JPH0361833A - Measuring method for vibration mode - Google Patents

Measuring method for vibration mode

Info

Publication number
JPH0361833A
JPH0361833A JP1198870A JP19887089A JPH0361833A JP H0361833 A JPH0361833 A JP H0361833A JP 1198870 A JP1198870 A JP 1198870A JP 19887089 A JP19887089 A JP 19887089A JP H0361833 A JPH0361833 A JP H0361833A
Authority
JP
Japan
Prior art keywords
vibration mode
thermal
vibrating
image
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1198870A
Other languages
Japanese (ja)
Other versions
JP2963968B2 (en
Inventor
Kenji Yokoyama
憲二 横山
Hidehiko Saijo
西條 秀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI KANKYO ENG KK
Original Assignee
NIPPON DENKI KANKYO ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI KANKYO ENG KK filed Critical NIPPON DENKI KANKYO ENG KK
Priority to JP1198870A priority Critical patent/JP2963968B2/en
Priority to US07/439,292 priority patent/US4955236A/en
Priority to EP89312151A priority patent/EP0370801A1/en
Publication of JPH0361833A publication Critical patent/JPH0361833A/en
Application granted granted Critical
Publication of JP2963968B2 publication Critical patent/JP2963968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure a two-dimensional vibration mode which is generated on a vibrating surface visually by imparting thermal insulation to a body, vibrating the body, optically detecting infrared radiation energy which is emitted from the body, and displaying the result as a thermal display. CONSTITUTION:Thermal insulation is imparted to a body 2 by depositing a thermal insulating material 1. The image of the surface of the body 2 is sensed by use of a thermo-tracer 4 containing an infrared-ray detector 3. Then the thermal image having temperature distribution exactly corresponding to the vibration mode of the body 2 is displayed on a screen 5 of the tracer. The vibration mode of the body 2 can be displayed by the definite change in colors in this measuring method. The two-dimensional image of the vibrating body 2 in the vibration mode can be directly observed visually by remote sensing in real time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は構造物や材料に加えられた振動による振動モー
ドを視覚的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for visually measuring vibration modes caused by vibrations applied to structures or materials.

〔従来の技術〕[Conventional technology]

構造物や材料が加振されたときにその振動モードが如何
なる様相を示すかを知ることは機械、Il遺物の設計上
極めて重要である。
It is extremely important to know how the vibration mode of a structure or material behaves when it is vibrated in the design of machines and artifacts.

従来、振動モードを直接検知する方法はなく、例えば構
造物に生ずる振動モードを測定するにはその表面の各所
に加速度センサーを取付け、いわゆるマルチポイント測
定によって行っていた。この方法は各測定ポイントに得
られた測定値を集めて、データをフーリエ変換し、ソフ
ト処理によりモーダル解析を用いて振動面の振動モード
を解析するものである。
Conventionally, there has been no method for directly detecting vibration modes; for example, in order to measure the vibration modes occurring in a structure, acceleration sensors are attached to various locations on the surface of the structure, and the measurement is carried out by so-called multi-point measurement. This method collects the measured values obtained at each measurement point, subjects the data to Fourier transform, and analyzes the vibration mode of the vibrating surface using modal analysis through software processing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

したがって、上記方法によるときには多数の加速センサ
ーを用い、または各点の繰返し測定による大規模な数値
処理を要し、データの取得にセンサーの取付け、ケーブ
ル配線を行わなければならないなど、その測定作業は厄
介を極める欠点がある。
Therefore, when using the above method, it is necessary to use a large number of acceleration sensors or perform large-scale numerical processing by repeatedly measuring each point, and the measurement work is complicated, such as installing sensors and wiring cables to acquire data. There are drawbacks that are extremely troublesome.

しかも、得られたデータは成る一瞬のものであるかまた
は定常的に長時間振動が加わった場合に限られ、刻々と
変化する振動に対してはこれをフォローすることができ
ない。
Moreover, the data obtained is limited to instantaneous data or when vibration is applied regularly for a long period of time, and it is not possible to follow vibrations that change from moment to moment.

一方、振動モードを計算によって知る方法として有限要
素法が知られているが、これはあくまでシュミレーシヨ
ンにすぎず、大量の数値計算を必要とし、かつ対象とな
る構造物に生ずる実際の振動モードとは必ずしも一致し
ない場合も多い。
On the other hand, the finite element method is known as a method for determining vibration modes through calculations, but this is only a simulation and requires a large amount of numerical calculations, and it cannot be compared with the actual vibration modes that occur in the target structure. often do not necessarily match.

本発明の目的は上記問題点を解消し、振動面に生ずる2
次元振動モードを視覚的に測定しうる方法を提供するこ
とにある。
The purpose of the present invention is to solve the above-mentioned problems and to reduce the
The object of the present invention is to provide a method for visually measuring dimensional vibration modes.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明による振動モードの測
定方法においては、振動モードを測定すべき構造物、材
料を含む物体の少くとも一部に熱絶縁性を付与して加振
し、物体より発せられる赤外放射エネルギーを光学的に
検知し、振動モードに対応して物体表面各部の発熱にと
もなう振動面の温度変化の分布を熱画像として表示する
ものである。
In order to achieve the above object, in the vibration mode measurement method according to the present invention, at least a part of an object including a structure or material whose vibration mode is to be measured is vibrated with thermal insulation added to it, and The system optically detects the emitted infrared radiation energy and displays the distribution of temperature changes on the vibrating surface as heat is generated in each part of the object's surface as a thermal image, corresponding to the vibration mode.

〔原理・作用〕[Principle/effect]

試料を加振したときに試料に生ずる振動を熱に変換すれ
ば振動の大きさを熱変化量として測定できる。物体は、
その表面温度に対応した強さの電磁波を放射しており、
物体の温度が高くなるにつれて放射エネルギーが増すと
ともに短い波長の放射エネルギーが相対的に増加する0
通常、温度測定の対象として考えられる−40〜1 、
600℃での放射エネルギーの波長はおよそ2〜13μ
mの赤外線である。そのため、放射赤外線量を測定すれ
ば非接触で物体の温度を知ることができ、この原理を利
用して物体から放射される赤外線を検知し、これを電気
信号に変換して物体の温度を表示する赤外線放射温度計
や、さらに光学系を含む撮像機能を内蔵し、物体表面各
部の温度分布を熱画像として画面に表示するサーモトレ
ーサーが実用化されている。
If the vibrations that occur in a sample when it is vibrated are converted into heat, the magnitude of the vibrations can be measured as the amount of thermal change. The object is
It emits electromagnetic waves with a strength corresponding to its surface temperature.
As the temperature of an object increases, the radiant energy increases and the radiant energy of short wavelengths increases relatively0
-40 to 1, which is usually considered as the target of temperature measurement.
The wavelength of radiant energy at 600℃ is approximately 2-13μ
m infrared rays. Therefore, by measuring the amount of radiated infrared rays, it is possible to know the temperature of an object without contact.Using this principle, the infrared rays emitted from the object are detected, and this is converted into an electrical signal to display the temperature of the object. Thermotracers have been put into practical use that have built-in infrared radiation thermometers and imaging functions, including optical systems, to display the temperature distribution of each part of an object's surface as a thermal image on a screen.

したがって、サーモトレーサーを用いて物体を撮像すれ
ば物体表面各部の温度分布を示す熱画像が得られるが、
この物体をそのまま加振したとしても熱画像は振動面の
振動モードにしたがって変化するものではない、しかし
、物体の表面に熱絶縁材例えばフオームポリスチレンな
どの発泡プラスチック材を一定厚さに盛り付けて加振す
ると、物体に加えられた振動エネルギーは熱エネルギー
に変換され、物体の温度を上昇させる。振動エネルギー
は振動モードの腹の部分が大きく、節の部分は小さいた
め、振動モードにしたがって温度分布を生ずる。したが
って、第1図に示すように熱絶縁材1の盛り付けにより
熱絶縁性を付与した物体2の表面を、赤外線検出器3を
内蔵したサーモトレーサー4で撮像すると、lll1体
の振動モードに正確に対応した温度分布を有する熱画像
がその画面5に表示される0本発明において、熱絶縁材
1は必ずしも物体2を撮像する側の面に形成する必要は
ない、撮像面と反対側の面に熱絶縁材1を盛り付けたと
きでも、加振によって生じた振動のエネルギーが熱に変
換され、その熱によって物体の温度が上昇するのであれ
ば、いずれの面を熱絶縁しても同じことである。熱絶縁
材は必ずしも盛り付ける場合に限らない、塗付け、貼付
け、一体成形などの方法によってもよい、熱絶縁材の熱
伝導率が小さい程熱の移動度が小さいため、物体の発熱
温度に応じて各部に急激な温度勾配を生じ、サーモトレ
ーサには振動モードに対応した温度分布の色模様が明瞭
に現われる。もつとも、測定すべき物体自体が熱伝導性
の大きい材質で作られているものであれば、改めて熱絶
縁性を付与することは無意味である。
Therefore, if you image an object using a thermotracer, you can obtain a thermal image that shows the temperature distribution at each part of the object's surface.
Even if this object is vibrated as it is, the thermal image will not change according to the vibration mode of the vibrating surface. When shaken, the vibrational energy applied to an object is converted into thermal energy, increasing the object's temperature. Since the vibration energy is large at the antinode of the vibration mode and small at the nodes, a temperature distribution occurs according to the vibration mode. Therefore, as shown in FIG. 1, when the surface of an object 2, which has been given thermal insulation properties by applying a thermal insulation material 1, is imaged by a thermotracer 4 with a built-in infrared detector 3, the vibration mode of the object 2 can be accurately detected. A thermal image having a corresponding temperature distribution is displayed on the screen 5. In the present invention, the thermal insulating material 1 does not necessarily need to be formed on the side on which the object 2 is imaged, but may be formed on the surface opposite to the imaging surface. Even when heat insulating material 1 is piled up, if the vibration energy generated by excitation is converted into heat and the temperature of the object rises due to that heat, the same effect will occur no matter which side is insulated. . Thermal insulating material is not necessarily applied by piling it up; it can also be applied by painting, pasting, integral molding, etc. The lower the thermal conductivity of the thermal insulating material, the lower the mobility of heat, so it can be applied depending on the heat generation temperature of the object. A rapid temperature gradient occurs in each part, and the thermotracer clearly shows a color pattern of temperature distribution that corresponds to the vibration mode. However, if the object to be measured itself is made of a material with high thermal conductivity, it is meaningless to add thermal insulation to the object.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

第2図において、−辺が300 cmの略正三角形をな
す鉄板11の一面に熱絶縁材12を3rnの厚味に均一
に盛付けた。
In FIG. 2, a heat insulating material 12 was uniformly arranged to a thickness of 3rn on one side of an iron plate 11 forming a substantially equilateral triangle with a negative side of 300 cm.

以下この積層された板を試料板という、なお熱絶縁材1
2に日本電気環境エンジニアリング■製の熱可塑性材料
(A−57)  (ダンピングc/cc 3〜4%熱伝
導率0.4 w/m−k )を用いた試料板■と、熱絶
縁材12に同社製の熱硬化性材料(DP−020)(ダ
ンピングc/cc 3〜4%熱伝導率14 w/信・k
)を用いた試料板■との2種類を準備し、それぞれ試料
板■、■について、その中央部分をビス13で加振機1
4に水平に取付けた。一方、試料板をその曲げモーメン
トの共振周波数で加振し、試料板の直上にサーモトレー
サー(日本電気三栄■製6T61 ) 15を設置し、
サーモトレーサー15の画面16に得られた試料板の熱
画像を!IIAした。なお、室温は24℃である。実施
例に用いたサーモトレーサーでは被写体の温度は色変化
によって表示される形式のものであり、温度上昇に伴っ
て青色B−緑色G−黄色Y−赤色Rの順で温度の変化が
現わされる。
Hereinafter, this laminated plate will be referred to as the sample plate, and the thermal insulation material 1
2 is a sample plate ■ using a thermoplastic material (A-57) (damping c/cc 3-4% thermal conductivity 0.4 w/m-k) manufactured by Nippon Electric Environmental Engineering ■ and a thermal insulation material 12. The company's thermosetting material (DP-020) (damping c/cc 3-4% thermal conductivity 14 w/shin/k)
) and two types of sample plates (■) were prepared, and the central part of each of the sample plates (■ and ■) was connected to the vibration exciter 1 using the screw 13.
4 was installed horizontally. On the other hand, the sample plate was vibrated at the resonance frequency of its bending moment, and a thermotracer (6T61 manufactured by NEC Sanei ■) 15 was installed directly above the sample plate.
The thermal image of the sample plate obtained on the screen 16 of the thermotracer 15! IIA. Note that the room temperature was 24°C. In the thermotracer used in the example, the temperature of the subject is displayed as a color change, and as the temperature rises, the temperature changes in the order of blue B - green G - yellow Y - red R. Ru.

無振状態では試料板■、■のいずれも室温の温度範囲を
示す緑色Gを示したが、試料板の一次曲げモードの共振
周波数に相当する250H2付近を約30(G)で0.
5分間印加したところ、試料板■では第3図(a)に示
すように試料板■の中央領域と、該中央領域から各辺の
中央にかけて広い範囲で室温より+1.0〜+1.5℃
高い温度範囲を示す赤色Rが太い帯状に表わされ、その
外辺の一定領域が室温より0.5℃高い黄色Yを示した
。一方、試料■では第3図(b)のように試料板■の中
央の僅かの領域のみ赤色Rを示し、赤色Rの周囲から各
辺の中央にかけて黄色Yが太い帯状に表われた。
In the non-vibration state, both sample plates (■) and (2) exhibited a green color G indicating the room temperature range, but at approximately 30 (G) around 250H2, which corresponds to the resonance frequency of the sample plate's primary bending mode, 0.
When the voltage was applied for 5 minutes, as shown in Figure 3(a), sample plate ■ had a temperature of +1.0 to +1.5°C above room temperature in the center area of sample plate ■ and in a wide range from the center area to the center of each side.
A red color R indicating a high temperature range was displayed in a thick band shape, and a certain area around the periphery showed a yellow color Y which was 0.5° C. higher than room temperature. On the other hand, in sample ■, as shown in FIG. 3(b), only a small area in the center of the sample plate ■ exhibited red R, and yellow Y appeared in a thick band shape from the periphery of red R to the center of each side.

この色模様は試料板の形状に固有の一次モードの形状を
表わすものである。第3図(a) 、 (b)を比較し
て分るように熱伝導率が小さい熱絶縁材を用いた方が振
動モードの形状をより明瞭に現わすことができる。熱伝
導率が小さいことは試料板の加振部分に発生した熱をそ
の発生部位に留めて分散させず、したがって加振部分と
無振部分とに明確な温度差が生ずるからである。
This color pattern represents the shape of the primary mode specific to the shape of the sample plate. As can be seen by comparing FIGS. 3(a) and 3(b), the shape of the vibration mode can be more clearly expressed by using a thermal insulating material with a lower thermal conductivity. The reason why the thermal conductivity is low is that the heat generated in the vibrating part of the sample plate is retained at the generated part and not dispersed, resulting in a clear temperature difference between the vibrating part and the non-vibrating part.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によるときには熱絶縁材料の特性を
有効に利用して物体の振動モードを明確な色の変化によ
って表示でき、したがって、加振されている物体につい
て、リアルタイムで、しかもリモート・センシングによ
り、その振動モードの二次元像を視覚を通じて直接に観
察することができる。
As described above, according to the present invention, the vibration mode of an object can be displayed by a clear color change by effectively utilizing the properties of the thermal insulation material, and therefore, the vibration mode of the object being excited can be detected in real time and remotely. This allows the two-dimensional image of the vibration mode to be directly observed visually.

従って、本発明方法によれば、土木建築、a械の分野は
もとより、無接触のため、走行中の自動車、船舶につい
ての振動モードのデータ、また、宇宙、航空の分野にお
ける飛行物体についての振動モードのデータ、さらに加
速度センサーの取付が不可能なほど小さい表面(IC等
)の振動モードのデータを得てその評価を容易に行うこ
とができる効果を有する。
Therefore, the method of the present invention can be used not only in the fields of civil engineering and construction, but also in the field of aerospace machinery, as it is non-contact, vibration mode data on moving automobiles and ships, as well as vibration mode data on flying objects in the fields of space and aviation. The present invention has the effect that it is possible to obtain and easily evaluate vibration mode data of a surface (such as an IC) that is so small that it is impossible to attach an acceleration sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の原理を示す図、第2図は実態例に
用いた装置を示す図、第3図(a) 、 (b)は実施
例における振動モードの色変化を示す図である。 1・・・熱絶縁材、    2・・・物体。 3・・・赤外線検出器、  4・・・サーモトレーサー
5・・・画面。
Figure 1 is a diagram showing the principle of the method of the present invention, Figure 2 is a diagram showing the apparatus used in the actual example, and Figures 3 (a) and (b) are diagrams showing color changes of vibration modes in the example. be. 1... Heat insulation material, 2... Object. 3...Infrared detector, 4...Thermotracer 5...Screen.

Claims (1)

【特許請求の範囲】[Claims] (1)振動モードを測定すべき構造物、材料を含む物体
の少くとも一部に熱絶縁性を付与して加振し、物体より
発せられる赤外放射エネルギーを光学的に検知し、振動
モードに対応して物体表面各部の発熱にともなう振動面
の温度変化の分布を熱画像として表示することを特徴と
する振動モードの測定方法。
(1) Vibrate at least a part of the object, including the structure or material to be measured, with thermal insulation, and optically detect the infrared radiation energy emitted from the object. A vibration mode measurement method characterized by displaying the distribution of temperature changes on a vibration surface as a thermal image due to heat generation in various parts of an object surface.
JP1198870A 1988-11-22 1989-07-31 Vibration mode measurement method Expired - Lifetime JP2963968B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1198870A JP2963968B2 (en) 1989-07-31 1989-07-31 Vibration mode measurement method
US07/439,292 US4955236A (en) 1988-11-22 1989-11-20 Method for observation of vibration mode
EP89312151A EP0370801A1 (en) 1988-11-22 1989-11-22 Method for observation of vibration mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198870A JP2963968B2 (en) 1989-07-31 1989-07-31 Vibration mode measurement method

Publications (2)

Publication Number Publication Date
JPH0361833A true JPH0361833A (en) 1991-03-18
JP2963968B2 JP2963968B2 (en) 1999-10-18

Family

ID=16398295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198870A Expired - Lifetime JP2963968B2 (en) 1988-11-22 1989-07-31 Vibration mode measurement method

Country Status (1)

Country Link
JP (1) JP2963968B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090393B2 (en) * 2002-12-13 2006-08-15 General Electric Company Using thermal imaging to prevent loss of steam turbine efficiency by detecting and correcting inadequate insulation at turbine startup

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090393B2 (en) * 2002-12-13 2006-08-15 General Electric Company Using thermal imaging to prevent loss of steam turbine efficiency by detecting and correcting inadequate insulation at turbine startup

Also Published As

Publication number Publication date
JP2963968B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
SU552038A3 (en) Method for measuring vibration parameters
US20020018510A1 (en) Thermal-based methods for nondestructive evaluation
Zhang et al. Study on a fiber Bragg grating accelerometer based on compliant cylinder
US20060114965A1 (en) Thermal-based methods for nondestructive evaluation
EP2014019B1 (en) Triangulation with co-located sensors
Ling et al. Detecting mechanical impedance of structures using the sensing capability of a piezoceramic inertial actuator
CN107884062A (en) A kind of three-dimensional micro- fiber-optic grating sensor that shakes having from temperature compensation characteristic
Gade et al. Relation of electromagnetic emission and crack dynamics in epoxy resin materials
JP2009537834A (en) Nondestructive inspection system for parts by analyzing the distribution of leakage magnetic field
CN103344317B (en) Non-contact optical fiber grating vibration sensor and vibration measurement device and method
CN103760504B (en) A kind of optical fiber Bragg raster space magnetic field intensity sensor based on giant magnetostrictive material and using method thereof
Ma et al. Structural health monitoring using a fiber optic polarimetric sensor and a fiber optic curvature sensor-static and dynamic test
US4955236A (en) Method for observation of vibration mode
Newacheck et al. Noncontact spatiotemporal strain mapping of composite multiferroic cylinders
Luo et al. A fiber Bragg grating accelerometer based on Y-shaped symmetrical beam structure
Wang et al. A fiber optic accelerometer–magnetometer
De Simone et al. Acoustic emission localization in composites using the signal power method and embedded transducers
JPH0361833A (en) Measuring method for vibration mode
Sai et al. Composite plate low energy impact localization system based on FBG sensing network and hybrid algorithm
CN111722026B (en) Insulating medium space charge measuring method and system based on magnetoacoustic system
JPH02141626A (en) Method for measuring vibration mode
US3320796A (en) Vibration generation and measurement
Czichos et al. Sensor technology
Knott Summary of sensor evaluation for the Fusion ELectromagnetic Induction eXperiment (FELIX)
Ma et al. DFB fiber laser sensor for simultaneous measurement of acoustic and magnetic fields