane resolution of about 1 nm with a polished probe used in normal STM. It is not difficult and therefore quite possible to realize an implantation area of several nm.

試料に取り付けられた電極5に電位差を電源14によっ
て与えておくと、注入された電子は電界に沿って移動し
、探針1の直下に達すると、瞬間的にそこの電位を変化
させ、探針1と試料3との間のトンネル電流にパルス的
な変化を引き起こす。
When a potential difference is applied to the electrode 5 attached to the sample by the power source 14, the injected electrons move along the electric field, and when they reach just below the probe 1, the potential there instantaneously changes and the probe A pulse-like change is caused in the tunnel current between the needle 1 and the sample 3.

この電流パルスを検出回路11によって検出し、この検
出パルスと、最初に探針2に加えた電圧パルスとの時間
差をタイマー12を用いて測定すると。
This current pulse is detected by the detection circuit 11, and the time difference between this detection pulse and the voltage pulse initially applied to the probe 2 is measured using the timer 12.

注入された電子の飛行(移動)時間τが測定される。あ
らかじめ、探針1,2の間隔dをSEMで測定しておく
と、υ=d/τにより、注入された電子の平均速度が求
められる(υを試料3に加えられた電界Eで割ると易動
度となる)。このようにして、試料表面の微小な領域で
の電子易動度が測定される。
The flight (travel) time τ of the injected electrons is measured. If the distance d between the probes 1 and 2 is measured in advance with an SEM, the average velocity of the injected electrons can be found from υ = d/τ (dividing υ by the electric field E applied to sample 3 mobility). In this way, the electron mobility in a minute area on the sample surface is measured.

次に具体的な数値例を示す。探針1,2については、微
細加工技術により数p間隔のものも製作可能である。探
針1.2の間隔は10.とする。シリコン基板3にIV
/asの電界を加えると、タイマー12によって、検出
パルスと最初に探針2に加えた電圧パルスとの時間差τ
がほぼ0.7μsecと計測された。
Next, a specific numerical example is shown. As for the probes 1 and 2, probes with an interval of several p can be manufactured using microfabrication technology. The distance between probes 1.2 is 10. shall be. IV on silicon substrate 3
When an electric field of /as is applied, the time difference τ between the detection pulse and the voltage pulse initially applied to the probe 2 is determined by the timer 12.
was measured to be approximately 0.7 μsec.

従って、このときの電子易動度は、およそ1430d/
vsecとなる。タイマー12の時間分解能としては1
 n5ec以下も可能であり、従ってタイマーは十分に
τを測定できる。前述のように、探針2に加える電圧パ
ルスは数n5ecにすることが出来るため、これもてよ
りも十分に小さい。電流パルスの検出については、検出
系の時定数が問題となるが、シャント抵抗13を1にΩ
 とすると、浮遊容量は数pFであり、時定数は数n5
ecとなるため、τの測定に大きな影響を与えない。注
入電流を500nAとするとシャント抵抗13で発生す
る電圧パルスは0.5■Vであり、高速プリアンプ11
を介して、タイマー12を作動させるに十分である。
Therefore, the electron mobility at this time is approximately 1430d/
It becomes vsec. The time resolution of the timer 12 is 1
n5ec or less is also possible, so the timer can sufficiently measure τ. As mentioned above, the voltage pulse applied to the probe 2 can be several n5 ec, which is much smaller than that. Regarding the detection of current pulses, the time constant of the detection system is a problem, but the shunt resistor 13 is set to 1Ω.
Then, the stray capacitance is several pF, and the time constant is several n5.
ec, so it does not have a large effect on the measurement of τ. When the injection current is 500 nA, the voltage pulse generated by the shunt resistor 13 is 0.5 ■V, and the high-speed preamplifier 11
is sufficient to activate the timer 12 via .

本発明の実施例の探針1,2については、タングステン
などの探針用導電材料を選択成長させて針状体を形成し
、さらに、選択的レジストマスクを用いて反応性イオン
エツチングによりレジストマスクの後退を利用してタン
グステンの針状体の先端をテーパエツチングし、探針の
尖鋭化を行った。しかし、タングステンの選択成長は、
たとえば、六フッ化タングステンガス雰囲気中で選択的
に電子ビームなどをスポット照射することによっても可
能である。この場合は選択成長用の厚いレジストマスク
は不要であり、さらに、探針の尖鋭化はすでにされてい
るので、テーバエツチングを不要にすることもできる。
For the probes 1 and 2 of the embodiment of the present invention, a conductive material for the probe, such as tungsten, is selectively grown to form a needle-like body, and then a resist mask is etched by reactive ion etching using a selective resist mask. The tip of the tungsten needle was taper-etched using the regression of the tungsten needle to sharpen the probe. However, the selective growth of tungsten is
For example, it is also possible to selectively irradiate a spot with an electron beam or the like in a tungsten hexafluoride gas atmosphere. In this case, there is no need for a thick resist mask for selective growth, and furthermore, since the tip has already been sharpened, it is also possible to eliminate the need for Taber etching.

また、探針2に正電圧パルスを印加すると試料にホール
を注入することができる。この場合は、ホール易動度を
求めることになる。
Further, by applying a positive voltage pulse to the probe 2, holes can be injected into the sample. In this case, the Hall mobility will be determined.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の易動度測定装置は、試料
の表面形状を[6できるとともに、その表面の所定の微
小領域での電子易動度を測定することができる。
As described above, the mobility measurement device of the present invention can measure the surface shape of a sample and measure the electron mobility in a predetermined minute region of the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、本発明の易動度81q定装置の探針部
、第1図(b)は、第1図(a)の探針部の移動機構と
探針部に対向する試料の移動機ホL第2図は、本発明の
試料表面it察時の探針の動作模式図及び第3図は、本
発明の易動度測定時の探針の動作模式図である。 1.2・・・探針         3・・・試料(シ
リコン基板)4・・・探針接近機構     5・・・
試料電極6・・・電流検出器      7・・・圧電
素子8・・・試料移動機構     9・・・測定対象
10・・・パルス発生器     11・・・検出回路
12・・・タイマー 13・・・シャント抵抗 14・・・電源 15・・・絶縁基板 (8733)
FIG. 1(a) shows the probe section of the mobility 81q determining device of the present invention, and FIG. 1(b) shows the moving mechanism of the probe section of FIG. 1(a) and the probe section facing the probe section. FIG. 2 is a schematic diagram of the operation of the probe when detecting the sample surface according to the present invention, and FIG. 3 is a schematic diagram of the operation of the probe when measuring the mobility of the present invention. 1.2... Probe 3... Sample (silicon substrate) 4... Probe approach mechanism 5...
Sample electrode 6... Current detector 7... Piezoelectric element 8... Sample moving mechanism 9... Measurement object 10... Pulse generator 11... Detection circuit 12... Timer 13... Shunt resistor 14...Power supply 15...Insulating board (8733)

Claims (1)

【特許請求の範囲】[Claims] 第1の探針と、前記第1の探針から一定距離だけ離れた
位置に設けられた前記第1の探針とは電気に絶縁された
第2の探針を具備してなり、一方が注入用探針であり、
他方が注入されたキャリア(電子または正孔)を検出す
る検出用探針であることを特徴とするキャリア易動度測
定装置。
The first probe is provided with a second probe that is electrically insulated from the first probe, and the first probe is provided at a certain distance from the first probe. An injection probe,
A carrier mobility measuring device characterized in that the other end is a detection probe that detects injected carriers (electrons or holes).
JP19661589A 1989-07-31 1989-07-31 Instrument for measuring mobility of carrier Pending JPH0362545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19661589A JPH0362545A (en) 1989-07-31 1989-07-31 Instrument for measuring mobility of carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19661589A JPH0362545A (en) 1989-07-31 1989-07-31 Instrument for measuring mobility of carrier

Publications (1)

Publication Number Publication Date
JPH0362545A true JPH0362545A (en) 1991-03-18

Family

ID=16360703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19661589A Pending JPH0362545A (en) 1989-07-31 1989-07-31 Instrument for measuring mobility of carrier

Country Status (1)

Country Link
JP (1) JPH0362545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881608A (en) * 2012-09-17 2013-01-16 上海华力微电子有限公司 Method for detecting carrier mobility in ion well

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881608A (en) * 2012-09-17 2013-01-16 上海华力微电子有限公司 Method for detecting carrier mobility in ion well

Similar Documents

Publication Publication Date Title
US5461907A (en) Imaging, cutting, and collecting instrument and method
JP2837083B2 (en) Method and interaction apparatus for accurately measuring surface parameters excluding shape or performing shape related work
JP2915554B2 (en) Barrier height measurement device
US6583412B2 (en) Scanning tunneling charge transfer microscope
JPH02287246A (en) Instrument and method for measuring absorption
US6566653B1 (en) Investigation device and method
US20020043101A1 (en) Scanning probe microscope with probe formed by single conductive material
JPH0362545A (en) Instrument for measuring mobility of carrier
EP1443337B1 (en) Electro-optic measuring instrument
Jersch et al. Time-resolved current response of a nanosecond laser pulse illuminated STM tip
EP0449221B1 (en) Scanning probe microscope
JP2900764B2 (en) Evaluation method of semiconductor surface thin film
JP3192832B2 (en) Probe for electrical measuring equipment
JP2956144B2 (en) Sidewall shape measurement method
Dagata Evaluation of scanning Maxwell-stress microscopy for SPM-based nanoelectronics
JP2789244B2 (en) Method of forming microprobe
JP3295592B2 (en) Electric waveform measuring probe
JP2003178947A (en) Probe drawing device, method, and insulation characteristics evaluation device
JP3192831B2 (en) Electric measurement device
JP3192833B2 (en) Atomic force microscope
US10976344B1 (en) System and method for performing scanning tunneling microscopy on current-carrying samples
JPH01287404A (en) Composite analyzing device for surface of solid body
JPH05272909A (en) Scanning-type probe apparatus
JP2554939Y2 (en) Probe for scanning tunneling microscope
JPH0512724Y2 (en)