JPH0361893B2 - - Google Patents

Info

Publication number
JPH0361893B2
JPH0361893B2 JP188784A JP188784A JPH0361893B2 JP H0361893 B2 JPH0361893 B2 JP H0361893B2 JP 188784 A JP188784 A JP 188784A JP 188784 A JP188784 A JP 188784A JP H0361893 B2 JPH0361893 B2 JP H0361893B2
Authority
JP
Japan
Prior art keywords
temperature
level
heat
heating
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP188784A
Other languages
Japanese (ja)
Other versions
JPS60146118A (en
Inventor
Yoshiaki Arakawa
Hiroshi Fukunaga
Akio Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP188784A priority Critical patent/JPS60146118A/en
Publication of JPS60146118A publication Critical patent/JPS60146118A/en
Publication of JPH0361893B2 publication Critical patent/JPH0361893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】 3.1 技術分野 本発明は液体または粉粒体が気体と接している
面のレベル、即ち量面レベルを測定する方法およ
び該方法を実施するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION 3.1 Technical Field The present invention relates to a method for measuring the level of a surface of a liquid or granular material in contact with gas, that is, the surface level, and an apparatus for carrying out the method.

更に詳しくはヒータと測温素子を組合わせたセ
ンサ即ち量面検出素子によつて熱的に液体レベル
や粉粒体の面レベルを測定する方法およびその装
置に関するものである。
More specifically, the present invention relates to a method and apparatus for thermally measuring a liquid level or a surface level of powder or granular material using a sensor that combines a heater and a temperature measuring element, that is, a quantitative surface detection element.

3.2 従来技術 量面レベルを測定する方法としては、従来から
多くの方式があり、例えば直読式、浮子式、重量
式、圧力式、電気式(静電容量式他)、音波式、
放射線式、マイクロウエーブ式、回転体式、重錘
式または振動片式等があるが、その方式により、
製造費が高い、放射線による汚染の心配がある、
厳密なキヤリブレーシヨンが必要である、機械的
に脆弱である、防爆構造に出来ない、容器の外部
からの測定ができない等の欠点があつた。
3.2 Prior Art There have been many methods for measuring surface level, such as direct reading method, float method, gravimetric method, pressure method, electric method (capacitance method etc.), sonic method,
There are radiation type, microwave type, rotating body type, weight type, vibrating piece type, etc., but depending on the method,
Manufacturing costs are high, there are concerns about radiation contamination,
It had drawbacks such as requiring strict calibration, being mechanically fragile, not having an explosion-proof structure, and not being able to be measured from outside the container.

3.3 本発明の目的 本発明は上記の各種欠点のない量面レベルを測
定する方法およびその装置を提供することを目的
とするものであつて、構造的には円筒状、線状あ
るいは細長平板状のヒータとヒータ内部又は表面
の長手方向の温度分布を測定するための多枝式熱
電対等の測温素子を配設し、さらに表面に電気絶
縁、機械的あるいは化学的保護のために被覆層を
設けた極めて簡単な構造のものである。
3.3 Purpose of the present invention The purpose of the present invention is to provide a method and an apparatus for measuring a quantitative surface level without the above-mentioned drawbacks. A temperature measuring element such as a multi-pronged thermocouple is installed to measure the temperature distribution in the longitudinal direction of the heater and the heater inside or on the surface, and a coating layer is further applied to the surface for electrical insulation, mechanical or chemical protection. It has an extremely simple structure.

本発明による量面レベル測定方法および装置の
特徴としては (1) 安価な素材でセンサが作れるため、製造価格
が安くなる。
Features of the quantitative level measuring method and device according to the present invention are (1) Since the sensor can be made from inexpensive materials, the manufacturing cost is low.

(2) 加熱時の温度分布から量面検知するので、放
射線式などと異なり被測定物質への汚染の心配
がない。
(2) Quantitative detection is performed from the temperature distribution during heating, so unlike radiation-based methods, there is no risk of contamination of the substance to be measured.

(3) 加熱時の温度分布からの検知方式であり、温
度の相対変化から量面を検知するので、厳密な
キヤリブレーシヨンは不要となる。
(3) This is a detection method based on the temperature distribution during heating, and since the quantity is detected from the relative change in temperature, strict calibration is not required.

(4) 浮子式などのように可動部分がないため機械
的にこわれることが少なくなる。
(4) Unlike the float type, there are no moving parts, so there is less chance of mechanical damage.

(5) センサの被覆材にインコネルやステンレス被
覆して用いることが可能であり、防爆構造とす
ることができる。
(5) The sensor can be coated with Inconel or stainless steel, making it explosion-proof.

(6) 液体や粉粒体の内部に挿入して測定すること
も又、その容器の外側表面にセンサを貼着して
量面検出することも可能である。
(6) It is also possible to measure the amount by inserting it inside a liquid or powder, or by attaching a sensor to the outside surface of the container.

等々が挙げられる。and so on.

3.4 本発明の原理と構成 3.4.1 原 理 液体又は粉粒体の高さ面が平坦で、かつ、その
平坦面に接する物体の熱物性値(熱伝導率、熱伝
達率(流体の場合)など)がそれら液体又は粉粒
体のそれと異なる場合に、その境界面に垂直に配
設された長い均質な加熱体(円筒状ヒータ、線状
ヒータ、平板状ヒータなど)の内部あるいは表面
の温度分布を想定すると、その温度分布はその表
面に接する物体の熱伝導率や熱伝達率によつて定
まる。そして、加熱体の温度分布は境界面近傍で
急激な温度変化を生ずることが推定される。本発
明はこの考え方にもとづいて液体又は粉粒体の面
レベルを測定するようにした量面レベルの測定方
法およびその装置に関するものである。
3.4 Principle and structure of the present invention 3.4.1 Principle The height surface of liquid or granular material is flat, and the thermophysical property values (thermal conductivity, heat transfer coefficient (in case of fluid) of an object in contact with the flat surface) ) is different from that of the liquid or powder, the temperature inside or on the surface of a long homogeneous heating element (cylindrical heater, linear heater, flat heater, etc.) disposed perpendicular to the boundary surface. Assuming a temperature distribution, the temperature distribution is determined by the thermal conductivity and heat transfer coefficient of the object in contact with the surface. It is estimated that the temperature distribution of the heating body causes a rapid temperature change near the boundary surface. The present invention relates to a surface level measuring method and apparatus for measuring the surface level of liquid or powder based on this idea.

説明を具体化するために第1図のごとく液体又
は粉粒体と気体が平面を境界として相接している
ときに長い均熱加熱体(以下、単に加熱体とい
う)が境界に対して垂直に配置されている場合の
加熱体の内部あるいは表面の温度分布を考える。
To make the explanation more concrete, as shown in Figure 1, when a liquid or granular material and a gas are in contact with each other with a plane as their boundary, a long uniform heating element (hereinafter simply referred to as the heating element) is perpendicular to the boundary. Consider the temperature distribution inside or on the surface of the heating element when it is placed in the heating element.

第1図は液体又は粉粒体の領域Iと気体の領域
が境界面2で接しており、この境界面に垂直に
加熱体1を配置した模式図である。
FIG. 1 is a schematic diagram in which a region I of liquid or granular material and a region of gas are in contact with each other at a boundary surface 2, and a heating element 1 is arranged perpendicularly to this boundary surface.

第2図は第1図における温度分布の例を示して
あり、実線のa,bおよび破線の3,4は加熱体
の垂直方向の温度分布である。
FIG. 2 shows an example of the temperature distribution in FIG. 1, and solid lines a and b and broken lines 3 and 4 indicate the temperature distribution in the vertical direction of the heating element.

図において、加熱体の発熱量は長さ方向にわた
つて一様になるように製作されているものとす
る。
In the figure, it is assumed that the heating element is manufactured so that the amount of heat generated is uniform in the length direction.

加熱体が発熱しない状態では例えば、第2図の
破線3,4で示すように外部の温度場によつて定
まる温度分布として加熱体の温度は定まる。加熱
体全体が一様な温度分布3である場合もあれば、
4のように温度変化を有する場合も考えられる。
When the heating element does not generate heat, the temperature of the heating element is determined by the temperature distribution determined by the external temperature field, for example, as shown by broken lines 3 and 4 in FIG. In some cases, the entire heating body has a uniform temperature distribution3,
A case in which there is a temperature change as in 4 is also conceivable.

この状態から、次に加熱体表面か適当な熱量を
発するようにする。パルス状に発熱させても、ス
テツプ状に発熱させても良い。
From this state, an appropriate amount of heat is then emitted from the surface of the heating element. The heat may be generated in pulses or in steps.

理解を容易にするためにある時間から一定のス
テツプ加熱をするようにし、定常状態に達した時
の加熱体の温度分布は同図の実線で示したaやb
のような分布が考えられる。すなわち、加熱によ
つて温度上昇した分は同図ではa−3やb−4で
与えられ、領域との物質の熱伝導率や熱伝達
率が異なれば、境界面近傍で加熱体の温度分布ほ
急激な変化すなわち変曲部を呈する。逆にいえ
ば、加熱体の温度分布を測定し、急激な温度変化
を与える変曲部に境界面が存在し、したがつて領
域の高さ(境界面)が知られる。
To make it easier to understand, heating is performed in fixed steps starting from a certain time, and the temperature distribution of the heating element when a steady state is reached is shown by solid lines a and b in the same figure.
A distribution like this is possible. In other words, the temperature increase due to heating is given by a-3 and b-4 in the same figure, and if the thermal conductivity and heat transfer coefficient of the material with the region differ, the temperature distribution of the heating body near the interface will change. It exhibits a rather abrupt change, that is, an inflection point. In other words, by measuring the temperature distribution of the heating element, there is a boundary surface at the inflection section where a sudden temperature change occurs, and therefore the height of the region (boundary surface) is known.

上述において、境界面の位置を知るために、加
熱体の加熱前と加熱後の温度分布同志の差をとつ
たのは、例えば第3図に示すように加熱前の温度
分布がたまたま同図の破線5のような分布であつ
て、加熱した後の温度分布が同図実線cのように
略一様となる可能性があることを考慮したためで
ある。すなわち、cの温度分布の状態からはどこ
に境界面が存在するのか判定が難しい。しかし、
加熱前の温度分布5と加熱後の温度分布cとの差
c−5をとれば確かに温度変化は生ずる。
In the above, in order to find the position of the boundary surface, the difference between the temperature distribution of the heating element before and after heating was calculated because, for example, as shown in Figure 3, the temperature distribution before heating happened to be along the broken line in the same figure. This is because considering the possibility that the temperature distribution after heating may become substantially uniform as shown in the solid line c in the figure. That is, it is difficult to determine where the boundary surface exists from the state of the temperature distribution of c. but,
If we take the difference c-5 between the temperature distribution 5 before heating and the temperature distribution c after heating, a temperature change will certainly occur.

この推定から本測定原理では必ず加熱していな
いときの加熱体の温度分布と加熱後の加熱体の温
度分布との差をもつて境界面の位置を求める方式
を採用する。
Based on this estimation, in this measurement principle, a method is always adopted in which the position of the boundary surface is determined by the difference between the temperature distribution of the heating element when it is not heated and the temperature distribution of the heating element after heating.

上述の説明は定常状態における加熱体の温度分
布から領域の面レベルを求める方法についてで
あつたが、定常状態に達する前、すなわち過渡状
態においても加熱体の加熱前の温度とその過渡時
点での温度との差をとることによつて領域の面
レベルが知られる。この場合、過渡状態の温度分
布を決定する領域との物体の熱物性値は熱拡
散率が支配的であると考えられる。また、過渡状
態における測定方法として加熱体からの発熱をパ
ルス状にして実施することもできる。
The above explanation was about the method of determining the surface level of the region from the temperature distribution of the heating element in a steady state, but even before the steady state is reached, that is, in a transient state, the temperature before heating the heating element and the temperature at that transition point are By taking the difference from the temperature, the surface level of the area is known. In this case, it is considered that the thermal diffusivity is dominant in the thermophysical property value of the object in the region that determines the temperature distribution in the transient state. Furthermore, as a measurement method in a transient state, the heat generation from the heating body can be carried out in a pulsed manner.

次に本測定装置の用途の大半を占めると考えら
れる液面の高さを求める場合、すなわち領域の
物体が石油や炭化水素系有機液体、水溶液のよう
な液体で、領域の物体は空気や充填ガス等の気
体である場合の加熱体の温度分布と液面との関係
について説明する。
Next, when determining the height of the liquid level, which is considered to be the majority of uses for this measuring device, in other words, when the object in the area is a liquid such as petroleum, hydrocarbon-based organic liquid, or aqueous solution, the object in the area is air or a liquid filled with water. The relationship between the temperature distribution of the heating body and the liquid level when the heating body is a gas such as gas will be explained.

加熱体が発熱している時の加熱体の温度分布は
定常状態、非定常状態いずれにおいても、領域
の液体は加熱によつて対流が生じ、第4図に示す
ように得体の表面層で温度が上昇する。この現象
は風呂を沸かしている時に身近に経験することで
ある。
The temperature distribution of the heating element when the heating element is generating heat, whether in a steady state or an unsteady state, is caused by convection in the liquid in the area due to heating, and as shown in Figure 4, the temperature at the surface layer of the heating element increases. rises. This phenomenon is often experienced when boiling a bath.

すなわち、加熱体の温度分布から境界面を求め
る場合、熱伝導率の高い液体の内部(部分C)の
温度分布は一様になるが、温度上昇点Aは必ず液
体内部に生ずる。従つて、点Aから境界面を求め
るとΔlだけ液面の低い評価をすることになる。
That is, when determining the boundary surface from the temperature distribution of the heating body, the temperature distribution inside the liquid (portion C) with high thermal conductivity becomes uniform, but the temperature rise point A always occurs inside the liquid. Therefore, if the boundary surface is determined from point A, the liquid level will be evaluated as low by Δl.

これに対して、点Bから境界面を求めることが
できれば正しく評価できるが、点Bは温度変化の
中の点であり、この点を見出すことは難しいと思
われる。この問題解決には加熱体からの発熱量を
変えて、それぞれについて温度分布を求め、その
温度変化から数値解析する方法などが考えられる
が、液体や気体の熱物性値を知る必要が生ずる。
したがつて、実用的には加熱体の温度変化が検知
可能な程度の小さい温度上昇で測定することがキ
ーポイントである。
On the other hand, if the boundary surface can be found from point B, accurate evaluation can be made, but since point B is a point in the temperature change, it seems difficult to find this point. A possible solution to this problem would be to vary the amount of heat generated by the heating element, find the temperature distribution for each, and perform numerical analysis based on the temperature changes, but this would require knowing the thermophysical properties of the liquid or gas.
Therefore, in practical terms, the key point is to measure the temperature at a temperature increase that is small enough to detect a temperature change in the heating element.

また、A点から求める場合は必ず液面が低くな
ることを考慮して、対象となる液体や加熱方法が
定まつた時には測定した液面に補正値(Δl)を
加えることによつて正しい液面が知られる。
Also, considering that the liquid level will always be lower when calculating from point A, when the target liquid and heating method are determined, the correct liquid level can be determined by adding a correction value (Δl) to the measured liquid level. The face is known.

以上の対流による液面評価の誤差については、
粉粒体の量面を求める場合においても粉粒体に空
気などの気体が含まれるので同様の考慮が必要で
ある。なお、液体が撹拌されているような強制対
流の状態では上述の対流の影響は無視できるの
で、可能ならば液体を撹拌状態として測定するこ
とも高精度測定につながる。
Regarding the error in liquid level evaluation due to the above convection,
Similar consideration is required when determining the amount of powder or granules, since the powder or granules contain gases such as air. Note that in a forced convection state where the liquid is stirred, the effect of the above-mentioned convection can be ignored, so if possible, measuring the liquid while it is in an agitated state also leads to highly accurate measurements.

3.4.2 測定方法と装置の構造 上述の原理を満足する測定方法と装置の構造お
よび構成について記述する。
3.4.2 Measurement method and device structure This section describes the measurement method and structure and configuration of the device that satisfies the above principles.

本発明で用いる加熱体の形状は細長い円筒状ヒ
ータ、線状ヒータ又は平板状ヒータ等であつて、
いずれも均熱加熱体である。使用する量面検出素
子の本数は、第1の方法発明では1本であり、第
2の方法発明では複数本である。第1の方法発明
では1本の量面検出素子を使用しているので、こ
の検出素子の加熱体の加熱前と加熱後の長手方向
の同一レベル同志の温度差分布を求める。また加
熱の方法は、ステツプ状またはパルス状となり、
連続加熱することはできない。第2の方法では複
数本の量面検出素子を使用するので、その内少な
くとも1本ずつは加熱する発熱用と加熱しない参
照用とし、参照用は、発熱用と同一構造のものを
非加熱状態で温度分布測定用として用いる。発熱
用量面検出素子と参照用量面検出素子は発熱用加
熱体の発熱によつて参照用加熱体が影響を受けな
いように、ある程度距離を離して配置し、発熱用
加熱体の加熱方法には連続加熱も使用できる。
The shape of the heating body used in the present invention is an elongated cylindrical heater, a linear heater, a flat plate heater, etc.
Both are uniform heating bodies. The number of quantitative surface detection elements used is one in the first method invention, and a plurality of quantitative surface detection elements in the second method invention. Since the first method uses one quantitative surface detection element, the temperature difference distribution of the same level in the longitudinal direction of the heating body of this detection element before and after heating is determined. In addition, the heating method is stepwise or pulsed.
Continuous heating is not possible. In the second method, multiple quantitative surface detection elements are used, so at least one of them is used for heating and one for reference. It is used for temperature distribution measurement. The heat generation amount surface detection element and the reference amount surface detection element are placed at a certain distance apart so that the reference heating element is not affected by the heat generated by the heat generation heating element. Continuous heating can also be used.

次に加熱体すなわちヒータの温度分布を測定す
る測温素子は正側素線又は負側素線を共通にした
多枝式熱電対、通常の熱電対、差動熱電対、測温
抵抗体またはサーミスタを用いる。そして多枝式
熱電対では熱電対素線をヒータ線と兼用して、交
流電源から一定熱量を発熱させ、測温点の温度あ
るいは測温点間の温度差を直流電圧として検出す
ることもできる。
Next, the temperature measuring element that measures the temperature distribution of the heating body, that is, the heater, is a multi-branched thermocouple with a common positive or negative wire, a normal thermocouple, a differential thermocouple, a resistance thermometer, or Use a thermistor. In multi-branched thermocouples, the thermocouple wire is also used as a heater wire to generate a certain amount of heat from an AC power source, and the temperature at a temperature measurement point or the temperature difference between temperature measurement points can be detected as a DC voltage. .

上述の加熱体すなわちヒータと測温素子とを組
み合せて量面検出素子であるセンサを構成する
が、その構成例と構造を第5図に示している。第
5図イは螺旋状のヒータ7の表面に測温素子6を
配置し、アルミナ粉やマグネシア粉等の充填材1
1を充填して、高分子材料やステンレス等の被覆
材10で全体を被覆して細長い円筒状のセンサ2
5を構成している。同図ロは図イのヒータが線状
の場合である。同図ハは平板状均熱ヒータ9の一
方の表面に測温素子6を、他方の面には断熱材2
4を配置し、全体を被覆材10で被覆して平板状
のセンサを構成している。同図ニは図イでヒータ
7の内部に測温素子6を配置してセンサ25を構
成している。同図ホはステンレスパイプなどをヒ
ータとして用いた場合の円筒状のヒータ7の内部
に測温素子6を配置してセンサ25を構成してい
る。同図ヘは測温素子とヒータを兼用したヒータ
兼測温素子8を用いてセンサ25を構成してい
る。
The above-mentioned heating body, that is, the heater, and the temperature measuring element are combined to constitute a sensor which is a quantitative surface detecting element, and an example of its configuration and structure are shown in FIG. In Fig. 5A, a temperature measuring element 6 is arranged on the surface of a spiral heater 7, and a filler 1 such as alumina powder or magnesia powder is used.
1, and the entire body is covered with a coating material 10 such as a polymeric material or stainless steel to form an elongated cylindrical sensor 2.
5. Figure B shows the case where the heater in Figure A is linear. In the same figure, a temperature measuring element 6 is mounted on one surface of a flat plate-shaped uniform heater 9, and a heat insulating material 2 is mounted on the other surface.
4 are arranged and the whole is covered with a covering material 10 to constitute a flat sensor. 2 shows a sensor 25 in which a temperature measuring element 6 is arranged inside a heater 7 as shown in FIG. In the figure (E), a sensor 25 is constructed by arranging a temperature measuring element 6 inside a cylindrical heater 7 when a stainless steel pipe or the like is used as the heater. In the figure, a sensor 25 is constructed using a heater/temperature measuring element 8 that serves both as a temperature measuring element and a heater.

次にセンサの表面放射率を支配する塗装色につ
いて説明する。
Next, the coating color that governs the surface emissivity of the sensor will be explained.

センサからの熱が気体中へ放散される時は対流
伝熱と放射伝熱とによつて伝達される。センサ表
面の放射率を例えば金属光沢、鏡面仕上げ面など
のように小さくしておくと、センサからの発熱量
が小さくても、気体側に存在する部位のセンサの
温度上昇は大きくなり、前述の急激に温度変化す
る変曲部から液面または粉粒体面を検知する場合
に有利となる。ただし長期間使用する場合にはセ
ンサ表面の汚れが発生し、その放射率は大きくな
ることが想定されるので、測定対象に応じてこの
放射率を小さくするために、塗装や鏡面仕上げや
酸化による発色などのセンサ表面の処理を考慮す
る必要がある。
When heat from the sensor is dissipated into the gas, it is transferred by convection and radiation heat transfer. If the emissivity of the sensor surface is made low, such as with a metallic or mirror-finished surface, even if the amount of heat generated from the sensor is small, the temperature rise of the sensor on the gas side will be large, resulting in the above-mentioned problem. This is advantageous when detecting the liquid level or powder surface from a curved part where the temperature changes rapidly. However, if the sensor is used for a long period of time, it is assumed that dirt will occur on the sensor surface and the emissivity will increase. It is necessary to consider sensor surface treatments such as color development.

また、上述の点を踏まえ、汚れによつて放射率
が必ず大きくなることから、逆にセンサ表面を放
射率εが大(たとえばε=0.9〜0.95)となるよ
うに予め塗装、酸化処理等を行なつておくことも
長期間、安定に測定する上からは必要である。
In addition, based on the above points, since the emissivity always increases due to dirt, it is necessary to paint or oxidize the sensor surface in advance so that the emissivity ε becomes large (for example, ε = 0.9 to 0.95). It is also necessary to carry out this procedure in order to ensure stable measurement over a long period of time.

次にヒータを加熱する電源としては直流又は交
流の安定化電源を用いる必要がある。測温素子の
各温接点の温度を測定する測定器としては、デイ
ジタル温度計、デイジタル電圧計、データロギン
グメータ等を用いることができる。そしてこれら
の測定器で各測温点の温度を測定して、そのデー
タから加熱時と加熱していない時の温度差分布を
求めるのも一法であるが、測定器の出力を演算器
に入力して温度分布や温度差分布を演算してその
分布のパターンを表示すると好都合である。
Next, as a power source for heating the heater, it is necessary to use a stabilized DC or AC power source. A digital thermometer, digital voltmeter, data logging meter, or the like can be used as a measuring device for measuring the temperature of each hot junction of the temperature measuring element. One method is to measure the temperature at each temperature measurement point with these measuring instruments and use that data to determine the temperature difference distribution between heating and non-heating, but it is also possible to It is convenient to input the information, calculate the temperature distribution or temperature difference distribution, and display the pattern of the distribution.

量面検出素子の取付け方法については、液体ま
たは粉粒体に直接挿入させてもよいし、液体また
は粉粒体を入れる容器の表面に貼着することもで
きる。
Regarding the mounting method of the quantitative surface detection element, it may be directly inserted into the liquid or powder, or it may be attached to the surface of a container containing the liquid or powder.

3.4.3 実施例 本発明の方法および装置を、その一実施態様に
よつて、以下詳説する。
3.4.3 Examples The method and apparatus of the present invention will be described in detail below according to one embodiment thereof.

使用したセンサの構造を第6図aに示す。同図
において、均熱加熱体は平板状であり、測温素子
はコンスタンリボン線13の熱電対素線1本を共
通線とし、対をなすクロメルリボン線12の熱電
対線多数本を一定間隔で溶接した多枝式熱電対で
ある。また、センサの断面形状は面ヒータ17の
一方の表面に均熱用アルミ板15、ポリイミド粘
着シート16、多枝式CRC熱電対を順番に配置
し、さらに全体をポリイミド粘着シート16で被
覆している。この構造のセンサを2ケ使用した。
同図bはヒータに直流安定化電源を接続し、多枝
式熱電対がデイジタルロギングメータに接続され
ている回路図を示している。
The structure of the sensor used is shown in Figure 6a. In the figure, the uniform heating body is in the shape of a flat plate, and the temperature measuring element uses one thermocouple wire of the constant ribbon wire 13 as a common wire, and a number of thermocouple wires of the chromel ribbon wire 12 forming a pair are arranged at regular intervals. This is a multi-branched thermocouple welded with In addition, the cross-sectional shape of the sensor is such that an aluminum plate 15 for soaking heat, a polyimide adhesive sheet 16, and a multi-branched CRC thermocouple are arranged in this order on one surface of the surface heater 17, and the whole is further covered with a polyimide adhesive sheet 16. There is. Two sensors with this structure were used.
Figure b shows a circuit diagram in which a DC stabilized power source is connected to the heater, and a multi-branched thermocouple is connected to a digital logging meter.

次にセンサ2ケのうち一方を加熱用、他方を参
照用(加熱しないで、温度分布を検出するセン
サ)とし、各熱電対接点が加熱用、参照用各々同
レベルとなるように、そして両センサの距離は約
50mmの間隔となるように配置した。この距離は余
り近づけると加熱による温度上昇の影響が参照側
の温度分布に生ずるので注意を要するが、30mm〜
200mm程度が適当と思われる。
Next, use one of the two sensors for heating and the other for reference (a sensor that detects temperature distribution without heating), and make sure that the thermocouple contacts are at the same level for both heating and reference. The sensor distance is approx.
They were arranged at 50mm intervals. If this distance is too close, the influence of temperature rise due to heating will occur on the temperature distribution on the reference side, so care must be taken, but from 30 mm to
Approximately 200mm seems appropriate.

実験状態の概略を第7図に示す。 Figure 7 shows an outline of the experimental conditions.

同図において、プラスチツク製容器19の中
に、固定具18で連結した参照用センサ20と加
熱用センサ21を入れた。
In the figure, a reference sensor 20 and a heating sensor 21 connected by a fixture 18 were placed in a plastic container 19.

レベル検知用の対象物質としては一例として液
体は水道水、粉粒体はアルミナ粉を選択し使用し
た。
As target substances for level detection, tap water was selected as the liquid, and alumina powder was selected as the powder.

温度の測定器としては昭和電工(株)製MC−Lデ
ータロギングメータを、また加熱電源としては直
流安定化電源を使用した。
A MC-L data logging meter manufactured by Showa Denko Co., Ltd. was used as a temperature measuring device, and a DC stabilized power source was used as a heating power source.

温度分布の測定に際してはデータロギングメー
タの計測精度は0.1℃と極めて良く接点1〜接点
9をもつCRC熱電対を測温素子として各々計測
し、温度分布を求めた。なお、温度分布の計測方
法として、接点1の温度を求め、あとは接点1と
2、接点2と3、…と各々の温度差を差動熱電対
として取扱つて求めても良い。
When measuring the temperature distribution, the measurement accuracy of the data logging meter was very good at 0.1°C. CRC thermocouples having contacts 1 to 9 were used as temperature measuring elements to measure the temperature distribution. In addition, as a method of measuring the temperature distribution, the temperature of contact 1 may be determined, and then the temperature difference between contacts 1 and 2, contacts 2 and 3, etc. may be treated as a differential thermocouple.

この装置を用いて水のレベルの測定を実施し
た。測温点間の間隔の大きさと測定される水位と
の関係、すなわち検出誤差を調べる目的から、水
位をかえて実験1〜実験4として測定した。これ
らの実験の状態を第8図〜第11図として示す。
Water level measurements were carried out using this device. For the purpose of investigating the relationship between the distance between temperature measurement points and the measured water level, that is, the detection error, experiments 1 to 4 were conducted with different water levels. The conditions of these experiments are shown in FIGS. 8 to 11.

第8〜11図において、4C〜15Sは接点番
号、20は参照用センサ、21は加熱用センサで
ある。
In FIGS. 8 to 11, 4C to 15S are contact numbers, 20 is a reference sensor, and 21 is a heating sensor.

ヒータへの投入電力は12Wであり、センサの両
面へ放熱されるので、単位面積当りの熱流密度は
約270W/m2として実験した。
The power input to the heater was 12 W, and the heat was radiated to both sides of the sensor, so the heat flow density per unit area was set to about 270 W/m 2 in the experiment.

(イ) 実験1によつて得られた結果を第12図に示
す。第12図の結果において、曲線1は加熱側
センサから発熱していない状態において加熱側
センサの接点温度とその接点と同レベルの参照
側の接点の温度(例えば1と10、5と14など)
との差を示す。本来0℃となるべきところ±
0.5℃程度のバラツキがある。この原因は水や
空気の温度むらや、熱電対の熱起電力差(熱電
対素線のバラツキ)、測定器として用いたデー
タロギングメータの入力接点(冷接点)の温度
が均一でないことなどによるものと考えられ
る。
(b) The results obtained in Experiment 1 are shown in Figure 12. In the results shown in Figure 12, curve 1 shows the contact temperature of the heating side sensor and the temperature of the reference side contact at the same level as that contact (for example, 1 and 10, 5 and 14, etc.) when no heat is generated from the heating side sensor.
shows the difference between Where it should be 0℃±
There is a variation of about 0.5℃. This is caused by uneven temperature of water or air, differences in thermoelectromotive force between thermocouples (variations in thermocouple wires), and uneven temperatures at the input contacts (cold junctions) of the data logging meter used as a measuring device. considered to be a thing.

曲線2は加熱側から投入電力12Wで発熱させ
たときの加熱側の表面温度分布および発熱して
いない参照側の表面温度を示す。
Curve 2 shows the surface temperature distribution on the heating side when heat is generated from the heating side with an input power of 12 W, and the surface temperature on the reference side where no heat is generated.

曲線3は曲線2に対して(加熱側温度−参照
側温度)を求めた曲線である。これらの曲線か
ら水位を求める方法について以下に述べる。
Curve 3 is a curve obtained by calculating (heating side temperature - reference side temperature) with respect to curve 2. The method for determining the water level from these curves is described below.

() 曲線3から水位を求めるには接点6、
7、8、9の温度が略一定であることから、
接点6の近傍の変曲部に水位のあることがわ
かる。
() To find the water level from curve 3, use tangent point 6,
Since the temperatures at points 7, 8, and 9 are approximately constant,
It can be seen that there is a water level at the inflection part near the contact point 6.

() さらに、精密に求めるためには曲線3の
接点3、4、5の温度上昇度ΔTと高さ(仮
に高さxで代用する)の関係を例えば ΔT=ax2+bx+c ……(1) で近似し、ΔTが接点6、7、8、9の位置
の平均値(第12図ではΔT=1.2℃)となる
xの値を求める。
() Furthermore, in order to obtain more precisely, the relationship between the degree of temperature rise ΔT and the height (temporarily substituted by height x) at contact points 3, 4, and 5 of curve 3 is, for example, ΔT=ax 2 +bx+c ……(1) Then, calculate the value of x at which ΔT becomes the average value of the positions of contact points 6, 7, 8, and 9 (ΔT=1.2°C in FIG. 12).

第12図の曲線3からxとΔTの関係を読
みとり、(1)式に代入してa,b,cを求める
と ΔT=−1.04x2+7.77x+1.09 ……(2) となり、ΔT=1.2℃の時のxの値を求めると x=0.014 を得る。すなわち接点6の位置から0.014×
40mm≒0.6mm上に水位のあることが測定され
る。なお、近似式は2次式でなく3次式等を
用いても良い。
Reading the relationship between x and ΔT from curve 3 in Figure 12 and substituting it into equation (1) to find a, b, c, we get ΔT=-1.04x 2 +7.77x+1.09...(2), and ΔT When we find the value of x when = 1.2℃, we get x = 0.014. In other words, 0.014× from the position of contact 6
It is measured that the water level is 40mm≒0.6mm above. Note that the approximate expression may be a cubic expression instead of a quadratic expression.

() 次に、さらに厳密に求めるためには曲線
1の0温度レベルのバラツキの補正を行な
う。すなわち(曲線3−曲線1)によつて補
正された温度上昇度ΔTを用いて上述()
で述べた手法によつて水位を求める。
() Next, in order to obtain more precisely, the variation in the 0 temperature level of curve 1 is corrected. In other words, using the temperature rise ΔT corrected by (curve 3 - curve 1), the above ()
Determine the water level using the method described in .

() ()()で求めると前述の原理3.4.1
項の第4図で説明したように実際の水位より
低い水位となる。このことが第12図で実際
に示された。こ補正方法としては予備実験が
必要となるが、水位が接点と同レベルにある
ときの誤差を予め求めておいて、その値で補
正するか、または見当としては接点間のスパ
ン(40mm)の半分値を()()()で求
めた値に加えることなどが考えられる。この
点については実験2〜実験4の結果も含め後
で説明する。
() () () The above principle 3.4.1
The water level will be lower than the actual water level, as explained in Figure 4 in Section 2. This is actually shown in FIG. This correction method requires preliminary experiments, but it is best to calculate the error when the water level is at the same level as the contact point and use that value to correct it, or as a rough guide, it is best to calculate the error when the water level is at the same level as the contact point. One possibility is to add the half value to the value obtained by () () (). This point will be explained later, including the results of Experiments 2 to 4.

(ロ) 実験2によつて得られた結果を第13図に示
す。水位が接点5と6(参照側接点では14と15)
の間にあつて、接点6の上30mmに位置する場合
の実験結果である。加熱後定常状態となつた曲
線3で示した5つのデータは良く一致した結果
を与えている。これらの結果をもとに2次式近
似ΔT=ax2+bx+cから実験1の場合と同様
に、定数a,b,cを定め、ΔT=1℃を与え
るxを求めるとx=0.03を得る。すなわち、測
定レベルは接点6の上1mmの位置となり、実際
よりも29mm低い位置を指示する。
(b) The results obtained in Experiment 2 are shown in Figure 13. The water level is at contacts 5 and 6 (14 and 15 on the reference side)
These are the experimental results when the contact point 6 is located 30 mm above the contact point 6. The five data shown by curve 3, which reached a steady state after heating, give results that are in good agreement. Based on these results, constants a, b, and c are determined from the quadratic equation approximation ΔT=ax 2 +bx+c in the same way as in Experiment 1, and x that gives ΔT=1° C. is determined to obtain x=0.03. That is, the measurement level is 1 mm above the contact point 6, indicating a position 29 mm lower than the actual position.

なお、上述の誤差は接点間隔がもつと狭くな
れば水位の存在する近傍での温度分布が明瞭に
なり、従つて小さい誤差での測定が可能とな
る。
It should be noted that the above-mentioned error becomes narrower as the distance between the contacts becomes narrower, and the temperature distribution in the vicinity of the water level becomes clearer, thus making it possible to measure with a smaller error.

(ハ) 次に、実験3において得られた結果を第14
図に示す。水位が接点514と同レベルであつ
て、空気と水の温度が略等しい状態で測定した
結果である。実験1、2と同様にΔTとxの関
係を2次式近似して水位を求めると接点6の上
27mmの位置として評価される。すなわち、接点
と水位が同レベルのとき、測定レベルは水中下
13mmとなることがわかつた。この誤差はセンサ
からの発熱量、液体、気体の熱物性値によつて
定まるので、測定対象(液体と気体)が定まれ
ば、発熱量と測定される水中下の距離とを予め
求めておけば、補正値として利用できる。
(c) Next, the results obtained in Experiment 3 are applied to the 14th experiment.
As shown in the figure. This is the result of measurement when the water level is at the same level as the contact point 514 and the air and water temperatures are approximately equal. As in Experiments 1 and 2, when the water level is determined by quadratic approximation of the relationship between ΔT and x, the water level is found above contact point 6.
Rated as 27mm position. In other words, when the contact and the water level are at the same level, the measurement level is below the water level.
It turned out to be 13mm. This error is determined by the amount of heat emitted from the sensor and the thermophysical properties of the liquid and gas, so once the object to be measured (liquid and gas) is determined, the amount of heat generated and the distance underwater to be measured must be calculated in advance. For example, it can be used as a correction value.

(ニ) さらに、実験4においては加熱前の液体、気
体が一様温度ではなく、例えば液体温度が低
く、気体温度が高い状態で液面を評価する場合
の測定誤差を評価する目的で行なつた実験であ
る。第15図に得られた結果を示す。第15図
から求められる水位は水面下18mmとなり、実験
3結果と良い一致を見る。
(d) Furthermore, in Experiment 4, the liquid and gas before heating were not at uniform temperature; for example, the purpose was to evaluate measurement errors when evaluating the liquid level when the liquid temperature was low and the gas temperature was high. This is an experiment. Figure 15 shows the results obtained. The water level determined from Figure 15 is 18 mm below the water surface, which is in good agreement with the results of Experiment 3.

以上の測定結果の誤差をまとめて示すと以下
の如くとなる。
The errors in the above measurement results are summarized as follows.

実験1では測定レベルは実際の水位より−19
mm(水中下の意味) 実験2では測定レベルは実際の水位より−29
mm(水中下の意味) 実験3と4では測定レベルは実際の水位より
−13mm、−18mm(水中下の意味) そして、この結果をまとめると以下の如く言
える。
In experiment 1, the measured level was -19 below the actual water level.
mm (meaning under water) In Experiment 2, the measured level was -29 below the actual water level.
mm (meaning under water) In Experiments 3 and 4, the measured levels were -13 mm and -18 mm (meaning under water) from the actual water level.The results can be summarized as follows.

(a) この結果からまず、接点間隔が40mmである
本センサの場合にはその間隔の範囲以内の誤
差でレベルが求まる。
(a) From this result, first, in the case of this sensor where the contact spacing is 40 mm, the level can be found with an error within the range of that spacing.

(b) 第4図と上述の結果から明らかなように、
本熱式レベル検出では必ず液面下のレベル推
定となることを勘案して、接点と液体が同レ
ベル時の誤差すなわち実験3、4の結果の平
均値15mmを補正値として使用すると 実験1では−19+15=−4mmの誤差 実験2では−29+15=−14mmの誤差 実験3、4では−13+15=+2mm、−18+
15=−3mmの誤差 となり、接点間隔の半分値20mm以内の測定誤
差でレベルが求められる。
(b) As is clear from Figure 4 and the above results,
Considering that this thermal level detection always estimates the level below the liquid surface, we used the error when the contact and the liquid were at the same level, that is, the average value of 15 mm of the results of Experiments 3 and 4, as the correction value. -19+15=-4mm error In Experiment 2 -29+15=-14mm error In Experiments 3 and 4 -13+15=+2mm, -18+
The error is 15=-3mm, and the level can be determined with a measurement error within 20mm of the half value of the contact spacing.

次に粉粒体のレベルすなわち量面の検知実
験として、アルミナ粉(昭和電工(株)製A−1
品)を被試験材料として選び、実験5、6を
行なつた。実験内容を第16,17図に示
す。
Next, as an experiment to detect the level or quantity of powder and granules, alumina powder (A-1 manufactured by Showa Denko Co., Ltd.) was tested.
Experiments 5 and 6 were carried out by selecting the material to be tested. The details of the experiment are shown in Figures 16 and 17.

第16図、第17図において4S〜17C
は接点番号、2は境界面、20は参照用セン
サ、21は加熱用センサ、22は空気、23
はアルミナ粉である。
4S to 17C in Figures 16 and 17
is a contact number, 2 is an interface, 20 is a reference sensor, 21 is a heating sensor, 22 is air, 23
is alumina powder.

ヒータへの投入電力は27Wであり、センサ
の両面へ放熱されるので、単位面積当りの熱
流密度は約600W/m2である。
The power input to the heater is 27W, and the heat is radiated to both sides of the sensor, so the heat flow density per unit area is approximately 600W/ m2 .

(ホ) 実験5によつて得れた結果を第18図に示
す。第18図は発熱後充分時間が経過して定常
状態となつた時の1つのデータを示す。
(e) The results obtained in Experiment 5 are shown in FIG. FIG. 18 shows one piece of data when a steady state is reached after a sufficient period of time has elapsed after heat generation.

曲線1は加熱側のセンサから発熱していない
状態において、加熱側センサの接点温度から、
その接点と同レベルにある参照側の接点温度
(例えば5Sと14Sの組合わせ)を引いた値
を示す。本来0℃となるべきところ±0.5℃程
度のバラツキがある。
Curve 1 shows the contact temperature of the heating side sensor when no heat is generated from the heating side sensor.
It shows the value obtained by subtracting the reference side contact temperature (for example, a combination of 5S and 14S) that is at the same level as that contact. There is a variation of about ±0.5°C where it should be 0°C.

曲線3は投入電力27Wで加熱側から発熱して
いるときの加熱側の温度分布と発熱していない
参照側の温度分布において、(加熱側温度−参
照側温度)を求めた曲線であり、 さらに曲線4は(曲線3−曲線1)、 すなわち、 〔加熱側から発熱時の(加熱側の温度−参照側
の温度)〕−〔加熱側から発熱していない時の
(加熱側の温度−参照側の温度)〕 ……(3) の温度分布を示す。
Curve 3 is a curve obtained by calculating (heating side temperature - reference side temperature) between the temperature distribution on the heating side when heat is being generated from the heating side with input power of 27W and the temperature distribution on the reference side where no heat is being generated. Curve 4 is (Curve 3 - Curve 1), that is, [When heat is generated from the heating side (temperature on the heating side - temperature on the reference side)] - [When no heat is generated from the heating side (temperature on the heating side - reference side)] side temperature)] …(3) shows the temperature distribution.

(3)式において、加熱側から発熱している時も発
熱していないときも、参照側の温度分布が変わら
ないときは、結果として加熱側の「発熱時と発熱
前」の温度差を与えることとなり、参照用センサ
を設置する意味がなくなるが、加熱を始めて一定
状態となるまでに室温の変化によつて、発熱して
いない参照側温度も変化し、あるいは加熱側セン
サの発熱の影響が参照側センサの温度分布に若干
及ぶことが考えられ、従つて(3)式による0温度レ
ベルの補正が有効となることがわかつた。
In equation (3), if the temperature distribution on the reference side does not change whether heat is being generated from the heating side or not, the result will be the temperature difference between "when heating and before heating" on the heating side. Therefore, there is no point in installing a reference sensor, but the temperature on the reference side, which is not generating heat, may also change due to changes in the room temperature before heating starts and reaches a constant state, or the temperature on the reference side, which is not generating heat, may change, or the temperature on the reference side, which is not generating heat, may be affected by the heat generation of the heating side sensor. It is thought that the temperature distribution of the reference side sensor may be slightly affected, and therefore, it has been found that correction of the 0 temperature level using equation (3) is effective.

第18図の結果からアルミナのレベルは接点5
Sか接点6S、あるいはその間にあることが推定
できる。実際のアルミナ面と得られた曲線3、曲
線4の温度分布とを対比して検討すると、前述し
たアルミナ粉の中に存在する空気の対流によるア
ルミナ面近傍における影響が考えられる。
From the results in Figure 18, the alumina level is contact point 5.
It can be inferred that the contact point 6S or contact point 6S is present, or somewhere in between. Comparing and examining the temperature distribution of the actual alumina surface and the obtained curves 3 and 4, it can be considered that the effect near the alumina surface is due to the convection of air existing in the alumina powder described above.

ここでは、接点地位6S,7S,8S,9Sの
曲線と接点位置4S,5Sとの直線の交点として
アルミナ面位を求めると実際のアルミナ面より5
〜10mm上の位置にあるように求まる。
Here, if the alumina surface position is determined as the intersection of the curves of contact positions 6S, 7S, 8S, and 9S and the straight lines of contact positions 4S and 5S, 5
It is found to be at a position ~10mm above.

(ヘ) 実験6によつて得られた結果を第19図に示
す。温度分布から推定するとアルミナ面は接点
6Sと接点7Sの間に存在することがわかる。
そして、更に第19図における結果、すなわち
空気側の温度分布より1〜2℃高めの位置にア
ルミナ面の存在することが予めわかつていれ
ば、実際のアルミナ面に比して、求まるアルミ
ナ面は10〜15mm上の位置として測定される。
(F) The results obtained in Experiment 6 are shown in FIG. 19. Estimating from the temperature distribution, it can be seen that the alumina surface exists between the contact points 6S and 7S.
Furthermore, if it is known in advance that the alumina surface exists at a position 1 to 2 degrees Celsius higher than the temperature distribution on the air side, the result shown in Figure 19 is that the alumina surface found is Measured as 10-15mm above.

以上2つの実験からアルミナのような粉体にお
いても、接点間隔が40mmである本センサを用いる
ことによつて、そのレベルは±15mm以内の誤差で
求まることがわかつた。
From the above two experiments, it was found that even for powders such as alumina, by using this sensor with a contact spacing of 40 mm, the level can be determined with an error of within ±15 mm.

3.5 本発明の効果 本発明は上述のような構成となつているので、
安価な素材でセンサを製作でき、厳密な較正を必
要とせず、また可動部分もないので故障も少な
い。さらにセンサは被覆材に金属を用いることに
よつて防爆構造とすることができ、容器の外側表
面にセンサを貼着して量面を検出することもでき
る。
3.5 Effects of the present invention Since the present invention is configured as described above,
The sensor can be made from inexpensive materials, does not require strict calibration, and has no moving parts, so it is less likely to break down. Furthermore, the sensor can be made explosion-proof by using metal as the covering material, and the sensor can also be attached to the outer surface of the container to detect the quantity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理の説明図、第2図は加熱
体の温度分布の説明図、第3図は加熱前後の加熱
体の温度分布の想定図、第4図は加熱体の温度分
布と液面との関係図、第5図はセンサの構造例示
図。第6図はセンサの構造図と測定回路図、第7
図は実施例実験装置の概要図、第8図〜第11図
は実験1〜4の説明図、第12図は実験1の結果
説明図、第13図は実験2の結果説明図、第14
図は実験3の結果説明図、第15図は実験4の結
果説明図、第16図は実験5の実験法説明図、第
17図は実験6の実験法説明図、第18図は実験
5の結果説明図、第19図は実験6の結果説明図
である。 1:加熱体、2:境界面、3,4,5:温度分
布、6:測温素子、7:ヒータ、8:ヒータ兼測
温素子、9:平板状均熱ヒータ、10:被覆材、
11:充填材、12:クロメルリボン線、13:
コンスタンタンリボン線、14:接点、15:均
熱用アルミ板、16:ポリイミド粘着シート、1
7:面ヒータ、18:固定具、19:プラスチツ
クス製容器、20:参照用センサ、21:加熱用
センサ、22:空気、23:アルミナ粉、24:
断熱材、25:センサ、0S〜17S:接点、
:液体又は粉粒体領域、:気体領域、a,
b,c:温度分布の例。
Figure 1 is an explanatory diagram of the principle of the present invention, Figure 2 is an explanatory diagram of the temperature distribution of the heating element, Figure 3 is an assumed diagram of the temperature distribution of the heating element before and after heating, and Figure 4 is the temperature distribution of the heating element. FIG. 5 is a diagram illustrating the structure of the sensor. Figure 6 is the structure diagram and measurement circuit diagram of the sensor, Figure 7 is
The figure is a schematic diagram of the experimental apparatus of the example, Figures 8 to 11 are illustrations of experiments 1 to 4, Figure 12 is an illustration of the results of experiment 1, Figure 13 is an illustration of the results of experiment 2, and Figure 14 is an illustration of the results of experiment 2.
The figure is an explanatory diagram of the results of Experiment 3, Figure 15 is an explanatory diagram of the results of Experiment 4, Figure 16 is an explanatory diagram of the experimental method of Experiment 5, Figure 17 is an explanatory diagram of the experimental method of Experiment 6, and Figure 18 is an explanatory diagram of the experimental method of Experiment 5. FIG. 19 is a diagram explaining the results of Experiment 6. 1: Heating body, 2: Boundary surface, 3, 4, 5: Temperature distribution, 6: Temperature measuring element, 7: Heater, 8: Heater and temperature measuring element, 9: Flat plate-shaped soaking heater, 10: Covering material,
11: Filler, 12: Chromel ribbon wire, 13:
Constantan ribbon wire, 14: Contact, 15: Aluminum plate for soaking, 16: Polyimide adhesive sheet, 1
7: Surface heater, 18: Fixture, 19: Plastic container, 20: Reference sensor, 21: Heating sensor, 22: Air, 23: Alumina powder, 24:
Insulation material, 25: sensor, 0S to 17S: contact,
:Liquid or powder region, :Gas region, a,
b, c: Example of temperature distribution.

Claims (1)

【特許請求の範囲】 1 液体または粉粒体が気体と接している面のレ
ベルを測定する方法において、前記面のレベルに
垂直に配置された1本の均熱加熱体からパルス状
あるいはステツプ状に一定熱量が発熱されている
ときの前記均熱加熱体の長手方向の温度分布と、
前記均熱加熱体から発熱していないときの均熱加
熱体の長手方向の温度分布とを測定し、両者の同
一レベル同志の温度差の分布を求め、前記均熱加
熱体の実質的な温度上昇度の垂直方向の温度分布
の変曲部から量面を検出することを特徴とする量
面レベルの測定方法。 2 液体または粉粒体が気体と接している面のレ
ベルを測定する方法において、前記面のレベルに
垂直に発熱用および参照用の複数本の均熱加熱体
をそれぞれ間隔をおいて配置し、前記発熱用の均
熱加熱体から一定熱量を発熱させ前記参照用の均
熱加熱体からは発熱させないで、両者の同一レベ
ル同志の温度差の分布を求め、前記発熱用の均熱
加熱体の実質的な温度上昇度の長手方向の温度分
布の変曲部から量面を検出することを特徴とする
量面レベルの測定方法。 3 細長い円筒状、平板状または線状の均熱加熱
体、その表面または内部の長手方向の温度分布を
検出するための複数の測温点を有する測温素子、
およびその両者を囲繞してなる被覆材とからなる
1本の量面検出素子と、一定熱量を発熱させると
きの前記均熱加熱体の発熱用安定化電源と、前記
測温素子の各測温点の温度を検出するための測定
器と、前記均熱加熱体が発熱しているときと発熱
していないときとの均熱加熱体の長手方向の同一
レベル同志の温度差の分布を演算、表示する演算
器とを具備することを特徴とする量面レベル測定
装置。 4 細長い円筒状、平板状または線状の均熱加熱
体、その表面または内部の長手方向の温度分布を
検出するための複数の測温点を有する測温素子、
およびその両者を囲繞してなる被覆材とからなる
複数本の発熱用および参照用の量面検出素子と、
一定熱量を発熱させる均熱加熱体を有する前記発
熱用量面検出素子の発熱用安定化電源と、前記測
温素子の各測温点の温度を検出するための測定器
と、前記発熱用量面検出素子の均熱加熱体と前記
参照用量面検出素子の均熱加熱体との長手方向の
同一レベル同志の温度差の分布を演算、表示する
演算器とを具備することを特徴とする量面レベル
測定装置。 5 測温素子が均熱加熱体を兼ねる共通素線を有
する多枝式熱電対であることを特徴とする特許請
求の範囲第3項または第4項記載の量面レベル測
定装置。
[Claims] 1. A method for measuring the level of a surface where a liquid or powder or granular material is in contact with a gas, in which a pulse-like or step-like a temperature distribution in the longitudinal direction of the uniformly heated body when a constant amount of heat is being generated;
Measure the temperature distribution in the longitudinal direction of the soaked heating element when no heat is generated from the soaked heating element, determine the distribution of temperature differences between the two at the same level, and calculate the actual temperature of the soaked heating element. A quantitative surface level measurement method characterized by detecting the quantitative surface from an inflection part of the temperature distribution in the vertical direction of the degree of rise. 2. A method for measuring the level of a surface where a liquid or granular material is in contact with gas, in which a plurality of soaking heating elements for heat generation and reference are arranged at intervals perpendicular to the level of the surface, A constant amount of heat is generated from the heat generating uniform heating body, and no heat is generated from the reference uniform heating body, and the distribution of the temperature difference between the two at the same level is determined. A method for measuring a quantitative surface level, characterized by detecting a quantitative surface from an inflection part of a longitudinal temperature distribution of a substantial degree of temperature rise. 3. A temperature measuring element having a plurality of temperature measuring points for detecting the temperature distribution in the longitudinal direction on the surface or inside of an elongated cylindrical, flat or linear heating body,
and a covering material surrounding both of them, a stabilized power supply for heating the uniform heating body when generating a constant amount of heat, and each temperature measuring element of the temperature measuring element. a measuring device for detecting the temperature at a point, and calculating the distribution of the temperature difference between two equal-level members in the longitudinal direction of the uniform heating body when the uniform heating body is generating heat and when the uniform heating body is not generating heat; 1. A quantitative surface level measuring device, comprising: a calculator for displaying information. 4. A long and slender cylindrical, flat or linear temperature soaking body, a temperature measuring element having a plurality of temperature measuring points for detecting temperature distribution in the longitudinal direction on or inside the body;
and a plurality of quantitative surface detection elements for heat generation and reference, each of which is made up of a covering material surrounding both of them;
a stabilized power supply for generating heat for the heat generation amount surface detection element having a uniform heating body that generates a constant amount of heat; a measuring device for detecting the temperature at each temperature measurement point of the temperature measurement element; and the heat generation amount surface detection element. A quantity surface level characterized by comprising a calculation unit that calculates and displays the distribution of temperature difference between the same level in the longitudinal direction between the uniformly heated body of the element and the uniformly heated body of the reference volume level detection element. measuring device. 5. The quantitative surface level measuring device according to claim 3 or 4, wherein the temperature measuring element is a multi-branched thermocouple having a common wire that also serves as a uniform heating element.
JP188784A 1984-01-11 1984-01-11 Method and apparatus for measuring level of interface Granted JPS60146118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP188784A JPS60146118A (en) 1984-01-11 1984-01-11 Method and apparatus for measuring level of interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP188784A JPS60146118A (en) 1984-01-11 1984-01-11 Method and apparatus for measuring level of interface

Publications (2)

Publication Number Publication Date
JPS60146118A JPS60146118A (en) 1985-08-01
JPH0361893B2 true JPH0361893B2 (en) 1991-09-24

Family

ID=11514079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP188784A Granted JPS60146118A (en) 1984-01-11 1984-01-11 Method and apparatus for measuring level of interface

Country Status (1)

Country Link
JP (1) JPS60146118A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371620A (en) * 1986-09-13 1988-04-01 Chugoku Electric Power Co Ltd:The Measuring method for water level, snowfall height, or the like by temperature measurement
JPH0393733U (en) * 1990-01-17 1991-09-25
JP2579265B2 (en) * 1992-06-22 1997-02-05 雪印乳業株式会社 Method for measuring thermal conductivity of fluid and apparatus for measuring state of fluid
JP5474025B2 (en) * 2011-10-31 2014-04-16 三菱電機株式会社 Liquid level detection device and refrigeration air conditioner provided with the same
JP6021954B2 (en) * 2013-01-30 2016-11-09 三菱電機株式会社 Liquid level detection device and refrigeration air conditioner

Also Published As

Publication number Publication date
JPS60146118A (en) 1985-08-01

Similar Documents

Publication Publication Date Title
US5730026A (en) Microprocessor-based liquid sensor and ice detector
CA2011659C (en) Measuring sensor for fluid state determination and method for measurement using such sensor
US20200166417A1 (en) Adiabatic Concrete Calorimeter and Method
US11802799B2 (en) Temperature measuring device and method for determining temperature
CN114791325A (en) Heat flow calibration method for testing ground thermal strength cabin of aerospace plane
Jannot et al. Apparent thermal conductivity measurement of anisotropic insulating materials at high temperature by the parallel hot-wire method
US20080289410A1 (en) Thermal Mass Flow Meter
Baughn et al. Local heat transfer measurements using an electrically heated thin gold-coated plastic sheet
JPH0361893B2 (en)
US7377687B2 (en) Fluid temperature measurement
Diller et al. Heat flux measurement
WO1991014161A1 (en) Thermal sensing
Boumaza et al. Use of the transient plane source technique for rapid multiple thermal property measurements
US20220397438A1 (en) Non-invasive thermometer
US20220334003A1 (en) Noninvasive thermometer
US4475392A (en) Skin friction gage for time-resolved measurements
KR102257190B1 (en) Thermal conductivity measurement system and thermal conductivity measurement method thereof
CN117616257A (en) Thermometer with improved measurement accuracy
Stepanić et al. An in situ temperature calibration of a guarded hot plate apparatus
CN114424035A (en) Non-invasive thermometer
US3217537A (en) Method and apparatus for determining specific heat
US20180283925A1 (en) Apparatus and Method for Measuring a Level of a Liquid
US20220341794A1 (en) Thermometer
KR100507606B1 (en) A Calibration Device Of A Contact Type Surface Temperature Indicator
JP3547046B2 (en) Probe for measuring thermal conductivity